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The mechanics of a paradigmatic typical carton corner with five creases is analyzed theoretically, in
closed form. A general kinematical analysis of the mechanism (in finite rotation) is presented, assuming
the versor of the intermediate crease, s, as a 2-degree-of-freedom Lagrangian parameter. The rotation hc

of the cth crease is derived, together with the existence domain and a discussion of the singular config-
urations.

The actions, driving the carton during a prescribed quasi-static erection program, are derived in a very
efficient manner using the Virtual Works Equation, taking into account a non-linear anholonomic bending
constitutive law of the creased paperboard. In particular, the active and reactive components of the
moment /, driving s along its path, are identified. No resort to the tangent stiffness computation is
required. Some numerical examples illustrate the rotation and the driving forces obtained for both mono-
tone-loading and complex loading–unloading erection paths.

The presented results, ‘‘exact’’ within the scope of the restrictive hypotheses assumed, may be used in a
preliminary design approach as well as a benchmark for more realistic FEM or CAE simulators.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The mechanics of the crease creation and its subsequent folding
is a formidable structural problem involving a great number of
strongly interacting phenomena. Any model predicting the
mechanical response of the carton should take into account the fol-
lowing principal elements (Dai and Rees Jones, 1997, 2002; Lu and
Akella, 2000; Liu and Dai, 2002; Dai and Cannella, 2008):

Paperboard typology:

� quality of the fibers;
� degree of in-homogeneity and local imperfections;
� number and material of the plies (layers) and their gluing;
� finish coating (possibly different on the ‘‘inner’’ and ‘‘outer’’

side);

Crease typology:

� continuous standard (normal in the following) crease;
� partial cut across the thickness, without a pre-crease (cut

crease);
� discontinuous cut, without a pre-indentation (dashed cut
crease);
� cut superimposed to a standard crease;

Geometry of the crease formation:

� male die and counter die channel geometry and their wear
(round, sharp, . . .);
� male/female die material;
� actual depth to paperboard’s thickness ratio;
� possible in plane constraints of the paperboard during the

crease formation;
� velocity of the crease formation;
� environment moisture and temperature;

Mechanical behavior:

� distinction between the Machine Direction (MD) and the Cross
Direction (CD);
� large displacement and strain formulation;
� full 3D anisotropy;
� visco-elastic behavior;
� (pseudo) plastic behavior;
� adhesion/delamination between the plies;
� damage and fracture inside each ply;
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Nomenclature

c index of the cth crease
dof degree of freedom
lc length of the cth crease
m(h, _h) bending constitutive law: m = mL(h), if h _h > 0; m = mU(h),

if h _h < 0;
n 2 R3 normal versor to a facet
a, b, s 2 R3 crease versors (s is the driving versor)
u 2 R3 is a versor if ||u|| = 1;
I tensor identity
VWE Virtual Work Equation
a facet angle, cf. Fig. 2.1b
d variation symbol

h (signed) crease rotation
_h rotation derivative with respect to the time
_q 2-dof parameter derivative with respect to the time
rs gradient with respect to the variable s, rs:=½ @@s1

@
@s2

0�T
T (superscript) transpose operator;
� scalar product;
� vectorial product
� tensorial product: u � vw: = u (v�w)
:= Ratischauser’s symbol of definition

 

(a) 

 

(b) 

Fig. 2.1. Versor a, s and b describing a typical corner carton (a) and geometrical
definition of the angle amplitude ai, at the initial flat configuration (b). ni is the
normal of the facet fi.
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� environment preconditioning: temperature and moisture;
� bending according to the crease or in the opposite direction

(Cannella and Dai, 2006; Dai and Cannella, 2008).

Folding/bending processes:

� monotonic load and unload;
� repeated cycles of loading;
� bending velocity;
� environment temperature and moisture.

