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Abstract

In this paper, interconversion between linear viscoelastic material functions is studied emphasizing materials with rel-
atively fast rate of relaxation. The aim of this paper is to study the whole material function determination process from a
linear viscoelastic experiment to interconversion by taking into account non-ideal loading and noisiness of the data in such
an experiment. No assumptions are made concerning the form of the relaxation modulus or the creep compliance. Inter-
conversion is carried out by evaluating numerically the convolution integral. Three different yet similar approaches are
studied. In numerical interconversion, the resulting matrix equation is ill-posed. Due to this, Tikhonov regularization is
applied to solve the related matrix system. Numerical simulations indicate that reliable results can be obtained with pro-
posed numerical procedures.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In order to construct a mathematical model for material, the material parameters have to be determined. In
the case of the integral representation of linear viscoelasticity, either relaxation modulus G(t) or creep compli-
ance J(t) has to be modeled. From a typical linear viscoelastic experiment, only either relaxation modulus or
creep compliance can be determined directly. After such an experiment, the unknown linear viscoelastic mate-
rial function can be determined with an interconversion method.

Relaxation modulus and creep compliance are related by a convolution integral. Hopkins and Hamming
(1957) divided the convolution integral into a finite number of subintervals. In each subinterval target function
is approximated to be constant. The remaining integrals are then evaluated numerically for obtaining a recur-
sive relation for the target function. This approach was further improved by Knoff and Hopkins (1972). They
approximated the source and target functions to be piecewise linear for carrying out integration analytically.
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Dooling et al. (1997) proposed a three-step method, which consists of following substeps: (i) the discrete retar-
dation spectrum is fitted to creep data, (ii) the generalized Voigt model is solved numerically to obtain stress
relaxation data, (iii) the discrete relaxation spectrum of a generalized Maxwell model is fitted to the relaxation
data. Park and Schapery (1999) evaluated the convolution integral analytically by expressing both the source
and target function in Prony series to obtain the system of equations for the unknown coefficients of Prony
series. Lately, Liu (2001) proposed a direct method where discrete relaxation spectra is obtained directly from
creep data. The direct method was based on the assumption that relaxation times are specified by the user,
thus are a priori known. Many other related methods are reviewed in Tschoegl (1989).

The direct numerical integration of a discrete set of source data is sensitive to the noisiness of the data. In
addition, non-ideal loading can induce large errors. Nevertheless, such methods can be considered to be the
most fundamental since no approximations are made on the form of the source or target function. Therefore,
it is tempting to attack the interconversion problem with methods where the convolution integral is evaluated
numerically.

If either creep or relaxation test is performed to determine viscoelastic material parameter, non-ideal load-
ing is induced due to inertia effects and in practice, step loading cannot be produced. Quite often the relaxation
test takes the form of a ramp test, i.e. constant strain rate is followed by constant strain. In that case, no expli-
cit solution exists and the relaxation modulus has to be determined approximately. Zapas and Phillips (1971)
derived a simple method to determine the relaxation modulus from non-ideal loading. In their approach time
scale is simply shifted when compared to the step loading case. However, Zapas–Phillips method cannot be
used for times less than t1/2, where t1 denotes the ramp time. Lee and Knauss (2000) derived a backward
recursive formula for the relaxation modulus in the case of ramp test. Although the derived formula is math-
ematically exact, there are several drawbacks. Since the method is recursive and contains numerical differen-
tiation of stress it is inherently unstable. Moreover, the initial value has to be approximated. Sorvari and
Malinen (2006) improved the Lee–Knauss method by using numerical integration for gaining an explicit for-
mula for the relaxation modulus.

As discussed above, noise in experimental data and non-ideal loading can cause large errors in numerical
interconversion and in mathematical sense the problem is said to be ill-posed, (Mead, 1994). For example, if
relaxation function is determined with experimental data and interconversion is used to solve the creep com-
pliance, small errors in relaxation function can cause large errors to creep compliance. This is a typical feature
of ill-posed problems. Such an ill-posed problem can be solved with regularization methods in which addi-
tional criterion is included to problem. In regularization, original ill-posed problem is replaced with nearby
well-posed problem which is numerically stable. General discussion concerning ill-posed problems and differ-
ent regularization methods is given for example by Hansen (1998).

