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Abstract

Towards sophisticated representation and reasoning techniques that allow for probabilistic uncer-
tainty in the Rules, Logic, and Proof layers of the Semantic Web, we present probabilistic descrip-
tion logic programs (or pdl-programs), which are a combination of description logic programs (or
dl-programs) under the answer set semantics and the well-founded semantics with Poole’s indepen-
dent choice logic. We show that query processing in such pdl-programs can be reduced to computing
all answer sets of dl-programs and solving linear optimization problems, and to computing the well-
founded model of dl-programs, respectively. Moreover, we show that the answer set semantics of
pdl-programs is a refinement of the well-founded semantics of pdl-programs. Furthermore, we also
present an algorithm for query processing in the special case of stratified pdl-programs, which is
based on a reduction to computing the canonical model of stratified dl-programs.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Semantic Web [5,14] aims at an extension of the current World Wide Web by stan-
dards and technologies that help machines to understand the information on the Web so
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that they can support richer discovery, data integration, navigation, and automation of
tasks. The main ideas behind it are to add a machine-readable meaning to Web pages,
to use ontologies for a precise definition of shared terms in Web resources, to use KR tech-
nology for automated reasoning from Web resources, and to apply cooperative agent tech-
nology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer, in
form of the OWL Web Ontology Language [46,23] (recommended by the W3C), is cur-
rently the highest layer of sufficient maturity. OWL consists of three increasingly expres-
sive sublanguages, namely OWL Lite, OWL DL, and OWL Full. OWL Lite and OWL DL
are essentially very expressive description logics with an RDF syntax [23]. As shown in
[21], ontology entailment in OWL Lite (resp., OWL DL) reduces to knowledge base
(un)satisfiability in the description logic SHIFðDÞ (resp., SHOINðDÞ). On top of
the Ontology layer, the Rules, Logic, and Proof layers of the Semantic Web will be devel-
oped next, which should offer sophisticated representation and reasoning capabilities. As a
first effort in this direction, RuleML (Rule Markup Language) [6] is an XML-based
markup language for rules and rule-based systems, whereas the OWL Rules Language
[22] is a first proposal for extending OWL by Horn clause rules.

A key requirement of the layered architecture of the Semantic Web is to integrate the
Rules and the Ontology layer. In particular, it is crucial to allow for building rules on top
of ontologies, that is, for rule-based systems that use vocabulary from ontology know-
ledge bases. Another type of combination is to build ontologies on top of rules, which
means that ontological definitions are supplemented by rules or imported from rules.
Towards this goal, the works [12,13] have proposed description logic programs (or simply
dl-programs), which are of the form KB = (L,P), where L is a knowledge base in a
description logic and P is a finite set of description logic rules (or simply dl-rules). Such
dl-rules are similar to usual rules in logic programs with negation as failure, but may also
contain queries to L in their bodies, which are given by special atoms (on which possibly
default negation may apply). Another important feature of dl-rules is that queries to L

also allow for specifying an input from P, and thus for a flow of information from P to
L, besides the flow of information from L to P, given by any query to L. Hence, descrip-
tion logic programs allow for building rules on top of ontologies, but also (to some extent)
building ontologies on top of rules. In this way, additional knowledge (gained in the pro-
gram) can be supplied to L before querying. The semantics of dl-programs was defined in
[12,13] as an extension of the answer set semantics by Gelfond and Lifschitz [17] and the
well-founded semantics by Van Gelder et al. [45], respectively, which are the two most
widely used semantics for nonmonotonic logic programs. The description logic knowledge
bases in dl-programs are specified in the well-known description logics SHIFðDÞ and
SHOINðDÞ.

In this paper, we continue this line of research. Towards sophisticated representation
and reasoning techniques that also allow for modeling probabilistic uncertainty in the
Rules, Logic, and Proof layers of the Semantic Web, we present probabilistic description

logic programs (or simply pdl-programs), which generalize dl-programs under the answer
set and the well-founded semantics by probabilistic uncertainty. This probabilistic gener-
alization of dl-programs is developed as a combination of dl-programs with Poole’s inde-
pendent choice logic (ICL) [35].

It is important to point out that Poole’s ICL is a powerful representation and reasoning
formalism for single- and also multi-agent systems, which combines logic and probability,



290 T. Lukasiewicz / Internat. J. Approx. Reason. 45 (2007) 288–307
and which can represent a number of important uncertainty formalisms, in particular,
influence diagrams, Bayesian networks, Markov decision processes, and normal form
games [35]. Furthermore, Poole’s ICL also allows for natural notions of causes and expla-
nations as in Pearl’s structural causal models [15].

To my knowledge, this is the first work that combines description logic programs with
probabilistic uncertainty. The main contributions are summarized as follows:

• We present probabilistic description logic programs (or pdl-programs), which are a
probabilistic generalization of dl-programs [12,13]. They are a combination of dl-pro-
grams with Poole’s independent choice logic (ICL) [35]; they properly generalize ICL
programs (with finite Herbrand bases) by description logics.