1.1. The predictive models

The crease formation can be analyzed and simulated as a struc-
ture (Dai and Rees Jones, 1998, 2002), with the purpose to predict
the macroscopic mechanical behavior of the creased paperboard
during folding: Carlsson et al., 1983 – an early particular simple
delamination model in very small rotation, Barbier et al., 2005;
Cannella and Dai, 2006; Beex and Peerlings, 2009; Giampieri
et al., 2011. The geometry, the constitutive equations of each com-
ponent in the different phases of their mechanical evolution men-
tioned above, the technological process and the environmental
conditions are assumed to be known a priori (Ostoja-Starzewski
and Stahl, 2000; Ramasubramanian and Wang, 2007; Sato et al.,
2008; Suhling et al., 1985; Vannucci, 2010).

However, the results of the experimental investigations, carried
out on samples obtained from industrial cartons by Mentrasti et al.
(2013), undoubtedly prove that the bending behavior of a creased
paperboard under large rotations is heavily dependent on a num-
ber of events out of the control of the structural analyzer: the
crease depth and the moisture content, primarily.

Therefore, notwithstanding the above mentioned generous
works towards a general numerical model to predict the macro-
scopic bending behavior, the efforts required to obtain a realistic
response appear to be prohibitive for a real-time controlled erec-
tion of a carton subject to the manufacturing process.

The alternative, proposed in the companion paper mentioned
above, is to think to a reconfigurable real-time controlled robot
being able to adapt the manipulation process to the carton in pro-
duction. Nonetheless, the simulation stage requires, among other
factors, the consideration of the possible criticalities of the consti-
tutive laws m(h). Therefore, the formulation presented below may
be used either in a preliminary design approach as well as a bench-
mark for more realistic FEM or CAE simulators.

2. Kinematics of a paradigmatic carton corner

This central section presents the structural analysis of a para-
digmatic example of carton erection. First, a general kinematic
analysis in large displacement is derived in closed form. Then the
non-linear anholonomic bending constitutive equations of the
crease paperboard, presented by Mentrasti et al., 2013, are used
in the VWE to derive the driving forces. Owing of the great flexibil-
ity of the creased portion of the paperboard with respect to the
undamaged remaining part, the out-of-plane displacement of the
facets between the creases are considered rigid (this hypothesis
can be removed when a significant bending is involved due to
the aspect ratio, the position of the actuators or dynamic effects).
In the same spirit, a quasi-static loading condition is assumed.

The configuration of a typical carton corner is shown in
Fig. 2.1a: the bottom facet f0 is fixed, while the placement of its
adjacent facets f1, f2, f3 and f4 are defined through the versors a,
b, s 2R3 associated with the direct (valley) or inverse (mount)
creases, respectively (cf. also Fig. 2.3). Their components are not
independent because the placement of the versors is restrained
by the geometric conditions imposed by the facets, whose ampli-
tude ai are shown in Fig. 2.1b. In this regards, s is assumed as
the governing parameter (Liu and Dai, 2002; Yao and Dai, 2008) of
the two independent dof mechanism, the configuration singulari-
ties being discussed explicitly apart. Each facet, considered to be ri-
gid, imposes of the following constraints (Fig. 2.1b)

a � e2 ¼ cos â1 ð1Þ

a � s ¼ cos â2 ð2Þ

b � s ¼ cos â3 ð3Þ

b � e1 ¼ cos â4 ð4Þ

where ei are the versors of the axes (henceforward a hat ^ denotes
an assigned quantity). Since the paperboard is assumed to be ini-



(a) (b)

Fig. 2.2. (a) The 2D admissible domain for the component [s1,s2] (b) the entire
manifold for the s placement.
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tially plane â0 þ â1 þ â2 þ â3 þ â4 ¼ 2p holds (â0 = p/2 is assumed,
for simplicity). The flat origami condition, namely the Kawasaki-Jus-
tin theorem ðâ0 þ â1Þ � â2 þ â3 � â4 ¼ 0 (or similar relationships
obtained maintaining inactive a crease different from a – cf. e.g.
(Hull, 2006, Ch. 16)) is usually not satisfied.

