
On Vector Enumeration

S. A. Linton

Queen May and Westjeld College
Mile End Road

London El 4NS, England

Submitted by Gerhard 0. Michler

ABSTRACT

We develop further the linear Todd-Coxeter algorithm described previously. In
particular, by slightly extending the algorithm, we obtain a simpler description of the

calculation which it performs. We also describe an application of this method to a
problem in computational representation theory, which itself has applications in
algebraic topology and possibly other areas.

INTRODUCTION

In [3], a linear version of the well-known Todd-Coxeter algorithm is
described. The same algorithm was developed independently in [I], from the
viewpoint of solving systems of polynomial equations in noncommuting
variables. It is from there that we take the name “vector enumeration” for
these techniques.

The algorithm and the author’s implementations of it have been applied
in a number of areas, though unfortunately the work is too recent for
references to be available. The applications include the construction of
soluble quotients of finitely presented groups; analysis of the structure of
permutation modules for certain groups in characteristic dividing the group
order; the modular representation theory of the Hecke algebras of the
exceptional Lie algebras; geometrical analysis of certain irreducible represen-
tations of sporadic simple groups; and as a possible alternative to GrSbner
basis methods for certain problems in computational algebraic geometry.

In [3], the algorithm is presented as a method of constructing matrix
representations of finitely presented groups (or equivalently of their group

LlNEAR ALGEBRA AND ITS APPLICATIONS 192:235-248 (1993) 235

0 Elsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0024.3795/93/$6.00

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82261345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

236 S. A. LINTON

algebras). In Section 1 of this paper, we recast the algorithm as a means of
constructing representations of arbitrary finitely presented algebras. This
subsumes the previous setting, but is easier to describe, suggesting that it is
more natural.

The algorithm is briefly recounted in Section 2, as it appears in its new
setting. For details and notes on implementation, the reader is referred to [3].

Given a group G, with a matrix representation on a vector space V, and
(vectors generating) a G-invariant subspace U Q V, the action of G on V/U
can be constructed. The usual method of performing this construction (see
[5]) involves first constructing an echelonized basis for the subspace U, and
then constructing the action on V/U in terms of the nonpivot columns of this
basis.

In Section 3, we describe an alternative technique, based on vector
enumeration, which avoids constructing an explicit basis for U. This is much
more efficient in the case when dim V/U -C dim U and various vectors and
matrices are sparse. These conditions occur, for example, when computing
the homology groups of distance-transitive graphs, and this technique has
been used to good effect for that purpose.

1. THE NEW FORMULATION

The algorithm of [3] can be trivially modified to produce an algorithm
meeting the following specification: The input to the algorithm consists of k,

a field (subject to certain restrictions, discussed below), and X, a finite set of
symbols.

We can regard X and k as specifying an algebra, namely the free
(associative, but not commutative) k-algebra generated by X. We denote this
by A. Every element of A may be written as an expression involving
elements of X and of k, combined by addition and multiplication, and the
next section of our input will be made up of such expressions, which we
regard as elements of A. Specifically, it consists of a finite set R c A of
relators.

The set R must generate a two-sided ideal I = (ARA), and the quotient
of A by this ideal will itself be a k-algebra, which we call P, with a natural
quotient map q : A + P.

This quotient P will be generated by q(X), and q(R) will be 0 in P. We
can recast the latter statement by regarding our relators once again as
expressions in X and k. The statement that q(R) = 0 then tells us that when
we evaluate any of these expressions with x + Z in place of x, for each 1c in
X (so that we are computing in P), we must obtain 0. Furthermore, it is easy
to see that P is the largest possible (indeed, the universal) k-algebra,
generated by a set in bijection with X, such that the formulae R, evaluated at

VECTOR ENUMERATION 237

the images of X, all give 0 in the algebra. Thus it is clearly correct to describe
P as the algebra presented by the generators X and the relators R.

Our algorithm will, if it succeeds, construct a matrix representation of this
algebra P in its action on a certain P-module M. The remainder of the input
is the specification of this module. Now the algebra P acts on itself by right
multiplication, and it is easy to see that P, under this action, is a right
P-module. Furthermore, for any positive integer s, the Cartesian power P” is
also a right P-module and any s-generator right P-module must be a quotient
of it. Accordingly, the final part of the input consists of a positive integer s
and a set W of s-tuples of expressions in X and k. We view W as a subset of
A” and call its members submodule generators.

