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Abstract

The number of hops between the source and destination nodes is a key parameter in studying multi-hop ad
hoc networks analytically. To the best of our known, there is no analytical work that considers the hop count
of paths in MANETs in a random mobility environment. This paper presents a theoretical study for the
expected number of hops between any random source-destination pair in multi-hop ad hoc networks where
nodes move according to the random waypoint mobility model. The effects of network parameters such as
node density, size of the network area, and node transmission range are studied. Simulation experiments
for different network parameters have been conducted to validate the proposed analytical approach.
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1 Introduction

A mobile ad hoc network (MANET) is a collection of wireless mobile nodes, moving

with unpredictable mobility pattern, which dynamically form a network without any

infrastructure elements. MANETs are self organizing and self configurable networks

where the network is formed as soon as one of the nodes wants to send data to

one or more of the other nodes. They are multi-hop wireless networks because

the destination node is usually out of the transmission range of the source node.

Therefore, the packets reach the destination after some hops on the intermediate

nodes between the source and destination. As a result, the mobile nodes work

as both sources and routers for other mobile nodes in the network. MANETs

were initially designed to be used in the military and emergency relief applications.
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Lately, they have attracted researchers because of the need for flexible and efficient

networks, so they have been utilised in many other applications [1].

In MANETs, the route or path is the sequence of mobile nodes which data

packets pass through in order to reach the intended destination node from a given

source node. Due to the mobility of nodes, mobile ad hoc networks have inher-

ently dynamic topologies. Therefore the routes are prone to frequent breaks which

reduce the throughput of the network compared to wired or cellular networks. Con-

sequently, the route followed by packets to reach the destination varies frequently.

This is a crucial factor that affects the performance of the network.

The hop count specifies the number of hops on the path between source and

destination nodes. The analysis of the hop count in multi-hop networks is very

important because it can provide design guidelines for ad hoc networks. It can be

used in many applications such as, 1) estimation of the delivery ratio of packets, 2)

with per hop delay, the end to end delay can be estimated, 3) with the number of

simultaneous communications in the network, the network traffic can be estimated,

4) performance comparison between different multi-hop routing protocols, 5) eval-

uating the flooding cost and search latency for on-demand routing protocols and

determining the optimal flooding strategy [2], 6) studying of connectivity and esti-

mation of the capacity of the network. In addition, the hop count is a key parameter

for performance analysis of multi-hop ad hoc networks using analytical methods.

Many studies have been issued to analyze how the performance of MANETs is

affected by the hop count of paths [3-5]. The impact of hop count on searching

cost and delay in ad hoc routing protocols has been investigated in [3]. Li et al.

have simulated the impact of different traffic patterns on the scalability of per

node throughput. They showed that the network throughput deteriorates when the

number of hops of the path increases due to interference between nodes. In [5],

Gamal et al introduced a scheme to analyze the impact of the transmission range,

degree of node mobility and number of hops on the trade-off between the delay and

throughput in fixed and mobile ad hoc networks.

Although the impacts of the hop count of multi-hop paths on the performance

of MANETs have been well recognized, there have been a very limited number of

studies that focussed on the theoretical analysis of the expected number of hops in

multi-hop paths in MANETs [6-9]. In [6], Jia-Chun and Wanjiun modelled the be-

haviour of packet forwarding on a multi-hop path for mobile ad hoc networks with

high node density as circles centred at the initial location of the destination node.

However, the results are not accurate because it is assumed that the progress per

hop is equal to the transmission range. The relation between source-to-destination

Euclidean distance and the hop count has been examined in [7]. The authors con-

sidered a greedy routing approach called Least Remaining Distance (LRD) which

attempts to minimize the remaining distance to the destination in each hop. An

analytical model for LRD and bounds on the number of hops for a given Euclidean

distance between source and destination has been developed. Unfortunately, the

accuracy of LRD approach is good only when the node density is very high.