• We define a probabilistic answer set semantics of pdl-programs, which is a generaliza-
tion of the (strong) answer set semantics of dl-programs in [12]. We show that query
processing in pdl-programs under this semantics is reducible to computing all answer
sets of dl-programs and solving linear optimization problems.

• We define a probabilistic well-founded semantics of pdl-programs, which is a general-
ization of the well-founded semantics of dl-programs in [13]. We then show that query
processing in pdl-programs under the well-founded semantics can be reduced to com-
puting the well-founded semantics of dl-programs.

• We show that, like for the case of dl-programs, the answer set semantics of pdl-pro-
grams is a refinement of the well-founded semantics of pdl-programs. That is, whenever
an answer to a query under the well-founded semantics is defined, it coincides with the
answer to the query under the answer set semantics.

• We also present an algorithm for query processing in the special case of stratified
pdl-programs. It is based on a reduction to computing the canonical model of stratified
dl-programs, which can be done by a finite sequence of finite fixpoint iterations. This
shows especially that query processing in stratified pdl-programs is conceptually easier
than query processing in general pdl-programs.

The rest of this paper is organized as follows: Section 2 recalls the description logics
SHIFðDÞ and SHOINðDÞ. In Section 3, we recall dl-programs under the stratified,
the answer set, and the well-founded semantics. In Section 4, we introduce their probabi-
listic generalization to pdl-programs. Section 5 focuses on query processing in stratified
pdl-programs. In Sections 6 and 7, we discuss related work, summarize the main results,
and give an outlook on future research.

2. The description logics SHIFðDÞ and SHOIN ðDÞ

In this section, we recall the description logics SHIFðDÞ and SHOINðDÞ.

2.1. Syntax

We first describe the syntax of SHOINðDÞ. We assume a set of elementary data-types

and a set of data values. A datatype is either an elementary datatype or a set of data values
(called datatype oneOf ). A datatype theory D = (DD,ÆD) consists of a datatype (or concrete)
domain DD and a mapping ÆD that associates with every elementary datatype a subset of DD

and with every data value an element of DD. The mapping ÆD is extended to all datatypes by
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fv1; . . .gD ¼ fvD
1 ; . . .g. Let A, RA, RD, and I be nonempty finite and pairwise disjoint sets of

atomic concepts, abstract roles, datatype (or concrete) roles, and individuals, respectively.
We denote by R�A the set of inverses R� of all R 2 RA.

A role is an element of RA [ R�A [ RD. Concepts are inductively defined as follows. Every
C 2 A is a concept, and if o1, . . . ,on 2 I, then {o1, . . . ,on} is a concept (called oneOf). If C,
C1, and C2 are concepts and if R 2 RA [ R�A , then also (C1 u C2), (C1 t C2), and :C are
concepts (called conjunction, disjunction, and negation, respectively), as well as $R.C,
"R.C, PnR, and 6nR (called exists, value, at least, and atmost restriction, respectively)
for an integer n P 0. If D is a datatype and U 2 RD, then $U.D, "U.D, PnU, and 6nU

are concepts (called datatype exists, value, at least, and atmost restriction, respectively)
for an integer n P 0. We write > and ? to abbreviate the concepts C t :C and C u :C,
respectively, and we eliminate parentheses as usual.

An axiom is an expression of one of the following forms: (1) C v D (called concept
inclusion axiom), where C and D are concepts; (2) R v S (called role inclusion axiom),
where either R, S 2 RA or R, S 2 RD; (3) Trans(R) (called transitivity axiom), where
R 2 RA; (4) C(a) (called concept membership axiom), where C is a concept and a 2 I; (5)
R(a,b) (resp., U(a,v)) (called role membership axiom), where R 2 RA (resp., U 2 RD) and
a,b 2 I (resp., a 2 I and v is a data value); and (6) a = b (resp., a 5 b) (called equality

(resp., inequality) axiom), where a,b 2 I. A knowledge base L is a finite set of axioms.
For decidability, number restrictions in L are restricted to simple abstract roles R 2 RA

[24].
The syntax of SHIFðDÞ is as the above syntax of SHOINðDÞ, but without the

oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.

Example 2.1. An online store (such as amazon.com) may use a description logic knowledge
base to classify and characterize its products. For example, suppose that (1) textbooks are
books, (2) personal computers and cameras are electronic products, (3) books and
electronic products are products, (4) every product has at least one related product, (5)
only products are related to each other, (6) tb_ai and tb_lp are textbooks, which are related
to each other, (7) pc_ibm and pc_hp are personal computers, which are related to each
other, and (8) ibm and hp are providers for pc_ibm and pc_hp, respectively. This knowledge
is expressed by the following description logic knowledge base L1 in SHIFðDÞ:

(1) Textbook v Book;
(2) PC t Camera v Electronics;
(3) Book t Electronics v Product;
(4) Product vP 1 related;
(5) P1 related tP 1 related� v Product;
(6) Textbook(tb_ai); Textbook(tb_lp); related(tb_ai, tb_lp);
(7) PC(pc_ibm); PC(pc_hp); related(pc_ibm,pc_hp);
(8) provides(ibm,pc_ibm); provides(hp,pc_hp).
2.2. Semantics