2.1. Independent parameters

Equations (1) and (4) state that a2 and b2 are known quantities

a2 ¼ a � e2 � cos â1 ¼: â2 ð5Þ

b1 ¼ b � e1 � cos â4 ¼: b̂1 ð6Þ

while from Eqs. (2) and (3).

s1a1 þ s3a3 ¼ cos â2 � â2s2 ð7Þ

s2b2 þ s3b3 ¼ cos â3 � b̂1s1 ð8Þ

results (for the sake of simplicity of notation, the time dependence
is omitted).

Since a1 ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2

2 � a2
3

q
and b2 ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b̂2

1 � b2
3

q
; the previous

equations can be written

	s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2

2 � a2
3

q
þ s3a3 ¼ cos â2 � â2s2 ð9Þ

	s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b̂2

1 � b2
3

q
þ s3b3 ¼ cos â3 � b̂1s1 ð10Þ

allowing to derive {a3,b3}, and therefore a and b, as a function of the
versor of the intermediate crease, s. In fact, squaring Eq. (2) the fol-
lowing equation in a3 is obtained

ða3Þ2ðs2
1 þ s2

3Þ � 2s3ðcos â2 � â2s2Þa3 þ ½ðcos â2 � â2s2Þ2

� s2
1ð1� a2

2Þ� ¼ 0 ð11Þ

from which
(a1) (a

Fig. 2.3. A linear erection program starting from the initia
a3 ¼
þs3ðcos â2 � â2s2Þ 	 s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

1 þ s2
3Þð1� â2

2Þ � ðcos â2 � â2s2Þ2
q

s2
1 þ s2

3

ð12Þ

is derived, when s2
1 + s2

3 – 0.
The sign ambiguity in the above relationships governs alterna-

tive placement of a with respect to s and e2 and must be discussed
in detail.

(a) s1 – 0
(a.1) The two solutions for a3 are both admissible (cf. Fig. A.1,
representing a quasi-critical configuration: an alternative,
a1 < 0, is possible) and the choice is resolved taking into account
the continuity of the evolution process.
(a.2) The remaining component, a1, can be derived from Eq. (7)
as
2)

l flat
a1 ¼ ðcos â2 � â2s2 � s3a3Þ=s1 ð13Þ
(b) s1 = 0
(b.1) If s3 – 0 Eq. (5) gives only one solution
co
a3 ¼ ðcos â2 � â2s2Þ=s3 ð14Þ
and the placement of a is governed by the alternative
a1 ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2

2 � a2
3

q
ð15Þ
(b.2) Finally, when also s3 = 0 (see Fig. A.1), two possible fixed
singular configurations can be attained provided that s2 = +1
or s2 = �1 belongs to the domain of definition of s (as discussed
in the following section). The details are reported in Appendix A
and are interesting only as limit cases.

The b components are derived in a similar manner. When
s2

2 + s2
3 – 0, from Eq. (10)

b3 ¼
þs3ðcos a3 � b̂1s1Þ 	 s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

2 þ s2
3Þð1� b̂2

1Þ � ðcos a3 � b̂1s1Þ
2

q

s2
2 þ s2

3

ð16Þ

(a.1) When s2 – 0 the two solution for b3 are both admissible, cor-
responding to the alternative placement of b with respect to s
and e1,
(a.2) and the b2 component is
b2 ¼ ðcos â3 � b̂1s1 � s3b3Þ=s2 ð17Þ
(b.1) If s2 = 0 and s3 – 0, Eq. (16) gives only one solution
b3 ¼ ðcos â3 � b̂1s1Þ=s3 ð18Þ
while the multiplicity of the placement of b is given by the two
choice
(a3)

nfiguration: (a) three intermediate positions.