In [8] an analytical model describing the hop count distribution for each source

O. Younes, N. Thomas / Electronic Notes in Theoretical Computer Science 275 (2011) 143–158144



destination pair in multi-hop wireless networks has been developed. Also, the trade-

off between flooding cost and search latency for target location discovery, used in

most ad hoc routing protocols, has been evaluated. The drawback of this work

is that it supposed that the distance between the source and destination nodes is

uniformly distributed, and the impact of the size of the simulated network area

is neglected. A mathematical model for the expected number of hops based on a

Poisson randomly distributed network has been presented in [9]. The probability

of n-hop count is derived and used to compute the expected number of hops. Un-

fortunately, all of these previous studies suppose that the nodes are stationary (no

mobility) and are either uniformly or exponentially distributed over the network

area.

Random mobility models, such as Random Way Point, Random Walk (random

direction), Free Way, and Manhattan, play an important role in simulation of mo-

bile ad hoc networks. To the best of our knowledge, there is no analytical work

that computes the expected hop count of paths in MANETs in a random mobility

environment. This is the motivation for our work, in which we develop a simple

closed form analytical approach to estimate the expected number of hops between

any source-destination pair in MANETs where the nodes are scattered in a square

area and move according to the random waypoint mobility model (RWPMM). The

RWPMM is selected because it is one of the most commonly used mobility models

in MANETs studies. The hop count of paths for other mobility models can be

investigated using the proposed approach.

For a given distance between the source and destination, to analytically com-

pute the expected hop count, we need a packet forwarding algorithm which uses an

optimization criteria to choose a relay node from neighbour nodes that minimizes

the number of hops a packet has to traverse in order to reach the destination. We

proposed a new packet forwarding strategy called Maximum Hop Distance (MHD)

that attempts to minimize the number of hops needed for a packet to reach its des-

tination by forwarding the packet to a neighbour node with the maximum forward

distance in the direction of the destination.

To calculate the average number of hops analytically using MHD without the

need to run time-consuming simulations, the probability density function of the

distance between the source (or a relay node) and its neighbour nodes is derived

using geometric probability. Then, it is used to compute the expected value for the

maximum forward distance toward the destination which is essential to compute

the expected value for the remaining distance to the destination. By recursive

computing for remaining distance to the destination, the expected hop counts can

be computed.

The number of hops between the source and destination in multi-hop ad hoc

networks is jointly affected by many network factors, such as the node density,

transmission range of nodes, mobility pattern, and the size of the simulated net-

work area. The proposed approach is used to analyze the effect of these factors on

the expected number of hops of paths in MANET. The main contribution of our

work is twofold: (1) For the first time, an expression for the expected Euclidean
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distance between any source and destination nodes moving according to the random

waypoint mobility model is driven, (2) A novel analytical approach called Maximum

Hop Distance (MHD) is proposed to compute the expected hop count for a given

Euclidian distance between a source and destination.

MHD approach is a greedy routing approach which is inspired by LRD approach

introduced in [7], but it is simpler and more accurate, as clear from the comparison

between the two approaches in Section 4. In addition, MHD can be used for networks

with low nodes density. The proposed process that uses the MHD approach to

analytically compute the expected hop count between source and destination nodes

moving according to the RWPMM can be summarized as follows:

(1) With a given network size, the expected distance between any source-destination

pair is computed

(2) Compute the maximum expected distance (maximum forward distance) be-

tween any two nodes in the route for a given transmission range

(3) With a given node density, the per-hop progress is calculated

(4) By recursive computation, the expected number of hops for each packet to

traverse from a source to a destination is derived

The rest of this paper is organized as follows. In Section 2 we drive an expression

for the expected Euclidean distance between any random source and destination

nodes moving according to RWPMM. Theoretical analysis of per hop progress and

hop count is presented in Section 3. In Section 4, the proposed approach is validated

via simulation. Finally, the paper is concluded in Section 5.