An interpretation I ¼ ðDI; �IÞ with respect to a datatype theory D = (DD, ÆD) consists
of a nonempty (abstract) domain DI disjoint from DD, and a mapping �I that assigns to
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each atomic concept C 2 A a subset of DI, to each individual o 2 I an element of DI, to
each abstract role R 2 RA a subset of DI � DI, and to each datatype role U 2 RD a subset
of DI � DD. The mapping �I is extended to all concepts and roles as usual (where #S

denotes the cardinality of a set S):

• fo1; . . . ; ongI ¼ foI
1 ; . . . ; oI

n g;
• ðC u DÞI ¼ CI \ DI, ðC t DÞI ¼ CI [ DI, and ð:CÞI ¼ DI n CI;
• ð9R:CÞI ¼ fx 2 DIj9y : ðx; yÞ 2 RI ^ y 2 CIg;
• ð8R:CÞI ¼ fx 2 DIj8y : ðx; yÞ 2 RI ! y 2 CIg;
• ðPnRÞI ¼ fx 2 DIj#ðfyjðx; yÞ 2 RIgÞP ng;
• ð6nRÞI ¼ fx 2 DIj#ðfyjðx; yÞ 2 RIgÞ 6 ng;
• ð9U :DÞI ¼ fx 2 DIj9y : ðx; yÞ 2 UI ^ y 2 DDg;
• ð8U :DÞI ¼ fx 2 DIj8y : ðx; yÞ 2 UI ! y 2 DDg;
• ðPnUÞI ¼ fx 2 DIj#ðfyjðx; yÞ 2 UIgÞP ng;
• ð6nUÞI ¼ fx 2 DIj#ðfyjðx; yÞ 2 UIgÞ 6 ng.

The satisfaction of a description logic axiom F in the interpretation I ¼ ðDI; �IÞ with
respect to D = (DD, ÆD), denoted I � F , is defined as follows: (1) I � C v D iff CI � DI;
(2) I � R v S iff RI � SI; (3) I � TransðRÞ iff RI is transitive; (4) I � CðaÞ iff aI 2 CI;
(5) I � Rða; bÞ iff ðaI; bIÞ 2 RI; (6) I � Uða; vÞ iff ðaI; vDÞ 2 UI; (7) I � a ¼ b iff
aI ¼ bI; and (8) I � a 6¼ b iff aI 6¼ bI. The interpretation I satisfies the axiom F, or
I is a model of F, iff I � F . The interpretation I satisfies a knowledge base L, or I is
a model of L, denoted I � L, iff I � F for all F 2 L. We say that L is satisfiable (resp.,
unsatisfiable) iff L has a (resp., no) model. An axiom F is a logical consequence of L,
denoted L � F, iff every model of L satisfies F. A negated axiom :F is a logical conse-

quence of L, denoted L � :F , iff every model of L does not satisfy F.
3. Description logic programs

In this section, we recall description logic programs (or dl-programs) [12,13], which are a
combination of description logics and normal programs. They consist of a knowledge base
L in a description logic and a finite set of description logic rules P. Such rules are similar to
usual rules in logic programs with negation as failure, but may also contain queries to L,
possibly default negated. We describe the canonical semantics of positive and stratified dl-
programs, as well as the answer set semantics and the well-founded semantics of general
dl-programs.
3.1. Syntax

We now define the syntax of dl-programs. We first define the syntax of ordinary normal
rules and of ordinary normal and positive programs.

We assume a function-free first-order vocabulary U with nonempty finite sets of con-
stant and predicate symbols, and a set of variables X. A term is a constant symbol from
U or a variable from X. If p is a predicate symbol of arity k P 0 from U and t1 , . . . , tk are
terms, then p(t1 , . . . , tk) is an atom. A negation-as-failure literal is an atom a or a default-
negated atom not a. A normal rule r is of the form
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a b1; . . . ; bk; not bkþ1; . . . ; not bm; m P k P 0; ð1Þ

where a,b1, . . . ,bm are atoms. We refer to a as the head of r, denoted H(r), while the
conjunction b1, . . . ,bk, notbk+1, . . . ,notbm is called the body of r; its positive (resp., neg-

ative) part is b1, . . . ,bk (resp., notbk+1, . . . ,notbm). We define B(r) = B+(r) [ B�(r),
where B+(r) = {b1, . . . ,bk} and B�(r) = {bk+1, . . . ,bm}. A normal program P is a finite
set of normal rules. We say that P is positive iff no rule in P contains default-negated
atoms.

We next define the syntax of dl-programs. Informally, they consist of a description logic
knowledge base L and a generalized normal program P, which may contain queries to L.
In such a query, it is asked whether a certain description logic axiom or its negation log-
ically follows from L or not. Formally, a dl-query Q(t) is either

(a) a concept inclusion axiom F or its negation :F ; or
(b) of the forms C(t) or :CðtÞ, where C is a concept and t is a term; or
(c) of the forms R(t1,t2) or :Rðt1; t2Þ, where R is a role and t1, t2 are terms.