(a) (b)

Fig. 2.4. An erection program with s1 = constant: (a) s1 = 0.566 and (b) for several constant increasing value of s1 (abscissa s2): the vertical jump from �180� to +180� reveals a
congruence violation.

Fig. 2.5. Virtual displacements and rotations ds, du, dhc; driving moment / (axial
vectors are represented with a double arrow).
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b1 ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b̂2

2 � b̂2
3

q
ð19Þ
2.2. Parameters manifold and bidimensional domain of definition

The radicand appearing in Eq. (14) must be non-negative; after
a bit of algebra, this condition can be written

s2
2 � 2â2 cos â2s2 þ cos2 â2 þ â2

2 � 1 
 0 ð20Þ

Since its discriminant, 4(1�â2
2)(1�cos2 â2) = 4sin2 â1 sin2 â2, is

always non-negative a real solution for a3 is possible only when
s2 e [ cos(â1 + â2), cos(â1 � â2)], the extremes being the radices of
the quadratic equation. The lower bound (typically negative) corre-
sponds to the starting plane configuration; the upper bound (typ-
ically positive) can be interpreted as the placement of s for the flat
origami closure condition.

A similar conclusion can be drawn for the reality of b3:
s1 2 [cos(â3 + â4), cos(â3 � â4)], where the endpoints have identical
interpretation. Since the trivial constraint 1� s2

1 � s2
2 
 0 must be

also satisfied, the admissible domain for the bi-dimensional
variable [s1,s2]T, becomes the green1 part shown in Fig. 2.2a.

The entire manifold immersed in 3D, namely the locus of the
admissible placements of the versor s, is sketched in Fig. 2.2b. It
is worth mentioning that at the cusp, s3 = 0, s loses the meaning
of control parameter in favor of the two independent components
a3 and b3 (cf. Appendix A, Section A.2): for these configuration a dif-
ferent chart must be chosen.
1 For interpretation of color in Fig. 2.2, the reader is referred to the web version of
this article.
As a final remark, it is important to notice that all these occur-
rences are only kinematic indeterminacy. In fact the variation of the
placement of any crease versor involves a variation of some hc with
a consequent variation of the bending energy of the creases. In the
same manner, the infinite energy required to overpass h = ±180 is a
natural barrier to prevent some facet compenetrations.

2.3. The relative angles of rotation

Once the normal to the i-th face is defined,

n0 :¼ e1 � e2 � e3 ð21Þ

n1 :¼ ðe2 � aÞ=jje2 � ajj ð22Þ

n2 :¼ ða� sÞ=jja� sjj ð23Þ

n3 :¼ ðs� bÞ=jjs� bjj ð24Þ

n4 :¼ ðb� e1Þ=jjb� e1jj ð25Þ

(each denominator is simply sin âi) the current rotation of the
crease, hc, (namely the relative angle of rotation of the plies adjacent
to the crease c, assumed to be positive along c) can be derived from
the following relationships

he2 ¼ atan2ð�n0 � n1;n0 � n1Þ ð26Þ

ha ¼ atan2ð�n1 � n2;n1 � n2Þ ð27Þ

hs ¼ atan2ð�n2 � n3;n2 � n3Þ ð28Þ

hb ¼ atan2ð�n3 � n4;n3 � n4Þ ð29Þ

he1 ¼ atan2ð�n4 � n0;n4 � n0Þ ð30Þ

where atan2(sin(b), cos(b)) is the function restituting the argument
b unambiguously in the interval [�p,+p];the initial configuration
being plane hc(t = 0) � 0.

The rotations resulting for two erection program of a carton
with ac = {90, 80, 60, 50, 80}, with c from 0 to 4, are sketched in
the following diagrams: a linear variation of [s1, s2]T starting from
the initial (singular) flat configuration (Fig. 2.3 and Fig. 2.6b) and
several cases in which s1 is maintained constant (Fig. 2.4). It is
interesting to note the discontinuity (a jump from �180� to



(a) (b)

Fig. 2.6. A linear erection path: (a) Projection of the trajectory s[q(t)] on the plane [s1,s2]; (b) the rotations hc (plotted as function of s1).