We define the homomorphism qs : A” H P” by (a,, . . , us)qs = (a, +
1 ..> a, + I). The images of the submodule generators W under this map
lie in P”. We denote by N the submodule (Wq”P”) of P’ which they
generate. Our algorithm constructs the action of P on the quotient module
M = P”/N.

Specifically, if M is finite dimensional, our algorithm will terminate,
having constructed matrices giving the action of the generators Xq on M.
More pedantically, the matrices give an action of Xq on a k-vector space V
which is P-module isomorphic to M. The actual isomorphism can be com-
puted at negligible extra cost, giving a representative in A” (of which M is a
quotient), for each element of the basis of the vector space, and giving the
vector in V corresponding to the generating elements (1, 0, . . , 01,
(0, 1, 0, , O), etc. of A”.

EXAMPLE 1 (A permutation module). In practice, it is always better to
use the classical Todd-Coxeter algorithm to construct permutation represen-
tations of groups, and modifications of it exist for semigroups and monoids.
However, as was proved in [3], the linear algorithm can perform any of these
calculations.

We know that the group with presentation (a, h 1 a4 = b2 = Cab>’ = 1)

is the dihedral group of order 8. We can construct its permutation module of
degree 4, over any field k, by inputting k, the generators X = {a, b, a’, b’},

and the relators R = {au’ - 1, u’u - 1, bb’ - 1, b’b - 1, u4 - 1, b” - 1,
(ub)’ - 1). This module is cyclic, as the permutation representation is
transitive, so we may set s = 1. Finally, we select our module by setting
W = {b - 1).

Applying the algorithm to this case, we obtain the matrices

0 0 1 0 1 0 0 0
1 0 0 0

b.
0 0 1 0

0 1 0 0 \o 0 0 11

238 S. A. LINTON

and their inverses for a’ and b’. We also obtain the information that the
(only) module generator has image (1, O,O, 0) in the vector space, while the
four basis vectors are images of 1, a’, a’b, and ar2.

EXAMPLE 2 (A quotient of a permutation module). Like all permutation
modules, this one fixes the all-ones vector (1, 1, 1, 11, which we know to be an
image of 1 + a’(1 + b + a’). We can construct the quotient of the permuta-
tion module by this one-dimensional submodule by adding the word to W.
We then obtain the matrices

a= [_i -8 _i), b= (i i x).

EXAMPLE 3 (A noncyclic module). A permutation module of a group
ring is cyclic (that is, generated as a module by one element) just when the
permutation representation is transitive. An intransitive permutation repre-
sentation can be easily constructed from its transitive components, but in
general it is not so easy to construct an arbitrary module from cyclic
submodules. Accordingly, it can be worthwhile to construct noncyclic mod-
ules directly.

As an example we take two copies of the representation constructed in
Example 1, and fuse their one-dimensional submodules. The generators and
relators are as before, and now s = 2 and W c A2 = {(b - 1, O), (0, b - 11,

(1 + a’(1 + a’ + b), -1 - a’(1 + a’ + b))}. We obtain a representation of
degree 7, given by

a=

b=

‘0 0 0 10 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0

0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 -1 1 1 1 -1 -1

‘1 0 0 0 0 0 0
0100000
0001000
0010000
0000100
0000001
0000010

VECTOR ENUMERATION 239

The two module generators are (LO, 0, 0, 0, 0,O) and (0, 1, 0, 0, 0, 0, O),
while the seven basis vectors are images of (LO), (0, 0, (a’, O), (a’b, O),
(a”, 0) (0, a’), and (0, u’b).

EXAMPLE 4 (The symmetric inverse monoid). This is the monoid of all
partial bijections on a given set. For a set of size four, it is given by the
presentation

(Sl> s2> s3> f? I SF = (sp2)3 = (s2s3)3 = (sp3)2 = 1,

e2 = e, sle = es,, s2e = es2, es3e = (es3)’ =

This presentation, converted to an algebra presentation

(s34”) .

by replacing each
relation a = b with the relator a - b, gives the regular representation of the
monoid algebra, which is of degree 209. The monoid has, however, a natural
representation of degree 4 as partial permutation matrices, and we obtain this
by setting W = {e, sr - 1, s2 - 1, s3e - s3}, obtaining matrices

EXAMPLE 5 (The Hecke algebra of type A3). There is a Hecke algebra
associated with any Coxeter group, generated by elements corresponding to
the fundamental roots of the group, and with a presentation derived from the
coxeter presentation of the group. For full details see [2].