A dl-atom has the form DL[S1op1p1, . . . ,Smopm pm;Q](t), where each Si is a concept
resp. role, opi 2 {], } resp. opi = ], pi is a unary resp. binary predicate symbol, Q(t) is
a dl-query, and m P 0. We call p1, . . . ,pm its input predicate symbols. Intuitively, opi = ]
(resp., opi = ) increases Si (resp., :Si) by the extension of pi. A dl-rule r is of the form
(1), where any b 2 B(r) is either an ordinary atom or a dl-atom. A description logic program

(or dl-program) KB = (L,P) consists of a description logic knowledge base L and a finite
set of dl-rules P. Ground terms, atoms, literals, etc., are defined as usual. The Herbrand base

of P, denoted HBP, is the set of all ground atoms with standard predicate symbols that
occur in P and constant symbols in U. We denote by ground(P) the set of all ground
instances of dl-rules in P relative to HBP.

Example 3.1. Consider the dl-program KB1 = (L1,P1), where L1 is the description logic
knowledge base from Example 2.1, and P1 is the following set of dl-rules:

(1) pc(pc_1); pc(pc_2); pc(pc_3);
(2) brand_new(pc_1); brand_new(pc_2);
(3) vendor(dell,pc_1); vendor(dell,pc_2); vendor(dell,pc_3);
(4) avoid(X) DL[Camera](X), not offer(X);
(5) offer(X) DL[PC ] pc;Electronics](X), notbrand_new(X);
(6) provider(V) vendor(V,X), DL[PC ] pc;Product](X);
(7) provider(V) DL[provides](V,X), DL[PC ] pc;Product](X);
(8) similar(X,Y) = DL[related](X,Y);
(9) similar(X,Z) similar(X,Y), similar(Y,Z).

The above dl-rules express that (1) pc_1, pc_2, and pc_3 are additional personal
computers, (2) pc_1 and pc_2 are brand new, (3) dell is the vendor of pc_1, pc_2, and pc_3,
(4) a customer avoids all cameras that are not on offer, (5) all electronic products that are
not brand new are on offer, (6) every vendor of a product is a provider, (7) every entity
providing a product is a provider, (8) all related products are similar, and (9) the binary
similarity relation on products is transitively closed.
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3.2. Semantics of positive dl-programs

We now define positive dl-programs and their canonical semantics. We first define inter-
pretations and the satisfaction of dl-programs in interpretations.

In the sequel, let KB = (L,P) be a dl-program. An interpretation I relative to P is any
I � HBP. We say that I is a model of a 2 HBP, denoted I � a, iff a 2 I. We say I is a model

of a 2 HBP under L, denoted I �L a, iff I � a. We say I is a model of a ground dl-atom
a = DL[S1op1p1, . . . ,Smopmpm;Q](c) under L, denoted I �L a, iff L [

Sm
i¼1AiðIÞ � QðcÞ,

where Ai (I) = {Si (e) j pi (e) 2 I}, for opi = ]; and AiðIÞ ¼ f:SiðeÞ j piðeÞ 2 Ig, for opi = .
A ground dl-atom a is monotonic relative to KB = (L,P) iff I � I 0 � HBP implies that if
I �L a then I 0 �L a. In this paper, we consider only monotonic ground dl-atoms, but
observe that one can also define dl-atoms that are not monotonic; see [12]. We say that
I is a model of a ground dl-rule r under L, denoted I �L r, iff I �L H(r) whenever I �L B(r),
that is, I �L a for all a 2 B+(r) and I 2L a for all a 2 B�(r). We say I is a model of a
dl-program KB = (L,P), denoted I � KB, iff I �L r for every r 2 ground(P). We say KB

is satisfiable (resp., unsatisfiable) iff it has some (resp., no) model.
We say KB = (L,P) is positive iff no dl-rule in P contains default-negated atoms. Like

ordinary positive programs, every positive dl-program KB is satisfiable and has a unique
least model, denoted MKB, that naturally characterizes its semantics.

3.3. Semantics of stratified dl-programs

We next define stratified dl-programs and their canonical semantics. They are intui-
tively composed of hierarchic layers of positive dl-programs linked via default negation.
Like ordinary stratified normal programs, they are always satisfiable and can be assigned
a canonical minimal model via a number of iterative least models.