Regularization methods for numerical interconversion have been successfully applied in frequency domain.
In the most of the studies, the aim is to compute the relaxation spectrum for polymers. The used regularization
methods include Tikhonov regularization by Honerkamp and Weese (1990), in which different methods for
choosing the regularization parameter was also studied. A constrained linear regression with regularization
was proposed by Mead (1994). Furthermore, quadratic programming regularization (RQP) method was pro-
posed by Ramkumar et al. (1997). As a conclusion, in all of the previous studies regularization was found to be
effective to decrease the error when relaxation spectra was estimated from a noisy or incomplete data.

Although regularization methods have been applied in interconversion before, the approach presented in
this paper is somewhat different since interconversion is accomplished in time domain. The regularization
method used in this study is Tikhonov regularization, formulated by Tikhonov (1963). The additional crite-
rion for the problem is taken as a form of smoothness priori, i.e. material function is decided to be a smooth
function of time. This kind of a priori information is valid, since there are no sharp peaks in the material func-
tions, i.e. in relaxation modulus or in creep compliance.

In this work, we present numerical procedures for evaluating creep compliance from relaxation test with
non-ideal loading and noise in simulated experimental data. We specially emphasize materials with rather fast
relaxation and therefore test times are small. Several ramp tests in which random Gaussian noise is added are
simulated. Then the relaxation modulus is determined and after that the creep compliance is computed by
interconversion with Tikhonov regularization. In the interconversion we use three different methods. Results
from the interconversion methods with and without Tikhonov regularization are compared to analytical
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solution of the creep compliance. Simulations indicate robustness of presented algorithms even with large
noise levels.

2. Theoretical background

The constitutive equation for linear viscoelastic material can be expressed as
rðtÞ ¼
Z t

0

Gðt � sÞ_�ðsÞds; ð1Þ
where r is the stress, t is time, � is the strain and G(t) is the relaxation modulus. Alternatively, the constitutive
equation can be written as
�ðtÞ ¼
Z t

0

Jðt � sÞ _rðsÞds; ð2Þ
where J(t) is the creep compliance. Applying the Laplace transform to Eqs. (1) and (2) yields
r̂ðsÞ ¼sbGðsÞ�̂ðsÞ; ð3Þ
�̂ðsÞ ¼sbJ ðsÞr̂ðsÞ: ð4Þ
From Eqs. (3) and (4) we get
bGðsÞbJ ðsÞ ¼ 1

s2
: ð5Þ
Applying the inverse Laplace transform to (5) gives
t ¼
Z t

0

Gðt � sÞJðsÞds; ð6Þ
or
t ¼
Z t

0

Jðt � sÞGðsÞds: ð7Þ
Differentiating Eq. (6) with respect to time gives
1 ¼ Gð0ÞJðtÞ þ
Z t

0

otGðt � sÞJðsÞds: ð8Þ
By setting t = 0, we get an initial condition between the relaxation modulus and creep compliance
Gð0ÞJð0Þ ¼ 1: ð9Þ
3. Numerical evaluation of the convolution integral

The convolution integral relating the creep compliance and the relaxation modulus, Eq. (6), is the Volterra
equation of the first kind. One peculiar feature of such an equation is that convergent numerical integration
rules does not necessary lead to a convergent method. If standard quadrature rules are considered, midpoint
and Euler methods are numerically stable whereas trapezoidal method is not (Linz, 1985). Also, standard
higher order methods such as Gregory and Newton–Cotes methods lead to unstable algorithms (Linz,
1985). To summarize then, the midpoint method, which is second-order accurate, can be regarded as the best
standard numerical scheme for the numerical solution of the Volterra equation of the first kind.