The Hecke algebra is normally constructed over the ring .Z[q, 4-l 1 of
Laurent polynomials, but by reducing mod 3 and evaluating at q = - 1 we

obtain the following representation for the Hecke algebra of type A, over
GF(3):

(X, y, Z I x2 - x + 1, y2 - y + 1, z2 - 2 + 1,

yxy - xyr, zyz - yzy, .ix - x.2).

240 S. A. LINTON

It has a natural representation of the same dimension as the Lie algebra of
type A,, namely 4. This representation can be obtained by setting W = {x +
1, Y + 1). This gives the output

-1 0 0 0
0 -1 0 0

X=
0 0 0 1
0 0 -1 1

Z=

i -1 0 0 0

I i
-1

Y= ;

0

1 0 0
1 0 0
0 -1 0
0 0 -1

All of these examples are, of course, very small representations, but in fact
the author’s programs have no problems with arbitrary representations of
degree several hundred, such as the Hecke algebra of type Es, or sparse
representations (such as permutation representations) of degree several thou-
sand.

Possible Fields
The algorithm itself imposes no restriction on the field k, except that

exact calculation must be possible. While this appears to rule out R and C, it
may still be possible to proceed, provided that the coefficients in R and W
are exact. They will then generate an extension of 42 of finite transcendence
degree, in which exact calculation would be possible.

That said, the present implementation by the author is designed mainly
for finite fields of small prime order (though other finite fields would not be a
problem). A version working in Q exists, but no attempt has yet been made to
deal with the problem of coefficient explosion.

There is reason to believe that this problem may be severe, as the
coincidencing process in vector enumeration is essentially Gaussian elimina-
tion, and that is well known to give a severe explosion problem in exact
calculation over fields of characteristic 0. The implementation of [I] (in LISP)
appears to operate over such fields, but the examples described are of
relatively small degree, and do not appear to involve extensive collapse. There
are known techniques for reducing the coefficient explosion in Gaussian
elimination, but it is not yet clear whether they can be applied in this
situation.

Finally, it would be very convenient to be able to perform these calcula-
tions not just over fields, but over Euclidean domains (in particular over 27).

VECTOR ENUMERATION 241

The present algorithm does not extend to these cases, as there is the
possibility of obtaining information such as 2h = 36 ‘, from the relators (the
notation is defined below). This must be retained, but cannot be used to
eliminate any basis vector. This problem is the subject of current research,
based on using lattice basis reduction and Smith normal form techniques to
manipulate this extra information. An experimental program now exists.

2. THE ALGORITHM IN BRIEF

In this section we give a brief outline of the algorithm, in terms of the
formulation above. This concentrates on the mathematical basis, rather than
the practicalities, for which see [3].

The Table
The algorithm aims to deduce, from the relators R and submodule

generators W, the complete structure of the module M and the action of P
on M. As the calculation proceeds, the information obtained so far is
represented in a table. The rows of this table are indexed by an ordered set
B, taken from a universal set 9 (such as the nonnegative integers). Many of
the entries of the table will lie in a vector space with basis identified with B,
which we call kB. We will also use kS for the subspace of kB spanned by S,
for various subsets S of B. Entries may also take a value I , denoting empty
or unknown. The b row of the table consists of the following parts: a flag
d, E (true, false}; an entry r, E kB U I ; an element pb of A”; and a set
of entries c~,~ E kB U _!- , one for each x E X.

We divide the rows of the table into two subsets B” = {b E B 1 d, =
false) and B” = (b E B 1 d, = true}. W e call B” the set of undeleted rows
and Bd the set of deleted rows.

The interpretation of the table depends on establishing a linear map 4
between kB and A”. This is given on B by c$(b) = pb and extended linearly
to kB. It can, of course be composed with qs and the quotient homomor-
phism of P” onto M, to yield a linear map 4 from kB to M. Initially, the
map rC, is neither one-one nor onto, and as kB has no A-module structure, it
cannot be a homomorphism; but we will show that, if the algorithm com-
pletes, I+!J will provide an A-module isomorphism between kB” and M.