For any dl-program KB = (L,P), we denote by DLP the set of all ground dl-atoms that
occur in ground(P). An input atom of a 2 DLP is a ground atom with an input predicate of
a and constant symbols in U. A (local) stratification of KB = (L,P) is a mapping
k : HBP [ DLP ! f0; 1; . . . ; kg such that

(i) k(H(r)) P k(b 0) (resp., k(H(r)) > k(b 0)) for every r 2 ground(P) and b 2 B+(r) (resp.,
b 0 2 B �(r)), and

(ii) k(a) P k(b) for each input atom b of each a 2 DLP,

where k P 0 is the length of k. For i 2 {0, . . ., k}, let KBi = (L,Pi) = (L,{r 2
ground(P) jk(H(r)) = i}), and let HBP i (resp., HBH

P i
) be the set of all b 2 HBP such that

k(b) = i (resp., k(b) 6 i). A dl-program KB = (L,P) is (locally) stratified iff it has a strat-
ification k of some length k P 0. We define its iterative least models Mi � HBP with i 2
{0, . . . , k} as follows:

(i) M0 is the least model of KB0;
(ii) if i > 0, then Mi is the least model of KBi such that MijHBH

P i�1
¼ Mi�1jHBH

P i�1
.

The canonical model of the stratified dl-program KB, denoted MKB, is then defined as
Mk. Observe that MKB is well defined, since it does not depend on a particular k. Further-
more, MKB is in fact a minimal model of KB.
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3.4. Answer set semantics of dl-programs

The answer set semantics of general dl-programs is defined by a reduction to the least
model semantics of positive dl-programs as follows. We use a transformation that removes
all default-negated atoms in dl-rules and that generalizes the Gelfond–Lifschitz transfor-
mation [17]. More precisely, for dl-programs KB = (L,P), the (strong) dl-transform of P

relative to L and an interpretation I � HBP, denoted sP I
L, is the set of all dl-rules obtained

from ground(P) by (i) deleting every dl-rule r such that I �L a for some a 2 B�(r), and (ii)
deleting from each remaining dl-rule r the negative body. A (strong) answer set of KB is an
interpretation I � HBP such that I is the unique least model of ðL; sP I

LÞ.
The answer set semantics of dl-programs KB = (L,P) without dl-atoms coincides with

the ordinary answer set semantics of P. Answer sets of a general dl-program KB are also
minimal models of KB. Positive and locally stratified dl-programs have exactly one answer
set, which coincides with their canonical minimal model.

3.5. Well-founded semantics of dl-programs

In the sequel, let KB = (L,P) be a dl-program. For literals l = a (resp., l ¼ :a), we use
::l to denote :a (resp., a), and for sets of literals S, we define ::S ¼ f::ljl 2 Sg and
S+ = {a 2 S ja is an atom}. We define LitP ¼ HBP [ ::HBP . A set S � LitP is consistent

iff S \ ::S ¼ ;. A three-valued interpretation relative to P is any consistent I � LitP. We
define the well-founded semantics of KB by generalizing its standard definition based on
unfounded sets [45].

We first define unfounded sets of dl-programs. Let I � LitP be consistent. A set
U � HBP is an unfounded set of KB relative to I iff the following holds:

(*) for every a 2 U and every r 2 ground(P) with H(r) = a, either (i) :b 2 I [ ::U for
some ordinary atom b 2 B+(r), or (ii) b 2 I for some ordinary atom b 2 B�(r), or
(iii) for some dl-atom b 2 B+(r), it holds that S+

2Lb for every consistent S � LitP

with I [ ::U � S, or (iv) I+ �L b for some dl-atom b 2 B�(r).

For every dl-program KB = (L,P) and consistent I � LitP, the set of unfounded sets of
KB relative to I is closed under union, and thus KB has a greatest unfounded set relative to
I, denoted UKB(I). Intuitively, if I is compatible with KB, then all atoms in UKB(I) can be
safely switched to false and the resulting interpretation is still compatible with KB. We
define the operators TKB and WKB on all consistent I � LitP as follows:

• a 2 TKB(I) iff a 2 HBP and some r 2 ground(P) exists such that (a) H(r) = a, (b) I+ �L b

for all b 2 B+(r), (c) :b 2 I for all ordinary atoms b 2 B�(r), and (d) S+
2Lb for each

consistent S � LitP with I � S, for all dl-atoms b 2 B�(r);
• W KBðIÞ ¼ T KBðIÞ [ ::UKBðIÞ.

The operators TKB, UKB, and WKB are all monotonic. Thus, in particular, WKB has a
least fixpoint, denoted lfp(WKB). The well-founded semantics of KB = (L,P), denoted
WFS(KB), is defined as lfp(WKB). An atom a 2 HBP is well-founded (resp., unfounded) rel-
ative to KB iff a (resp., :a) is in WFS(KB). Intuitively, starting with I = ;, rules are applied
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to obtain new positive (resp., negated) facts via TKB(I) (resp., ::U KBðIÞ). This process is
repeated until no longer possible.

The well-founded semantics of dl-programs KB = (L,P) without dl-atoms coincides
with the ordinary well-founded semantics of P. In general, WFS(KB) is a partial model
of KB. Here, a consistent I � LitP is a partial model of KB iff it can be extended to a
(two-valued) model I 0 � HBP of KB. Like in the ordinary case, the well-founded semantics
for positive and locally stratified dl-programs is total and coincides with their canonical
minimal model. The well-founded semantics for dl-programs also approximates their
answer set semantics. That is, every well-founded (resp., unfounded) atom a 2 HBP is true
(resp., false) in every answer set.