Rather than using direct methods, that is, methods where the original equation is directly discretized with a
proper numerical integration rule, we consider methods where the target function is assumed to be constant in
each subinterval and after that integrals are evaluated numerically. This kind of approach was chosen since
such indirect methods are generally used in the interconversion between linear viscoelastic material functions
(Tschoegl, 1989). Here we derive three different but basically very similar interconversion methods which are
also numerically evaluated in this study. First two methods are also given in Tschoegl (1989).
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At time tn Eq. (6) yields
tn ¼
Z tn

0

Gðtn � sÞJðsÞds ¼
Xn

i¼1

Z ti

ti�1

Gðtn � sÞJðsÞds; ð10Þ
where t0 = 0.
In the first case (Method 1) the value for the creep compliance is taken to be J(ti�1/2), where

ti�1/2 = (ti�1 + ti)/2, in the time interval t 2 [ti�1, ti] and remaining integrals are evaluated via trapezoidal
rule. These approximations gives
tn ¼
Xn

i¼1

Jðti�1=2ÞðGðtn � tiÞ þ Gðtn � ti�1ÞÞðti � ti�1Þ=2; ð11Þ
which can be written as
Jðtn�1=2Þ ¼
2tn �

Pn�1
i¼1 Jðti�1=2ÞðGðtn � tiÞ þ Gðtn � ti�1ÞÞðti � ti�1Þ
ðGð0Þ þ Gðtn � tn�1ÞÞðtn � tn�1Þ

; ð12Þ
for n P 2, with
Jðt1=2Þ ¼
2

Gð0Þ þ Gðt1Þ
: ð13Þ
In the second case (Method 2) creep compliance is approximated to be (J(ti) + J(ti�1))/2 rather than J(ti�1/2),
thus giving
JðtnÞ ¼ �Jðtn�1Þ þ
4tn �

Pn�1
i¼1 ðJðtiÞ þ Jðti�1ÞÞðGðtn � tiÞ þ Gðtn � ti�1ÞÞðti � ti�1Þ

ðGð0Þ þ Gðtn � tn�1ÞÞðtn � tn�1Þ
; ð14Þ
for n P 2, with
Jðt1Þ ¼
3� Gðt1Þ=Gð0Þ

Gð0Þ þ Gðt1Þ
: ð15Þ
The third method (Method 3) is derived by using Eq. (8), which yields at time tn
1 ¼ Gð0ÞJðtnÞ þ
Z tn

0

otGðtn � sÞJðsÞds ð16Þ

¼ Gð0ÞJðtnÞ �
Z tn

0

osGðtn � sÞJðsÞds ð17Þ

¼ Gð0ÞJðtnÞ �
Xn

i¼1

Z ti

ti�1

osGðtn � sÞJðsÞds ð18Þ

� Gð0ÞJðtnÞ �
Xn

i¼1

JðtiÞ þ Jðti�1Þ
2

Z ti

ti�1

osGðtn � sÞds ð19Þ

¼ Gð0ÞJðtnÞ þ
Xn

i¼1

JðtiÞ þ Jðti�1Þ
2

ðGðtn � ti�1Þ � Gðtn � tiÞÞ ð20Þ
Above formulation leads to a recursive relation
JðtnÞ ¼
2� Jðtn�1ÞðGðtn � tn�1Þ � Gð0ÞÞ

Gð0Þ þ Gðtn � tn�1Þ
�
Pn�1

i¼1 ðJðtiÞ þ Jðti�1ÞÞðGðtn � ti�1Þ � Gðtn � tiÞÞ
Gð0Þ þ Gðtn � tn�1Þ

; ð21Þ
for n P 2, with
Jðt1Þ ¼
3� Gðt1Þ=Gð0Þ

Gð0Þ þ Gðt1Þ
: ð22Þ
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All three methods can be also written in a matrix form
Ax ¼ b; ð23Þ

where A is a lower-triangular matrix and vector x contains the unknown values of the creep compliance. For
example, the components for Method 1 is given by
Aij ¼
ðtj � tj�1ÞðGðti � tjÞ þ Gðti � tj�1ÞÞ; if j 6 i;

0; if j > i;

�
ð24Þ

xi ¼ Jðti�1=2Þ; ð25Þ
bi ¼ 2ti; ð26Þ
for i, j 2 {1, . . . ,N}.