2 Euclidean Distance Between the Source and Destina-
tion Nodes

This section drives an expression for the expected Euclidean distance between any

random source and destination nodes moving according to RWPMM. First, we drive

it for one dimension and then consider the square area.

2.1 Expected Distance on One Dimension

We first consider the distance between two nodes in a line segment. Suppose that

two random points X1 and X2 are located in a line segment with length L. The

distance betweenX1 andX2 is S. X1 andX2 are independent identically distributed

random variables. According to [10], for the Random Waypoint Mobility Model the

distribution ofX1 orX2 is non-uniform at the long run. The probability distribution

function of the location of a point Xn moving on a line with length L according to

the RWPMM is [10]

fXn(xn) =
6
L2xn + 6

L3x
2
n 0 ≤ xn ≤ L

Because X1 and X2 are i.i.d, the probability distribution function (pdf) of the

location of the two points is
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fX1X2(x1, x2) = fX1(x1) · fX2(x2) 0 ≤ x1 ≤ L, 0 ≤ x2 ≤ L

The cumulative distribution function (CDF) of the distance S = |x2 − x1| be-
tween the two points (The probability that S is smaller than a given value d) can

be obtained by integration of fX1X2(x1, x2) over the bounds of S as follows:

P (s ≤ d) =
∫ ∫

fX1X2(x1, x2) dx2dx1 =
∫ ∫

fX1(x1)fX2(x2) dx2dx1

=
d∫
0

d+x1∫
0

fX1(x1)fX2(x2) dx2dx1 +
L−d∫
d

d+x1∫
x1−d

fX1(x1)fX2(x2) dx2dx1 +

L∫
L−d

L∫
x1−d

fX1(x1)fX2(x2) dx2dx1

The integrations in the last equation can be evaluated yielding the following result:

P (S ≤ d) =
12d

5L
− 4d3

L3
+

3d4

L4
− 2d6

5L6
(1)

By definition the probability density function f(d) of d is given by the derivative of

the Equation 1.

f(d) = 12
5L − 12d2

L3 + 12d3

L4 − 12d5

5L6

2.2 Expected Distance on Two Dimension

Now, consider two random points X1 and X2 located in a square area of size L×L

with coordinates (x1, y1) and (x2, y2), respectively. If d is the distance between X1

and X2, d is given by

d = (x1 − x2)
2 + (y1 − y2)

2

If fdx and fdy are the pdf of the events (x1 − x2)
2 and (y1 − y2)

2, respectively.

Then, the pdf of the distance d is given by the convolution of fdx and fdy as follows:

fxy(d) =

∫
fdx(z) · fdy(d− z) dz(2)

Let (x1 − x2)
2 = dx, then the CDF of dx can be obtained by using Equation 1

by substituting d by
√
dx. We get the following:

F (dx) = 12
√
dx

5L − 4
√
dx3

L3 + 3dx3

L4 − 2dx32
5L6

The pdf of dx is obtained as follows:

f(dx) =
∂F (dx)

∂dx
=

6dx

L4 − 6dx2

5L6 +
6

5L
√
dx

− 6
√
dx

L3(3)
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In the same way, f(dy) can be obtained.

Because the domain of d is divided in two parts, 0 < d ≤ L2 and L2 < d ≤ 2L2,

there are two cases for Equation 2 which are

fxy(d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I1(d) =
d∫
0

fdx(z) · fdy(d− z) 0 < d ≤ L2

I2(d) =
L2∫

d−L2

fdx(z) · fdy(d− z) L2 < d ≤ 2L2

(4)

By substituting Equation 3 into Equation 4, the integrals (I1) and (I2) in Equation

4 can be evaluated and with some simplification and reduction of their terms, we

obtain the following

I1(d) =
6d3

L8
− 6d4

5L10
+

6d5

125L12
+

96
√
d3

5L5
− 1584

√
d5

125L7
+

36π

25L2

+
192d2

√
d3

175L9
− 36πd

5L4
− 48d

√
d3

5L7
+

9πd2

2L6
(5)