We impose a number of conditions on the table. As we work with it, we
have to arrange our manipulations so that the table continues to meet these
conditions. The conditions on a row depend on whether it lies in B” or Bd.

For each b E B” we require that rb = I , and that for each x E X,
either v~,~ = I or v~,~ E kB”, and t)(b)x = I,!I(v~,~). For each b E Bd we

242 S. A. LINTON

require that rb E k{b’ 1 b’ < b) and that $(b) = $(r& We say that row b
has been deleted and replaced by rb.

For any vector v E kB, we define u(v), the undeleted image of v, as
follows. Suppose that v = Cy= r hi bi; then

if b,EB”,

otherwise.

Since r, E k{b’ 1 b’ < b} the recursion implied in the above definition must
terminate.

The algorithm proceeds by modifying the table. New elements are added
to B to represent additional elements of A”, and the words in R and W are
used to deduce linear dependencies among the images e(B), which are used
to move elements from B” to Bd.

Applying the Relators
The entries v~,~ p rovide a partial action for X on kB” via

b.x = ‘b-x if vL)b,x # 1 ,

undefined otherwise.

This can be extended naturally to a partial action of A on kg”. We call this
the action “without defining.”

We can extend this to a “total action with side effects” by adding an
element of .9 \ B to B whenever necessary. Furthermore, we can do this
compatibly with the restrictions above. Specifically, to apply this action to
b E B” and x E X:

ifvb,x 21

then returnvb,r

else

take b’ from 93'j B such that b’> B
add b’ to B
set pbc == pibx

fi

Set ub,x := b’
set ob’,x :=I for allxEX

set d,, := false
set rb’ ‘= 1
return b’

This procedure can be extended to give an action (with side effects) of A
on kg”.

VECTOR ENUMERATION 243

The basic step in the calculation then consists of taking an equation
known to be true in the action of A on M, and computing its equivalent in
the action with defining of A on &I”. If this equivalent is true, then nothing
need be done; if not, then we obtain a linear relation among the members of
B”, which we call a coincidence.

Processing Coincidences
A coincidence is a vector o = EYE lhib, such that I,!J(w> = 0. Having

discovered such a vector, we wish to apply this information to the table. As
we shall see, this application may lead us to discover further coincidences. In
order to avoid the complication of applying more than one coincidence at a
time, it is convenient to place such newly discovered information on a stack,
and apply it later. This does however mean that, while the vector u must
have been a member of kB” when discovered, it can now only be assumed to
lie in kB. Accordingly, we give a procedure for applying the information that
I/J(W) = 0 for o E kB:

replacev by u(v)
ifv = Othen stop

set b := maxy&(b,)
set1 such that b =b,
sets, := - l/h,(u - A,b,)
forr ~Xdo

if vb,r #I then

setu' to be the image with defining ofv,underx

stack the coincidence that +(vb,x -v') = 0

set wbr := I

fi ’
od

set rb := v0

setdb := true
for every b’ and x such that vbC,x #l and vbr,x has nonzero

coefficient of b do
replaceub,x byu(vb,x).

od

In practice a much more complex procedure is used, for efficiency, but
mathematically it is equivalent to the above.

One can verify that, after the above procedure has been carried out, all
the conditions on the table imposed above are still satisfied; that u(w) is now
0; and that any of the equations that had already been applied remain true.

244 S. A. LINTON

Starting and Finishing Conditions; Sketch Proof of Correctness
We start the algorithm with just s elements b(l), . , b(“) in B, and with

dbcij = false, rbcij = u~(‘),~ = _L , and pb(lj = (0, . , 0, 1, 0, . . . , 0) (the 1 is in
the ith place) for 1 < i < s and x E X. This table certainly meets the
requirements above.

We then consider equations of three types. Firstly, for each b E B” and
ir E R we look at pbr = 0. Secondly, for each u; = (wl, . . , ws) E W we
use ph(~)wl + 1.. +P~(~)w~ = 0. Finally, f or each b E B” and x E X, we
consider the trivial equation pb x = pb x, so as to ensure that the table entry

'b,r does in fact get filled in (otherwise the algorithm would terminate
immediately when given the free algebra).