4. Determination of the relaxation modulus

Under step-strain assumption relaxation modulus in a relaxation test is simply given by
GðtÞ ¼ rðtÞ
�0

; ð27Þ
where �0 is the constant strain level. If the ramp time, denoted by t1, is relatively large the step-strain assumption
can induce severe errors, especially at the beginning of relaxation. It is commonly assumed that the true and the
step-strain response coincides at time t = 10t1, this is known as the factor-of-ten rule (Meissner, 1978). How-
ever, the time when true and step-strain response coincides can be significantly larger (Flory and McKenna,
2004). Obviously, if the long-term relaxation behavior is primary focus, then the finite ramp time effect is insig-
nificant. On the contrary, if the initial values of the relaxation modulus should be known accurately, a finite
ramp time correction method should be used. If we look at the interconversion methods introduced in the pre-
vious section, we see that in all of the three methods the divider in the recursive relation contains term
Gð0Þ þ Gðtn � tn�1Þ: ð28Þ

So, if rather small time steps are used, which is advisable in the sense of accuracy, initial values of the relax-
ation modulus should be known with good accuracy.

4.1. Finite ramp time correction methods

If the elongation happens under the constant rate of strain, _�0, and the constant strain, �0, is gained at time
t1, then stress at time t P t1 is given by
rðtÞ ¼ _�0

Z t1

0

Gðt � sÞds; ð29Þ
where _�0 ¼ �0=t1.
Differentiating Eq. (29) with respect to time gives
_rðtÞ ¼ _�0

Z t1

0

otGðt � sÞds ¼ �_�0

Z t1

0

osGðt � sÞds ¼ _�0ðGðtÞ � Gðt � t1ÞÞ: ð30Þ
This leads to a following backward computation formula (Lee and Knauss, 2000):
Gðt � t1Þ ¼ GðtÞ � _rðtÞ
_�0

: ð31Þ
The time derivative of stress is calculated with some numerical differentiation rule. Since the Lee–Knauss
method is recursive, it is highly unstable if the stress data is noisy. Moreover, the time step cannot be set
by the user, starting value has to be approximated and the time derivate of stress has to be calculated
numerically.
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Better way to approximate the relaxation modulus is the Zapas–Phillips method. Using the midpoint rule to
Eq. (29) gives
rðtÞ ¼ �0Gðt � t1=2Þ t P t1 ð32Þ

or (Flory and McKenna, 2004)
GðtÞ ¼ rðt þ t1=2Þ
�0

t P t1=2; ð33Þ
The Zapas–Phillips method is limited since it cannot be used with times shorter than t1/2. The time restriction
in the Zapas–Phillips can be avoided in method introduced by Sorvari and Malinen (2006). Using trapezoidal
rule to Eq. (29) gives
rðtÞ ¼ 1

2
�0ðGðt � t1Þ þ GðtÞÞ: ð34Þ
Since Eq. (30) gives
GðtÞ ¼ _rðtÞ
_�0

þ Gðt � t1Þ; ð35Þ
we get
Gðt � t1Þ ¼
rðtÞ
�0

� _rðtÞ
2_�0

; ð36Þ
for t P t1 or
GðtÞ ¼ rðt þ t1Þ
�0

� _rðt þ t1Þ
2_�0

; ð37Þ
for t P 0. This method is non-recursive and enables the relaxation modulus to be determined in the whole time
interval of the relaxation test without using stress history in the time interval t < t1. However, as in the Lee–
Knauss method the time derivate of stress has to be evaluated numerically. In the presence of noisy data this
can cause undesirable irregularity to the solution.

In this paper, we use the Zapas–Phillips method at time interval of its validity, i.e. t P t1/2, and the method
given in Sorvari and Malinen (2006), with central difference as the numerical differentiation rule of the stress,
in the time interval t < t1/2 to determine the relaxation modulus from the relaxation test. Truncation error
analysis shows that both of these methods are second-order accurate, i.e. e � t2

1r
00ðtÞ (Sorvari and Malinen,

2006).

5. Regularization

In this section, Tikhonov regularization and regularization parameter choice methods are briefly discussed.
For the detailed analysis of Tikhonov regularization, we refer reader to see references Tikhonov (1963) and
Hansen (1998).