I2(d) =
312d

25L4
− 1104

875L2
− 12d2

5L6
− 6d3

L8
+

6d4

5L10
− 6d5

125L12

+
9

25L6
(8L4 − 40L2d+ 25d2) arctan(

L2 − d
2

L
√
d− L2

)

− 6

175L9
(165L4 − 232L2d+ 32d2)

√
(d− L2)3

− 6

875L9
(407L6 + 1936L4d− 1768L2d2 + 160d3)

√
d− L2(6)

Because d is the square distance between X1 and X2, the expected distance between

the two nodes E(δ) is given by

E(δ) =

2L2∫
0

√
d fxy(d) dd =

L2∫
0

√
d I1(d) dd+

2L2∫
L2

√
d I2(d) dd

=

√
2L∫

0

2δ2 fxy(δ) dδ =

L∫
0

2δ2 I1(δ) dδ +

√
2L∫

L

2δ2 I2(δ) dδ(7)

where δ=
√
d and dd = 2δ dδ. The expected distance between the two nodes can

be evaluated by plugging Equation 5 and 6 into Equation 7 which yields

E(δ) =

(
11

350
ln(

√
2 + 1) +

28083

750750

√
2 +

19064

375375

)
· L(8)
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For uniformly distributed nodes in a square area of size L×L, the expected distance

between two random nodes is [11]

E(δ) = 0.5214054 L

Fig. 1. The expected Euclidian distance between any random source and destination nodes

Figure 1 shows the expected Euclidian distance between any random source and

destination nodes (E(δ)) that are uniformly scattered or moving according to the

RWPMM in a square area, plotted against different values of the side length of the

square area (L). It is clear that the expected distance between the two nodes in

the case of the RWPMM is much less than uniform distributed nodes, especially for

large value of L. This is because the spatial distribution of nodes moving according

to the RWPMM at long run is non-uniform, since the probability that a node is

located at the centre of the square area is high, and it reaches zero at the border of

the area [12].

3 Expected Hop Count

To analyze the expected hop count in MANETs where nodes move according to

the RWPMM, we consider any source node S that tries to send its packet to a

destination node D, as shown in Figure 2, where the circle with radius R around

any node indicates the transmission area. The expected distance between any source

and destination nodes is d. If d is greater than the transmission range R, which

is equal for all nodes in the network, the source uses the intermediate nodes to

forward the packets to the destination through two or more hops. The routing

protocol searches all routes to the destination and chooses the shortest one. If

the source has Nh neighbour nodes (the nodes within the transmission range), the
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Fig. 2. Packet forwarding in a multi-hop path

routing protocol in S will choose the closest neighbour node to the destination (e.g.

the node A in Figure 2) to work as the next relaying node to forward the packet

in the path. The number of hops in the path depends on the distance between the

source and destination nodes (d) and the remaining distance to the destination per

hop (per hop progress).

To compute the expected hop count analytically without the need to run time-

consuming simulations, a greedy routing approach called Maximum Hop Distance

(MHD) is proposed. MHD is a packet forwarding algorithm that uses the maximum

forward distance toward the destination as the optimization criterion to choose the

relay node from neighbour nodes that minimizes the number of hops a packet has to

traverse in order to reach the destination. The geometric probability is used to drive

the pdf of the distance between the source (or a relay node) and its neighbour nodes

which is used to compute the expected value for the maximum forward distance

toward the destination. Also, the expected remaining distance to the destination,

which is used to calculate the expected hop count, is computed using the geometric

probability.