(a) (b)

Fig. 2.7. A linear erection path: (a) total active (red) and reactive (blue) component of the driving moment. (b) the contribution of the crease e1 alone to the active (red) and
reactive component (green) (in this graph the drawing scale is smaller). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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+180�) revealing a congruence violation (namely a compenetration
of a facet with the adjacent one).

Finally, for the sake of completeness, a non-monotone erection
path is shown in Fig. 2.8a, with the consequent non monotone
rotation progress shown Fig. 2.9a1–c1.

Remarks

1. The slope of some curve hc(si) can become indefinitely large at
the extremes of the interval of variation of si. This occurrence
in no way reflects a geometrical singularity, but it is simply
(a) (b)

Fig. 2.8. A complex erection path: (a) Projection of the trajectory s[q(t)] on the plane [s1,
assumed in these examples.
the consequence of choosing a component of the versor s as
an independent variable: consider, for example, that the varia-
tion of s1 is infinitesimal of the second order, with respect to the
rotation of the creases, when the inclination of s on the horizon-
tal plane is small.

2. On the other hand this occurrence reveals that a carton cannot
be stably erected from the flat configuration by an actuator con-
trolling one of the horizontal component of s (cf. the last
scheme of Fig. 1 in Hicks et al., 2004, or Fig. 15e in Cannella
and Dai, 2009).
(c)

s2]; (b) the loading, mL(h), and (c) unloading, mU(h), simplified constitutive equation
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2.4. The driving forces

The folding of a creased paperboard is a path dependent nonlin-
ear irreversible problem because the constitutive equations mc

(h; _h) are non-holonomic; furthermore the geometric arrangement
of the bodies is so complex that writing down explicitly the equi-
librium conditions of each body is very cumbersome.

The efficient alternative to derive the driving forces, actuating a
carton erection program, is the VWE dWext = dWint (the choice of
the kinematic parameters being a matter of practical convenience,
as will be shown below).

Since s has two independent Lagrangian parameters (leaving
aside the singular configurations in which the degrees freedom
should change), a vector q e R3 can be defined, containing an
appropriate selection of the components of the versors governing
the kinematics (e.g. s1 = q1(t) and s2 = q2(t) is a typical choice;
s1 � s2 = q1(t) is the symmetric erection).

Then a, s and b are functions of q and therefore can be written,
for each crease c,
hc ¼ hcðqÞ ð31Þ

dhc ¼ HcðqÞdq ð32Þ

mc ¼ mcðh; _hÞ ¼ mcðq; _qÞ ð33Þ

(for the sake of brevity, the value and the name of the functions are
not distinguished).

By equating the total internal virtual work done by the mo-
ments along each crease of length lc,

dWint ¼ Rc lcmcðq; _qÞdhc ð34Þ

with the external virtual work

dWext ¼ Q1dq1 þ Q 2dq2 ð35Þ

the generalized driving forces Q1 and Q2 are finally determined

Q k :¼ dWext

dqk
ð36Þ

It is interesting to notice the necessary distinction between the
actual rotation increment dhc = _h dt, implicitly appearing in the
constitutive equation to detect the loading or unloading behavior,
and the virtual arbitrary variation dhc, generating the virtual work.

2.4.1. Virtual variation of the kinematical parameters
Since the parameter assumed in the geometrical analysis is the

versor s, then the following results are true (Fig. 2.5):

(i) ds�s = 0; consequently ds can be built in such a way that the
orthogonality constraint is identically satisfied as

(ii) ds := du � s, identifying du e R3 as an arbitrary virtual
(infinitesimal) rotation of s. Notice that in this relationship
ds is formally express by means of a vector belonging to
R3; however, it is actually a function of only two indepen-
dent parameters, because the cross-product is a rank-2 lin-
ear transformation. On the other hand

(iii) du : ¼ s� ds, is also true when ds is assumed to satisfy
ds�s = 0.