As discussed in Section 3, all of the integral approaches for interconversion presented in this paper can be
written in the matrix form as
Ax ¼ b: ð38Þ

In numerical interconversion, the matrix A can be ill-conditioned and the direct inversion can cause large er-
rors to solution x. Due to the ill-conditioning of the problem, Tikhonov regularization is proposed to solve
Eq. (38). The Tikhonov regularized solution of Eq. (38) can be written as
xreg ¼ ðcRþ ATAÞ�1ATb; ð39Þ

where c > 0 is the regularization parameter and R is the regularization matrix. There are many alternatives to
choose regularization matrix. In general, if any kind of a priori information of the solution is known it can be
implemented to matrix R. In this study, the interconversion is accomplished in time domain. As a priori
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information, material functions (creep compliance in simulations) are considered to be smooth functions of
time, i.e. there are no sharp peaks in x. In such case, the matrix R is chosen to be the first order difference
matrix, i.e.
R ¼

1

�1 1

. .
. . .

.

�1 1

0
BBBB@

1
CCCCA: ð40Þ
Another unknown parameter in Tikhonov regularization is the regularization parameter c. This parameter has
a very significant influence to the solution, since if c is too small, the problem is still ill-conditioned, while too
large values of c smooths solution too much. In general, there are several strategies to choose regularization
parameter. These methods include for example discrepancy principle, quasi optimality criterion and L-curve
method. In this study we consider L-curve method to choose c. The main idea in L-curve method is to plot
smoothing norm kRxregk as a function of corresponding residual norm kAxreg � bk with varying c. As these
norms are plotted in logarithmic scales, the resulting curve is very often L-shaped. The regularization param-
eter can be chosen from the solution which is near to L-curve’s corner. This graphical method is often used for
choosing the regularization parameter in ill-posed problems and the details of the L-curve method is given in
Hansen (1998).

When synthetic data is used and the exact solution of the problem is known, it is possible to choose param-
eter c according to real estimation error. In this case relative real estimation error, kxreg � xk/kxk, is plotted as
a function of c and the optimal value of c is obtained from the minimum value of this function. However, in
general case real estimation error is unknown and this method cannot be used.

6. Numerical studies

The interconversion methods were numerically tested using synthetic data. The simulations consider the
determination of the creep compliance from the relaxation test. The simulation procedure is following. First,
the virtual relaxation test with non-ideal loading
�ðtÞ ¼
_�0t t < t1;

�0 t P t1;

�
ð41Þ
is made from which stress is measured. During this step Gaussian noise with different variance is included to
stress. Second, the relaxation modulus is computed from the noisy data as described in Section 4. Third, the
creep compliance is determined with methods given in Section 3 with and without Tikhonov regularization
when the related matrix equation is solved. This procedure was accomplished in different simulation cases with
varying material parameters and noise. In simulations, the relaxation modulus was chosen to be
GðtÞ ¼ G0 þ G1e�t=k ð42Þ
with G0 = 0.4 MPa, G1 = 0.5 MPa and k = 1, 10 or 100 s. The relaxation modulus with different values of
parameter k is shown in Fig. 1.

In this paper, results from nine case studies are presented. The relaxation time, k, ramp time, t1, test termi-
nation time, tf, and length of the time step, h, are given in Table 1. Constant strain rate was chosen to be
_�0 ¼ 0:01 s�1. Simulation cases 1–6 consider longer time intervals, while cases 7–9 consider short time inter-
vals. In each case three different noise levels were studied to simulate the practical measurement system.
The noise was simulated as random Gaussian numbers with the variance of ±5%, ±10% or ±20% of the cur-
rent value of stress and this noise was added to original stress function in each case. The same noise was used
for each interconversion method within certain case study in order to get results which are directly compara-
ble. As an example, Gaussian noise for stress was generated for case 1 and then all interconversion methods
were simulated using data with the noise levels of 5%, 10% and 20%. For case 2, new noise was generated and
all interconversion methods were simulated using this data.
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Fig. 1. Relaxation modulus as a function of time with different values of k.