4. Probabilistic description logic programs

In this section, we define probabilistic dl-programs (or pdl-programs) as a combination
of dl-programs with Poole’s independent choice logic (ICL) [35]. Poole’s ICL is based on
ordinary acyclic logic programs under different ‘‘choices’’, where every choice along with
an acyclic logic program produces a first-order model, and one then obtains a probability
distribution over the set of all first-order models by placing a probability distribution over
the different choices. Here, we use stratified dl-programs under their canonical semantics,
as well as dl-programs under the well-founded and the answer set semantics, instead of the
above ordinary acyclic logic programs under their canonical semantics (which coincides
with their stable model semantics and their answer set semantics, respectively).

4.1. Syntax

We now define the syntax of pdl-programs and probabilistic queries addressed to them.
We first define probabilistic formulas and probabilities on choice spaces.

We assume a function-free first-order vocabulary U with nonempty finite sets of con-
stant and predicate symbols, and a set of variables X, as in Section 3.1. We use HBU (resp.,
HUU) to denote the Herbrand base (resp., universe) over U. In the sequel, we assume that
HBU is nonempty. We define classical formulas by induction as follows. The propositional
constants false and true, denoted ? and >, respectively, and all atoms are classical formu-
las. If / and w are classical formulas, then :/ and (/ ^ w) are also classical formulas. A
conditional constraint is of the form (w j/)[l,u] with reals l, u 2 [0,1] and classical formulas
/ and w. We define probabilistic formulas inductively as follows. Every conditional con-
straint is a probabilistic formula. If F and G are probabilistic formulas, then also :F
and (F ^ G). We use (F _ G), (F( G), and ðF $ GÞ to abbreviate :ð:F ^ :GÞ,
:ð:F ^ GÞ, and ð:ð:F ^ GÞ ^ :ðF ^ :GÞÞ, respectively, and adopt the usual conventions
to eliminate parentheses. Ground terms, ground formulas, substitutions, and ground

instances of probabilistic formulas are defined as usual.
A choice space C is a set of pairwise disjoint and nonempty sets A � HBU. Any member

A 2 C is an alternative of C and any element a 2 A an atomic choice of C. A total choice of
C is a set B � HBU such that jB \ Aj = 1 for all A 2 C. A probability l on a choice space C

is a probability function on the set of all total choices of C. Since C and all its alternatives
are finite, l can be defined by (i) a mapping l :

S
C ! ½0; 1� such that

P
a2AlðaÞ ¼ 1 for all

A 2 C, and (ii) l(B) = Pb 2 B l(b) for all total choices B of C. Intuitively, (i) associates a
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probability with each atomic choice of C, and (ii) assumes independence between the alter-
natives of C.

A probabilistic dl-program (or pdl-program) KB = (L,P,C,l) consists of a dl-program
(L,P), a choice space C such that no atomic choice in C coincides with the head of any
dl-rule in ground(P) (note that this condition ensures that stratified pdl-programs are
always consistent; cf. Section 4.2), and a probability l on C. Intuitively, since the total
choices of C select subsets of P, every probabilistic dl-program is the compact representa-
tion of a probability distribution on a finite set of dl-programs. A probabilistic query to KB

has the form ?F or the form ?(b ja)[R,S], where F is a probabilistic formula, b, a are clas-
sical formulas, and R, S are variables. The correct answer to ?F is the set of all substitu-
tions h such that Fh is a consequence of KB. The tight answer to ?(b ja)[R,S] is the set
of all substitutions h such that (b ja)[R,S]h is a tight consequence of KB. In the following
paragraphs, we define the notions of consequence and tight consequence under the strati-
fied, the answer set, and the well-founded semantics.

Example 4.1. Consider the pdl-program KB1 = (L1,P1,C1,l1), where L1 and P1 are as in
Example 2.1 resp. 3.1 except that the dl-rules (4) and (5) are replaced by the dl-rules (4 0)
and (5 0), respectively, and the dl-rules (10) and (11) are added:

(4 0) avoid(X) DL[Camera](X), not offer(X), avoid_ pos;
(5 0) offer(X) DL[PC ] pc; Electronics](X), not brand_new(X), offer_pos;
(10) buy(C,X) needs(C,X), view(X), not avoid(X), v_buy_ pos;
(11) buy(C,X) needs(C,X), buy(C,Y), also_buy(Y,X), a_buy_ pos.

Let C1 be given by {{avoid_ pos, avoid_neg}, {offer_ pos, offer_neg}, {v_buy_ pos,
v_buy_neg}, {a_buy_pos, a_buy_neg}}, and let l1 be given by l1(avoid_ pos) = .9, l1(avoid_
neg) = .1, l1(offer_ pos) = .9, l1(offer_neg) = .1, l1(v_buy_ pos) = .7, l1(v_buy_neg) = .3,
l1(a_buy_ pos) = .7, and l1(a_buy_neg) = .3.