Finally, it should be recalled the following elementary

Lemma 1. Let n e R3 be a versor and b e R3 arbitrary. The problem
find u e R3, such that u � n = b, has a (minimal norm) solution
u0 :¼ n� b, if and only if n�b = 0 (every other solution is u0 + k n,
with k e R arbitrary).
2.4.2. The driving moment (using du as Lagrangian parameter)
Instead of the generalized forces Q, can be more significant to

deal with the driving moment /, dual of the rotation angle du of
the versor s (see also the Remark at the end of §3.2). By definition,
the external virtual work is simply

dWext ¼ / � du: ð37Þ

By assuming, for the moment, ds as Lagrangian parameter, the
virtual rotation of the crease is

dhc ¼
@hc

@s1
ds1 þ

@hc

@s2
ds2 þ 0ds3 ¼ rshc � ds ð38Þ

where rs hc: = ½@hc
@s1

@hc
@s2

0�T , the last component being identically zero
because all the kinematic quantities are assumed to be independent
of s3. Using now the change of variable ds: = du � s, dhc can be
explicitly written as a function of du as

dhc ¼ ds � rshc ¼ du� s � rshc ¼ s�rshc � du ð39Þ

The VWE, namely dWext = dWint,

/ � du ¼ s� Rclcmcrshc � du;8du ð40Þ

finally gives the required driving moment

/ ¼ s� Rc lcmcðh; _hÞrshc ð41Þ

owing to the arbitrariness of du.

2.4.3. The driving moment (using ds as Lagrangian parameter)
For the sake of completeness, the moment / is also derived

using the natural variation ds, even if the development is a bit in-
volved because in this case ds is not an arbitrary vector of R3. By
writing du = s � ds, dWext becomes

dWext ¼ du �u ¼ s� ds � / ¼ /� s � ds; ð42Þ

Using the above expression for dhc =rshc�ds, the VWE gives now

½/� s� Rc lcmcrshc� � ds ¼ 0; 8ds : s � ds ¼ 0 ð43Þ

meaning that the bracketed expression is parallel to s, namely

/� s� Rc lcmcrshc ¼ ks; k 2 R: ð44Þ

The scalar k can be obtained by multiplying this relationship by
s

k ¼ �Rc lcmcrshc � s; ð45Þ

so that the previous equation becomes

/� s ¼ ðI � s� sÞRclcmcrshc; ð46Þ

(the tensorial product, defined as s � s v: = s(s�v), being constant
with respect to the crease index).

Since I � s � s is the projector on the plane orthogonal to s, the
right hand of Eq. (39) fulfills the necessary compatibility condition
to apply the Lemma 1 that gives a solution

/ ¼ s� ðI � s� sÞRc lcmcrshc; ð47Þ

But the operator s � [I � s � s] is identical to the operator s� so
that this solution coincides with the above obtained moment (34).

2.4.4. The driving moment (using dq Lagrangian parameter)
When the Lagrangian parameter is dq, the developments is use-

lessly complicated. The generalized driving forces can be more eas-
ily attained from / by the contravariant rule, Q�dq = /�du(dq), "dq:

Q � dq ¼ / � s� ds ¼ / � s�rqsdq ¼ ð/� sÞ � rqsdq

¼ ½rqs�Tð/� sÞ � dq;8dq ð48Þ

giving



(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 2.9. A complex erection path: the rotations hc and their relevant moment mc(h,dh) for the creases undergoing a decrease of the rotation after a peak (a1, b1; in c1 the
downward branch is almost superimposed to the last part of the increasing path). The corresponding moment (c2) follows first the loading (unstable) constitutive equation
and then the unloading curve shown in Fig. 2.8c.
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Q ¼ ½rqs�T/� s ð49Þ
Fig. 2.10. A complex erection path: the active and reactive components of the
driving moment on the versor s.
2.4.5. The active component /du during the actual erection path
At the current configuration of an actual erection program, the

current driving moment can be decomposed in two parts: (i) the
active component /|du, along the actual increment of the rotation
du of the s versor; (ii) the reactive component orthogonal to du, /