Whenever there is no b E B” and x E X such that vb,* = I , we say the
table is closed. In this situation the partial action without defining becomes a
total action of A on kB”. This occurs just when all the equations of the third
form above are true in kB”. In this situation, we can define an A-module
homomorphism 8 from A” to kB” by letting 13(p,~,) = u(b(“)). Since the
pb+) generate A”, this is enough to define e.

It is easy to see that if, additionally, all the equations of the first type hold,
then ker 9’ < ker 8, so that 8 factors through 4’ and gives a map from P” to
kB”. Similarly the equations of the second type imply that N < ker 8,
showing that 6 may be regarded as a P-module homomorphism from M to
kB”.

However, regarding 0 in this light, we can show that it is an isomorphism,
since the map r,!~ defined above provides an inverse. This shows that, should
the table reach a closed form in which all the equations defined above are
satisfied, then kB, will be P-module isomorphic to M and the algorithm will
have succeeded.

There is, of course, no guarantee that the table will ever reach such a
closed form, as M might be infinite dimensional. If M is finite dimensional,
then, provided the equations are processed in an order meeting certain
conditions, it is possible to show that the algorithm must complete. The proof
is very similar to the equivalent result for the Todd-Coxeter algorithm (see,
for example, [4]).

EXAMPLE. We take the algebra (x 1 3x2 - 2x - l), and we shall work
over Q. We let s = 1 and W = 0. The initial table is thus

b Pb db rb vb,x

b(l) 1 false I I

We begin by applying the relator to the only row we have, row b(l). That
is we check the equation pb(‘). (3x2 - 2 x - 1) = 0, which is certainly true in

VECTOR ENUMERATION 245

the module A4 we aim to construct, to see if its equivalent is true of our
table. In order to do this we compute the image under the action with
defining of 3x2 - 2x - 1 on b(l). This computation begins by looking at

ol)b(‘),x 1 which is I , so according to the first procedure above, we add a new
element to B, which we call b,. The procedure tells us how to modify the
b(l) row and how to set up the b, row. We obtain

b Pb db rb vb,r

b(l) 1 false I b,

b, x false I I

We find that in order to evaluate b(l). (3x” - 2x - 11 we have to define
another row, say b,, and we obtain

b
b(‘)

b,

b,

pb

1
x

x2

db

false

false

false

‘b Vb,r

I b,
-L b3
_L I

We can then read off that b(l). (3x2 - 2x - 1) = -b(l) - 2b, + Sb,.
Since this must be 0 in M, we obtain the coincidence that I)(-b(l) - 2b, +
3bJ = 0. Following the second procedure above, we delete b, and obtain

b
b(l)

b,

b,

pb

1

x

x2

db

false

false

true

rb

I

_L

2b”’ + b. 2

3

vb,x

b2

2b’l’ + b 2

3

I

Notice how the expression @b(‘) + b,)/3 has been substituted for b, in the

entry for %, X,
third. _’

so that the first two rows of the table no longer refer to the

We can observe that this table is closed, so that no further definitions can
be needed. It remains to apply the equation pb,. (3x” - 2x - 1) = 0. When
we compute b,. (3x” - 2 x - 1) we find that it is already 0, so that we are
finished. We conclude that the action of x on this module (the regular
representation of the algebra, in fact) is given by the matrix

246 S. A. LINTON

where the generator of the module is the vector (IO), while the basis is the
images of 1 and x.

3. CONSTRUCTING QUOTIENT ACTIONS

Consider a finitely generated group G = (X) with a matrix representa-
tion p : G + GL(V), where V is a k-vector space and dim V = n. Suppose
that there is a G-invariant subspace U < V; then G will act on the quotient
space V/U.

Given G in the form of matrices p(X) (and so, implicitly, given V, n, and
an ordered basis B = (b,, . , b,} for V), and given vectors in V whose
images under p(G) span U, we can construct the matrix action of G on V/U.

The traditional methods of doing this, for example in the SPLIT program of
the Meat-Axe [5], involve constructing an echelonized basis of U with respect
to the basis B of V. When dim U is not much smaller than n, so that
dim(V/U) is small, most of the calculations are in fact occurring in U, even
when the action on V/U is all that is to be found. We will see that the vector
enumeration algorithm can be used to circumvent these calculations under
suitable conditions. Such conditions definitely occur in the computation of
graph homology and they may well arise elsewhere.