Here, the new dl-rules (4 0) and (5 0) express that the dl-rules (4) and (5) actually only
hold with the probability 0.9. Furthermore, (10) expresses that a customer buys a needed
product that is viewed and not avoided with the probability 0.7, while (11) says that a
customer buys a needed product x with probability 0.7, if she bought another product y,
and every customer that previously had bought y also bought x.

In a probabilistic query, one may ask for the tight probability bounds that a customer c

buys a needed product x, if (i) c bought another product y, (ii) every customer that
previously had bought y also bought x, (iii) x is not avoided, and (iv) c has been shown
product x (the result to this query may, e.g., help to decide whether it is useful to make a
customer automatically also view product x when buying y):

?ðbuyðc; xÞjneedsðc; xÞ ^ buyðc; yÞ ^ also buyðy; xÞ ^ viewðxÞ ^ :avoidðxÞÞ½R; S�:
4.2. Semantics of stratified pdl-programs

A stratified pdl-program is a pdl-program KB = (L,P,C,l) such that the dl-program
(L,P) is stratified. In the following, we define the semantic notions of consequence and
tight consequence for stratified pdl-programs.
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Example 4.2. Consider again the pdl-program KB1 = (L1,P1,C1,l1) given in Example 4.1.
It is not difficult to see that KB1 is stratified.

A total world I is a subset of HBU. We use IU to denote the set of all total worlds over
U. A variable assignment r maps each variable X 2 X to an element of HUU. We extend r
to all terms by r(c) = c for all constant symbols c from U. The truth of classical formulas /
in I under a variable assignment r, denoted I �r / (or I � / when / is ground), is induc-
tively defined by

• I �r p(t1, . . . , tk) iff p(r(t1), . . ., r(tk)) 2 I;
• I �r :/ iff not I �r /; and I �r (/ ^ w) iff I �r / and I �r w.

A total probabilistic interpretation Pr is a probability function on IU (that is, since IU is
finite, a mapping Pr : IU ! ½0; 1� such that all Pr(I) with I 2 IU sum up to 1). The prob-

ability of a classical formula / in Pr under a variable assignment r, denoted Prr(/) (or
Pr(/) when / is ground), is defined as the sum of all Pr(I) such that I 2 IU and I �r /.
For classical formulas / and w with Prr(/) > 0, we use Prr(w j/) to abbreviate
Prr(w ^ /) / Prr(/). The truth of probabilistic formulas F in Pr under r, denoted Pr �r F,
is inductively defined as follows:

• Pr �r (w j/)[l,u] iff Prr(/) = 0 or Prr(w j/) 2 [l,u];
• Pr�r :F iff not Pr �r F; and Pr �r (F ^ G) iff Pr �r F and Pr �r G.

A total probabilistic interpretation Pr is a model of a probabilistic formula F iff Pr �r F

for every variable assignment r. We say that Pr is the canonical model of a stratified pdl-
program KB = (L,P,C,l) iff every world I 2 IU with Pr(I) > 0 is the canonical model of
(L, P [ {p j p 2 B}) for some total choice B of C such that Pr(I) = l(B). Observe that
every stratified pdl-program KB has a unique canonical model Pr. A probabilistic formula
F is a consequence of KB, denoted KB F, iff the canonical model of KB is also a model
of F. A conditional constraint (w j/)[l,u] is a tight consequence of KB, denoted
KB tight (w j/)[l,u], iff l (resp., u) is the infimum (resp., supremum) of Prr(w j/) subject
to the canonical model Pr of KB and all variable assignments r with Prr(/) > 0. Note that
query processing in stratified pdl-programs is discussed in Section 5 below.

Example 4.3. Consider again the pdl-program KB1 = (L1,P1,C1,l1) given in Example 4.1.
Since (L1,P1) is stratified, also KB1 is stratified. The choice space C1 has 16 total choices,
and each of these total choices is associated with a probability under l1. For example, one
total choice of C1 is given by B1 = {avoid_pos, offer_pos, v_buy_pos, a_buy_pos}; it has
the probability l1(B1) = 0.9 · 0.9 · 0.7 · 0.7 = 0.3969. Every total choice B of C1 specifies
a canonical model of a stratified dl-program, namely, the canonical model of
(L,P [ {p j p 2 B}), which is associated with the probability l1(B). Hence, the canonical
model Pr1 of KB1 consists of 16 canonical models of stratified dl-programs along with their
probabilities. For example, the canonical model IB1

for the above total choice B1 satisfies
(among others) the ground atoms in lines (1)–(3) of Example 3.1 as well as offer(pc3),
offer(pc_ibm), and offer(pc_hp); the canonical model IB1

has the associated probability
l1(B1) = 0.3969. The canonical model Pr1 of KB1 thus represents exactly one probability
distribution over first-order models, and it allows to assign a probability to any ground
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classical formula. For example, the ground atoms offer(pc3), offer(pc_ibm), and
offer(pc_hp) have each the probability 0.9 under the canonical model Pr1 of KB1 (beside
IB1

there are other IB that satisfy offer(pc3), offer(pc_ibm), and offer(pc_hp)).
4.3. Answer set semantics of pdl-programs

We now introduce the notions of consistency, consequence, and tight consequence
under the answer set semantics for general pdl-programs.