MHD approach succeeds if at least one router is located towards the destination

(shaded regions shown in Figure 2) in each hop to prevent back forwarding of

packets. Otherwise it fails. For example, as shown in Figure 2, for node S and C,

node A and E are located in the grey half circle towards the destinationD to forward

the packets from S and C, respectively, to the destination. Intuitively, to keep the

connectivity of the route, each node needs at least two neighbour nodes; one is for

the previous hop and the other is for the next hop. Therefore, the node density must

exceed a certain threshold to ensure the route and network connectivity. In [13] and

[14], the authors showed that the average number of neighbour nodes required to

ensure one-connectivity is eight. Hence, in all validation scenarios, introduced in

Section 4, the total number of nodes in the network (N) and size of the network

area are chosen to make the number of neighbour nodes is eight.

Let M be the potential router that used to forward the packets from S to D
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Fig. 3. Least remaining distance for the first hop

Fig. 4. The distances between S and neighbour nodes

for the first hop, as shown in Figure 3. Also, let r and X be the distance between

the source and the router M (the maximum forward distance) and the remaining

distance from M to D, respectively. The pdf and expected value for r and X must

be derived to compute the expected hop count.

First, we drive the pdf of the maximum forward distance r that is used by MHD

approach as the optimization criterion to minimize the hop count. suppose that

there are n forwarding neighbour nodes (M1,....,Mn) distributed over the half circle

towards of the destination D. The distances and angles from the source S to the

neighbour nodes are ρi and αi, where i = 1,....,n, as shown in Figure 4. For simplicity

of the analysis the neighbour nodes are assumed to be uniformly distributed around

S. So, the expected value of n equals to the half of the expected number of neighbour

nodes (Nh). The value of Nh for the RWPMM can be computed using the methods

introduced in [15]. The pdf of the distance (ρ) between S and the neighbour nodes

is
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fρα(ρ, α) =
2ρ
πR2

where 0 ≤ ρ ≤ R and −π
2 ≤ α ≤ π

2 . Integrating the last Equation over α gives the

pdf of ρ as

fρ(ρ) =
2ρ
R2

To minimize the hop count to the destination, the neighbour node with the

maximum distance (ρmax) from the source S is chosen to forward the packets.

According to [16], because ρ1, .. , ρn are i.i.d random variables each with pdf fρ(ρ),

the pdf of ρmax is

fρmax(ρ) = n (Fρ(ρ))
n fρ(ρ) = 2n

ρ2n−1

R2n

Where Fρ(ρ) is the CDF of ρ. By definition, the expected value of ρmax is

E(ρmax) =
R∫
0

ρ fρmax(ρ) dρ = 2n
2n+ 1R

Therefore, the expected distance r between the source S and router M , shown in

Figure 3, is given by

r = E(ρmax) =
2n

2n+ 1
R(9)

The resulting function for r for a given R = 250 or 220 and increasing values

of n is shown in Figure 5. Clearly, for a given transmission range R, for small

values of n, r increases rapidly. For large values of n, r may reach R. Therefore,

increasing the node density decreases the expected hop count, but it increases the

interference between neighbour nodes. Equation 9 can be used for analysis of the

distance between the source and other nodes in the path which is important to

study the survivability of the path.

RWPMM significantly increases the average number of neighbour nodes com-

pared to uniformly distributed nodes [15]. As shown in Figure 5, an increase in

the number of neighbour nodes (n) increases the maximum forward distance (r)

which decreases the expected hop count. Therefore, the expected number of hops

for nodes moving according to RWPMM is less than that for uniform distributed

nodes.

To drive an expression for the remaining distance, we consider that the router

M may be located at any point on the circumference of a half circle with a radius r

(the dashed half circle shown in Figure 3) computed using Equation 9, as shown in

Figure 3. Let M is located at random angle α. So, the domain of α is −π
2 ≤ α ≤ π

2 .