We can convert this problem into a vector enumeration problem as
follows. Let the subspace U be given by vectors {ui, . , urn}. The field k is
given, and we take as many generators as we have generators of G and no
relators. We take the number of module generators s to be n. Since k can be
embedded naturally in A, we can rewrite any vector 0 E V G k” as a vector
in V E A” = A”. If we take submodule generators

WI = {&x - bp(x) I b E B, x E X},

then it is easy to see that the matrices we will obtain will just be p(X >. When
we adjoin the set

w, = {iii I1 6 i < m}

to W,, we obtain a quotient of this representation by the submodule
generated by Wa, which is exactly 6, so that we obtain the desired action.

VECTOR ENUMERATION 247

EXAMPLE. We consider the deleted permutation representation of A,,
of degree five. This is given over [F, by two generating matrices:

10 0 1 0 o\ (1 0 0 0 0’
1 0 0 0 0 0 0 0 0 1
0 10 0 0, 0 10 0 0.
0 0 0 1 0 0 0 1 0 0

,o 0 0 0 1) \l 1 1 1 I/

We can convert these matrices into a presentation for a five-generator
module for the free [F,-algebra on two generators with ten submodule
generators corresponding to the rows of the above matrices. This presents a
five-dimensional module on which the generators of the algebra act as the
above matrices. Writing x and y for the algebra generators, the complete list
of submodule generators is

(x,0,1,0,0) a x, o,o, 0) al, r, 0.0) (O,O,O, x + LO) (0, o,o, 0% x + 1)
(y + 1,0,0,0,0) (0, y, 0, 0.1) (0.1, y, 0.0) (0, 0, 1, y, 0) Cl, 1, 1,l + y)

Feeding this presentation to the vector enumerator will simply return the
matrices with which we started; however, these matrices fix a four-dimen-
sional subspace (corresponding, in the full permutation representation, to the
vectors of weight 0) which is spanned by images of vectors such as (1, 1, 0, 0,O).
Accordingly, if we take as several such vectors as additional submodule
generators, we obtain a one-dimensional quotient of the five-dimensional
module, together with the (trivial) action of the generators on the quotient
and the images under the quotient map of the five module generators.

Practical Considerations
The presentations and submodule generators used in these calculations

are very different from those encountered in other applications of vector
enumeration, and somewhat different strategies are needed to obtain the best
results.

In particular, the submodule generators W, corresponding to U should be
applied before those in W, which enforce the action on V. The aim of this is
to reduce the dimension as quickly as possible to something close to
dim(V/U), where the remaining submodule generators can be checked more
quickly.

Another major consideration is sparseness. While the dimension remains
large, it is important that most of the vectors being manipulated remain
sparse, since otherwise the calculations reduce to Gaussian elimination of

248 S. A. LINTON

large matrices, which is what we are trying to avoid. The key to achieving this
seems to be to use many redundant (sparse) generators for U. This keeps the
chains of coincidences and consequences relatively short for the most part,
which has the desired effect.

In practice these calculations are performed not with a general-purpose
vector enumeration program, but with a separate program that reads a special
input format and applies the submodule generators directly to the table. In
the language of [3], each element of W, provides a deduction, while each
element of W, gives an equation.

This program has been used with success to compute quotient actions of
dimension 10 or so of modules of dimension as large as 5,000, and there
seems no reason to believe that substantially larger problems could not be
tackled in the same way.

REFERENCES

Gilles Labonte, An algorithm for the construction of matrix representations for

finitely presented non-commutative algebras, J. Symbolic Comput. 9:27-38 (1990).

J. E. Humphreys, R$ t e ec ion Groups and Coxeter Groups, Cambridge Stud. Adv.

Math. 29, Cambridge U.P., 1990.

S. A. Linton, Constructing matrix representations of finitely presented groups,

J. Symbolic Comput. 12:427-438 (1991).

J. Neubiiser. An elementary introduction to coset table methods in computational

group theory, in Groups-St. Andrews 1981 (C. M. Campbell and E. F.

Robertson, Eds.), Cambridge U.P., 1982, pp. l-45.

R. A. Parker, The computer calculation of modular characters (the Meat-Axe), in

Computational Group Theory (Michael Atkinson, Ed.), Academic, London, 1984,

pp. 267-274.

Received 4 November 1992; final manuscript accepted 14 May 1993