� /|du, doing no (real) work (cf. Fig. 2.7 and Fig. 2.10). Notice that
/ � /|du is also orthogonal to s, of course.

The scalar component /du of the active driving moment work-
ing during an actual erection program can be obtained from the
above relationships or simply from the definition of generalized
force dual of du as

/d/ ¼ Rc lcmcðh; _hÞdhc

du
ð50Þ

where du = ||ds � s||.
When the versor s is not fully controlled, but is actuated assign-

ing only one of its component (e.g. by means of a rotating flap bear-
ing s) the problem is more complex: on one hand du is partially
unknown; on the other hand, the component of / in the
unconstrained direction must be zero (the analytic condition
determining the actual path).
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Remarks

1. Using du e R3, instead of dq e R2, leads to a very simple deriva-
tion of the required 3D-vector / (see the following alternative
formulation).

2. The obtained expression emphasizes that / is always orthogo-
nal to s (see also Remark 5).

3. Since the component /s is identically zero, there are only two
independent components of the driving moment, according to
the number of independent Lagrangian parameters.

4. The non-holonomy of the constitutive equations mc(hc , _hc) is
involved when the loading (hc

_hc > 0) must be distinguished
from the unloading (hc

_hc < 0). Therefore the actual value of
dhc, evaluated along a real path, must be clearly distinguish
from the virtual variation dhc that never enter into the final
results.

5. Strictly speaking, the above formulation can be regarded as an
Inverse Problem. One of its remarkable advantages is that the
tangent stiffness is not involved at all. In the alternative incre-
mental step-by-step approach, the evaluation of dmc

dh can be a
delicate problem from both the experimental and numerical
point of view.

2.5. A numerical application

Even though the gradient appearing in / can be obtained by a
symbolic manipulation of the above kinematic relationships, it is
very simpler and more efficient to get it numerically. Typically,
when a rotation {h}i,j is computed on a uniform grid {s1,s2}i,j then
the k-th component of rs h can be approximated as follows

@h
@sk

����
i

¼ hiþ1 � hi�1

2Dsk
þ OðDs2Þ ð51Þ

The presented formulation is applied to a typical doubly sym-
metric carton (so that only a quarter is studied), assuming
ac = {90, 80, 60, 50, 80} and lengths lc = 1.
2.5.1. Monotone loading path
The carton is subject to the erection linear path shown in

Fig. 2.6a for which no unloading occurs, since hc are monotone
functions (Fig. 2.6b).

Fig. 2.7 shows the active and reactive components of the driving
moment, according to Remark 4 (the starting point of the path is on
the left): the vectors are rooted at the head of each placement of
the versor s, along its path.

It is interesting to notice that the contribution to the reactive
moment of a single crease can be rather relevant with respect to
its active part, as shown in Fig. 2.7b for the crease e1 alone (for
the sake of clarity, now the starting point of the path is on the
right). On the contrary, the resulting total reactive driving moment
is small because in the studied case the carton is almost symmetric
with respect to the erection path in such a way that the opposite
addends are almost balanced.
(a) (b)