The remaining distance X can be described using a pdf as follows

fα(α) =
1
π − π

2 ≤ α ≤ π
2

The probability that α is smaller than a given value a can be computed by the

integral of the last equation as
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Fig. 5. The per hop distance for different values for n and R

P (α ≤ a) =

a∫
−a

fα(α) dα =
2

π
a(10)

From geometry, d2 + r2 − 2Xr cos a = X2. Therefore, by substitution in Equation

10, we get CDF of X as

FX(X) = Px(X ≤ x) = 2
π arccos(d

2 + r2 −X2

2 d r
)

The last equation is differentiated to get its pdf of X as

fX(X) =
2X

π d r
√
1− (d

2+r2−X2

2 d r )2
(11)

By definition, the expected value of X can be deduced form Equation 11 as follows

Xr = E(X) =

√
d2+r2∫

d−r
X · fX(X) dX(12)

The last equation can be easily evaluated numerically.

After getting the remaining distance Xr from the router M to the destination

for the first hop, to get the expected number of hops, the current distance to the

destination d in the next hop is replaced by the remaining distance Xr obtained

using Equation 12. Then, the process is repeated and the hops are counted until

Xr falls below the transmission range R. The following procedure summarizes this

process:
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Step 1: Set the inputs N , R, and L

Step 2: Set the number of hop count to hop count = 0

Step 3: Compute the expected distance between the source and destination (d)

using Equation 7

Step 4: If d ≤ R, then hop count = d
R , go to the End

Step 5: Set hop count = hop count+1

Step 6: The remaining distance between the router and destination (Xr) is com-

puted using Equation 12

Step 7: If Xr ≤ R, then hop count = hop count+ Xr
R

Step 8: If Xr > R, then set d = Xr and go to step 6

Step 9: End

4 Validation

In this section, the proposed approach is validated by comparing the theoretical

and simulation results. We first validate the theoretical analysis of the expected

Euclidean distance between any random source and destination nodes, introduced

in Section 2, by network simulation. For this validation we used the MobiSim

tool [17] that uses topological characteristics to analyze and manage the mobility

scenarios for ad hoc networks. We consider a simulation scenario consists of a square

system area of a side length L that varies from 400 to 1000 m. A set of 200 nodes

are uniformly scattered in the square area and move according to the RWPMM.

Every node moves towards the destination point with a velocity chosen uniformly

from 0 to maximum speed (V max). When it reaches the destination it chooses and

moves towards a new destination in a similar manner. The maximum moving speed

is set to 20 m/s. A zero pause time was chosen to make the nodes move all the

time. All nodes have a radio range of 250m.

For each mobility scenario, the expected distance between any source-destination

pair is computed by taking the average of the distances between every pair of nodes.

Many different mobility scenarios (with different random seeds) have been generated

until the expected distance between nodes is within 95% confidence interval with

1% relative error. Figure 6 shows simulation and analysis results for the expected

distance between any two nodes for varying values of the side length of the square

area. The comparison between analytical and simulation results shows the accuracy

of the proposed analysis.

To validate the proposed theoretical analysis and procedure to compute the

expected number of hops for a packet transmission in ad hoc networks, we performed

a series of simulation tests using NS-2 [18]. The simulation settings consist of a

network with a square area. The side length of the square area varies from 700 to

1600m. The maximum speed of a node is set to 20 m/s. The simulation time is set

to 1500 seconds. To be sure that the average number of neighbour nodes is greater

than or equals 8 nodes, the node density is varied depending on the size of the system
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area. To illustrate its effect on the expected number of hops, the transmission range

is considered to be 200 or 250m. The RWP mobility patterns used in all simulation

tests are generated using setdest tool which is a node movement generator tool

implemented by the current ns-2 version.

Fig. 6. Expected distance for different sizes of the network area n and R

The number of hops between nodes can be computed on the fly during simulation

runs. But this method consumes a long time (may be days) especially with a

large number of nodes and network area size. Alternatively, we used an object

called General Operations Director (GOD) which is implemented with setdest tool

and used to mange the shortest path information between nodes. For the whole

simulation period, GOD is aware of any changes in mobile wireless network topology.