Table 1
Material and temporal parameters for simulation cases

Case k (s) t1 (s) tf (s) h (s)

1 1 2 200 0.10
2 1 1 200 0.10
3 10 2 400 0.20
4 10 1 400 0.25
5 100 2 600 0.25
6 100 1 600 0.25
7 1 2 10 0.10
8 10 2 10 0.10
9 100 2 10 0.10
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The regularization matrix was chosen to be the 1st order difference matrix, see Eq. (40). This is a natural
choice since there are no sharp peaks in the creep function. The regularization parameter was chosen with L-
curve method. Since the synthetic data was used, the chosen regularization parameter was verified according
to real estimation error. The regularization parameter was chosen using Method 1 and data from case 1 in
which Gaussian noise with the variance of ±10% of the current value of stress was included to original stress
function. The solution of the problem was computed by varying the value of regularization parameter as
c = [100101102, . . . , 1015]. The L-curve and real estimation error are shown in Fig. 2. From this figure it can
be seen that norm kRxregk as a function of norm kAxreg � bk results in L-curve in log–log scale from which
the regularization parameter can be defined (little right from the lower corner of the L-curve). According to
Fig. 2, the value for regularization parameter was chosen to be c = 109 for all simulation cases. From the real
estimation error plot in Fig. 2, it can be also seen that the chosen regularization parameter value is near the
minimum of the real estimation error, and the choice of the parameter is well justified.

The case studies in Table 1 was simulated with each of the methods described in Section 3. The noise levels
of 5%, 10% and 20% were used for each case for each interconversion method. In all simulations, regulariza-
tion parameter was c = 109 and regularization matrix was the 1st order difference matrix. Since the same noise
was used in certain case for each of the interconversion methods, the results are directly comparable. In addi-
tion, synthetic data was used in simulations and the relative error between analytical solution of the creep
function and numerical approximation could be computed. The relative error in each case was computed as
e ¼ kx̂� xk
kxk ; ð43Þ
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Table 2
Results for Method 1 for different case studies

Case Error1 (%) Errortik
1 (%) Error2 (%) Errortik

2 (%) Error3 (%) Errortik
3 (%)

1 4.24 0.74 47.05 1.11 Inf 2.23
2 0.36 0.35 0.76 0.63 14.31 1.87
3 0.34 0.34 0.59 0.57 3.21 1.35
4 0.27 0.27 0.69 0.68 1.68 1.51
5 0.34 0.34 1.66 0.83 Inf 2.78
6 0.36 0.36 0.81 0.76 44.65 2.41
7 3.29 3.18 11.34 6.93 Inf 8.72
8 5.46 5.17 9.05 6.01 40.50 6.46
9 5.81 3.99 12.22 4.68 Inf 10.66

Errors are computed as a relative error between analytical solution and numerical approximation. For the material and temporal
parameters of the cases, see Table 1. Subscripts 1, 2 and 3 refers to noise levels of 5%, 10% and 20%, respectively. Superscript tik refers to
Tikhonov regularized solution.
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where x is the analytical solution and x̂ is the corresponding numerical approximation which is computed with
either direct inversion or Tikhonov regularization. The analytical solution for the creep compliance was com-
puted as
JðtÞ ¼ 1

G0 þ G1

� 1

G0

� �
e�G0t=ðkðG0þG1ÞÞ þ 1

G0

ð44Þ
in which G0, G1 and k were computed from the noise free relaxation function.
The results with Method 1 for the case studies are given in Table 2. In all simulated cases the Tikhonov

regularization decreases the relative error. In cases 1 and 5 the 20% noise level with the direct inversion results
in divergence due the ill-conditioning problem. In addition, even if the step size in time discretization is
increased in cases 4–6, the error does not increase significantly, which indicates the robustness of the method.
In the very short termination time cases (7–9) the relative error is increased as compared to other cases. How-
ever, regularization decreases the approximation errors efficiently, see Fig. 3, especially with higher noise
levels.

The results with Method 2 are given in Table 3. As compared to results with Method 1, the relative errors
are larger throughout the case studies. With fast tests (cases 7–9) the relative errors are significantly larger in
higher noise levels as compared to Method 1.

Simulation results with Method 3 are given in Table 4. From this table it can be seen that the relative
error in approximation with Method 3 is larger than with Methods 1 and 2 in all cases. Again, Tikhonov
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regularization for Method 1 in simulation case 7 with 10% noise.