Fig. A.1. (a) The singular configuration s1 = s3 = 0 and a3 arbitrary. (b) The two dof
singular configuration: s1 = s3 = 0 and s2 = �1 (while ha � 0): both a3 and b3 can be
assumed as Lagrange’s parameters.
2.5.2. Complex erection path with loading and unloading
The carton is now subject to a complex erection composed by a

first path linear, followed by a rotation of the driving versor s
around the vertical axis (its projection is sketched in Fig. 2.8a,
while Fig. 2.8b and c show the simplified constitutive behavior as-
sumed in this and in the previous example. Fig. 2.9 shows the rota-
tions hc, together with their relevant moment mc(h, _h), as a function
of one of the current component of versor s. In this path some func-
tions hc are non-monotone: therefore, after the peak of hc the mo-
ment mc(h, _h) follows the unloading constitutive equation mU(h).
Finally, the active and reactive components of the moment driv-
ing the versor s along the path are drawn in Fig. 2.10: it is easy to
see the inversion of the sign of the driving moment revealing the
starting point of an instability branch of the path.

3. Conclusion

The requirement of increasing the reliability of the reconfigura-
ble robots manipulating origami-type cartons in packaging indus-
try demands an accurate characterization of mechanical behavior
of the creased paperboard, with the aim is to point out the possible
criticalities of the erection process.

The erection process of typical carton corner with 5 creases is
analyzed theoretically in closed form. The finite rotation kine-
matical analysis of the mechanism is presented, assuming the
versor of the intermediate crease, s, as a 2-dof Lagrangian
parameter.

The rotation hc of the c-th crease is derived, together with the
existence domain (the manifold containing all the admissible val-
ues for s) and a discussion of the singular configurations.

The actions driving the carton during a general prescribed erec-
tion program are derived in a very efficient manner using the Vir-
tual Works Equation, completely bypassing the cumbersome
explicit equilibrium equations of each facet. It is worthy of pointing
out that with this method no resort to the tangent stiffness is
required.

Finally, the active and reactive components of the moment /,
driving s along its path, are identified. Some numerical examples
illustrate the obtained results, for both monotone-loading and
loading–unloading (unstable branch) erection paths.

Since the presented formulation is an ‘‘exact’’ closed form solu-
tion for the erection problem of a typical carton corner (within the
scope of the restrictive hypotheses declared above, of course) it
may be used as a benchmark for more realistic FEM or CAE
simulators.
Appendix A. Singular configurations

If s1 = s3 = 0 then s2 = ±1. The two possibilities lead to qualita-
tively different configurations and must be discussed separately.

A.1. The case s2 = +1: one dof partial mechanism (Fig. A.1a)

When s2 = 1 the condition (7) gives 0 = cos â2 � â2, namely
cos â1 ¼ cosâ2, that is

â1 ¼ â2 ðA:1Þ

this is a compatibility condition on the initial data. On the other
hand a3 is undetermined.
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Similarly, Eq. (8) fixes

b2 ¼ cos â3 ðA:2Þ

consequently a3 is the unique Lagrange’s parameter of the mecha-

nism. The remaining component b3 = 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b̂2

1 � b̂2
2

q
is determined

by the continuity condition as discussed above (the evert configura-

tion is not physically attainable).

A.2. The case s2 = �1: 2-dof mechanism (Fig. A.1b)

When s2 = �1 the condition (7) lead to �cos â1 = cosâ2, that is

â2 ¼ p� â1 ðA:3Þ

and, consequently â3 + â4 = p/2; furthermore ha � 0. In this case s
cannot control neither a3 nor b3 that, as a consequence, becomes
the 2-dof of the mechanism shown in Fig. A.2 (b3 being
infinitesimal).

Moreover, this singularity always occurs at the initial flat con-
figuration, namely for s3 = a3 = b3 = 0. Therefore if s is assumed as
a control parameter, in order to have an unambiguous evolution
of the carton erection, the process must begin from a configuration
in which s3 and hc have small values.

A.3. The rotation about s when a � b

For the sake of completeness, a final singularity should be men-
tioned. When â2 ¼ â3 is possible that a � b: in this case s can be
placed along any generatrix of the cone with axis b and angular
aperture â2.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ijsolstr.2013.
05.021.
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