GOD is an omniscient observer, where it is used to store global information about

the topology of the network. This global information is not totally available to any

node, but partial information is provided to each node when needed. GOD is used

to store an array of the optimal path length in hops between every pair of nodes.

This information is used to analyze and develop ad hoc network routing protocols.

For the same network settings, the expected number of hops is computed by

averaging the number of hops between every pair of nodes. We generated many

mobility patterns for the same network settings and computed the expected number

of hops with a confidence level of 95% and a relative error threshold of 2%. Table

1 shows the simulation and theoretical results for the expected number of hops for

two different values of transmission range (R = 200 or 250) and increasing values

for side length of the square area of the simulated network. As shown in Table 1,

for a given transmission range, the expected number of hops increases significantly

as the network size increases because of increasing the expected distance between

the source and destination. In addition, as expected, the expected number of hops

decreases with increasing of the transmission range because of increasing of the

per hop progress. As can be seen in Table 1, the theoretical results are accurate
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compared to simulation results.

Table 1
Analytical and simulation results for expected hop count for increasing values for the side length of the

network area where R = 200 or 250m

L

Expected Number of Hops

R = 200 R = 250

Sim Ana Sim Ana

700 2.61 2.73 2.01 1.82

800 2.93 2.84 2.14 1.91

900 3.19 2.97 2.69 2.75

1000 3.65 3.8 2.94 2.83

1100 4.10 3.92 3.18 2.93

1200 4.58 4.76 3.57 3.76

1300 4.93 4.86 3.86 3.83

1400 5.28 4.99 4.16 3.92

1500 5.79 5.82 4.52 4.75

1600 6.19 5.93 4.63 4.81

To compare the LRD and MHD approaches, Table 2 shows the expected number

of hops computed using the two approaches and simulation for the same network

settings used to validate the MHD approach where R = 150. Compared with

simulation results, it is clear that the accuracy of the MHD approach is much

better than LRD approach, as shown in Table 2. The expected number of hops

computed using the LRD approach is much less than simulation especially for long

routes. This is because the LRD approach supposes that the routers with the

minimum remaining distance to the destination constitute the shortest path to the

destination which is only true when the node density is very high.

Compared to simulation results, the computation time required for theoretical

analysis is trivial. For example, in the case of N = 250, R = 150, L = 1600,

simulation time = 1500s, for 95% confidence interval and 2% relative error, the

time required for generating the mobility patterns and computing the expected hop

count is about 28.2 hours, whereas the time required for theoretical analysis is less

than 2 seconds, where the simulation and theoretical analysis was conducted on

desktop workstation equipped with 2.6GHz (Intel Q9400 Core 2 Quad) processor,

4 GB of RAM and Ubuntu Linux version 8.10.

5 Conclusion

In this paper, we presented a theoretical analysis for the expected number of hops in

mobile ad hoc networks where nodes move according to random waypoint mobility

model. The proposed approach can be used to analyze the hop count for other

mobility models. It depends on computing the expected distance between source
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Table 2
Comparison between simulation and LRD and MHD results for expected hop count for increasing values

for L where R = 150

L Sim LRD MHD

700 3.37 2.39 3.74

800 3.83 2.62 3.86

900 4.40 2.86 4.75

1000 4.84 3.40 4.86

1100 5.42 3.63 5.75

1200 5.83 3.88 5.86

1300 6.35 4.4 6.74

1400 6.72 4.64 6.85

1500 7.06 4.89 6.99

1600 7.35 5.42 7.83

and destination nodes, per hop distance, and per hop progress which are used

to compute the expected hop count. The proposed approach has been validated

using network simulation for different network parameters. The impacts of the

transmission range, node density, and size of network area on the hop count have

been investigated. Compared to other methods in the literature, the accuracy of

the proposed approach is much better.
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