Table 3
Results for Method 2 for different case studies

Case Error1 (%) Errortik
1 (%) Error2 (%) Errortik

2 (%) Error3 (%) Errortik
3 (%)

1 6.34 0.85 60.78 1.42 Inf 3.49
2 0.46 0.40 1.10 0.80 16.86 2.57
3 0.39 0.38 0.95 0.75 4.32 2.09
4 0.33 0.32 1.01 0.88 2.19 1.88
5 0.42 0.40 2.27 1.32 Inf 3.65
6 0.52 0.48 1.17 1.00 67.52 3.67
7 3.53 3.45 16.13 7.76 Inf 11.40
8 6.82 6.20 11.41 8.33 63.88 12.41
9 9.97 5.99 23.45 6.12 Inf 14.15

Table 4
Results for Method 3 for different case studies

Case Error1 (%) Errortik
1 (%) Error2 (%) Errortik

2 (%) Error3 (%) Errortik
3 (%)

1 6.34 2.57 60.78 2.98 Inf 8.33
2 0.46 0.46 1.10 1.09 16.78 8.61
3 0.39 0.39 0.95 0.95 4.32 3.94
4 0.33 0.33 1.01 1.01 2.19 2.17
5 0.42 0.42 2.27 2.21 Inf 7.34
6 0.52 0.52 1.17 1.16 67.52 6.80
7 3.53 3.53 16.13 15.72 Inf 66.40
8 6.82 6.82 11.41 11.35 63.83 59.94
9 9.97 9.93 23.45 22.90 Inf 18.95

The variables are as in Table 2.
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Fig. 4. Relaxation modulus as a function of time for simulation case 6 with 20% noise.
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Fig. 5. Tikhonov regularized creep compliances for simulation case 6 with 20% noise. Figures from top to bottom correspond to analytical
solution and Methods 1–3, respectively.
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regularization decreases efficiently the relative error in cases 1–6. In cases 7–9 the regularization does not affect
significantly to the approximation error.

As an example, the relaxation modulus from case 6 with 20% noise level is shown in Fig. 4. The analytical
solution and Tikhonov regularized solutions for creep compliance with all interconversion methods for sim-
ulation case 6 with 20% noise level is shown in Fig. 5. This figure clearly shows how noise affects to simulated
interconversion methods. As it can be seen, high noise level causes rapid oscillation to computed creep com-
pliance with Method 3, while Methods 1 and 2 results in much smoother creep compliance approximation.

As a conclusion, Method 1 gives the best numerical estimates when creep compliance is solved by intercon-
version from relaxation modulus data. Results indicate that the relative error in the approximation of creep
compliance was decreased with all methods in cases 1–6 with Tikhonov regularization. However, when very
fast tests are considered (cases 7–9), Method 1 is the most accurate while regularization does not affect much
to the results computed with Method 3.
7. Conclusions

In this paper, three different interconversion methods were studied in order to determine creep compliance
from non-ideal relaxation test. In practice, there is always measurement noise in viscoelastic experiment. Due
to this and the fact that the convolution integral relating creep compliance and relaxation modulus is numer-
ically ill-posed problem, regularization is necessity to obtain reliable results. The Tikhonov regularization was
proposed to solve the related matrix equation numerically to avoid the ill-conditioning problem.

The proposed numerical procedures were tested using synthetic data with different noise levels. The regu-
larization matrix was determined to be 1st order difference matrix and the regularization parameter was
defined with L-curve method. Although there are several alternatives to choose regularization parameter,
the L-curve was found to be suitable in this case, and the value of the parameter was justified by computing
the real estimation error. The simulation results from different case studies indicate that regularization
decreases the approximation error with all interconversion methods. Especially, when noise level increases,
the ill-conditioning problem comes more evident and regularization is the only alternative to get the reliable
result. As interconversion methods are compared, Method 1 was found to be the most accurate. In addition,
the computation time is almost the same for all methods so Method 1 should be used in practice. Especially,
during the very fast tests, Method 1 gives the most accurate approximation while results with Method 3
remains inaccurate in spite of regularization.

It was shown that interconversion methods based on numerical evaluation of the convolution integral are
potential candidates to solve creep compliance from relaxation test even with presence of uncertainties such as
noise, non-ideal loading and short test times. If the relaxation test is very long, the dimensions of the related
matrix equation becomes very large. In this case logarithmic time scale can be used or interconversion can be
accomplished in the frequency domain. However, the purpose of this paper was to present robust algorithms
which can be used in time domain with materials exhibiting relatively fast rate of relaxation.
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