A total probabilistic interpretation Pr is an answer set model of a pdl-program
KB = (L,P,C,l) iff (i) every total world I 2 IU with Pr(I) > 0 is an answer set of
(L,P [ {p j p 2 B}) for some total choice B of C, and (ii) Pr(^B) = Pr(^p2B p) = l(B)
for every total choice B of C. We say that KB is consistent iff it has an answer set model
Pr. A probabilistic formula F is an answer set consequence of KB, denoted KB asF, iff
every answer set model of KB is also a model of F. A conditional constraint (w j/)[l,u]
is a tight answer set consequence of KB, denoted KB as

tightðw j /Þ½l; u�, iff l (resp., u) is the
infimum (resp., supremum) of Prr(w j/) subject to all answer set models Pr of KB and
all variable assignments r with Prr(/) > 0. Here, we assume that l = 1 and u = 0, when
Prr(/) = 0 for all answer set models Pr of KB and all r.

Every stratified pdl-program KB is consistent and has exactly one answer set model,
which coincides with the canonical model of KB. Deciding whether a general pdl-program
KB is consistent can be reduced to deciding whether dl-programs have an answer set. The
following theorem shows that computing tight answers to queries ?(b ja)[R,S] to KB,
where b and a are ground, can be reduced to computing all answer sets of dl-programs
and then solving two linear optimization problems. It follows from a standard result on
transforming linear fractional programs into equivalent linear programs by Charnes
and Cooper [7].

Theorem 4.4. Let KB = (L, P,C,l) be a consistent pdl-program, and let b and a be ground

classical formulas such that Pr(a) > 0 for some answer set model Pr of KB. Then, l (resp., u)

such that KB as
tightðb j aÞ½l; u� is the optimal value of the following linear program over the

variables yr (r 2 R), where R is the union of all sets of answer sets of (L, P [ {p jp 2 B})
for all total choices B of C:

X

minimize ðresp:; maximizeÞ

r2R; r�b^a
yr subject to LC

in Fig. 1.
Fig. 1. System of linear constraints LC for Theorem 4.4.
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4.4. Well-founded semantics of pdl-programs

We finally define the notions of consequence and tight consequence under the well-
founded semantics for general pdl-programs. We first define partial probabilistic interpre-
tations and the evaluation of probabilistic formulas in them.

A partial world I is a consistent subset of LitU ¼ HBU [ ::HBU. We identify I with the
three-valued interpretation I : HBU ! ftrue; false; undefinedg that is defined by I(a) = true

iff a 2 I, I(a) = false iff :a 2 I , and I(a) = undefined iff I \ fa;:ag ¼ ;. We use Ip
U to

denote the set of all partial worlds over U. Every classical formula / in a partial world
I under a variable assignment r is associated with a three-valued truth value from
{true, false,undefined}, denoted Ir(/) (or simply I(/) when / is ground), which is induc-
tively defined by

• Ir(p(t1, . . . , tk)) = I(p(r(t1), . . ., r(tk)));
• Irð:/Þ ¼ true iff Ir(/) = false, and Irð:/Þ ¼ false iff Ir(/) = true;
• Ir(/ ^ w) = true iff Ir(/) = Ir(w) = true, and

Ir(/ ^ w) = false iff Ir(/) = false or Ir(w) = false.

A partial probabilistic interpretation Pr is a probability function on Ip
U. The probability

of a classical formula / in Pr under a variable assignment r, denoted Prr(/) (or simply
Pr(/) when / is ground), is undefined, if Ir(/) is undefined for some I 2 Ip

U with
Pr(I) > 0; and Prr(/) is defined as the sum of all Pr(I) such that I 2 Ip

U and Ir(/) = true,
otherwise. For classical formulas / and w such that Prr(/) > 0, the conditional probability

of w given / in Pr under r, denoted Prr(w j/), is defined as Prr(w ^ /) / Prr(/). Note
that, alternatively, we may also define Prr(/) as the interval ½

P
Irð/Þ¼truePrðIÞ; 1�P

Irð/Þ¼falsePrðIÞ�. However, even though this definition ensures that Prr(/) is always
defined, it cannot easily be generalized to conditional probabilities. Every probabilistic
formula F in Pr under r is associated with a three-valued truth value from {true, false,unde-

fined}, denoted Prr(F), which is inductively defined as follows:

• Prr((w j/)[l,u]) = true iff Prr(/) = 0 or Prr(w j/) 2 [l,u], and
Prr((w j/)[l,u]) = false iff Prr(/) > 0 and Prr(w j/) 62 [l,u];

• Prrð:F Þ ¼ true iff Prr(F) = false, and Prrð:F Þ ¼ false iff Prr(F) = true;
• Prr(F ^ G) = true iff Prr(F) = Prr(G) = true, and

Prr(F ^ G) = false iff Prr(F) = false or Prr(G) = false.

The well-founded model of a pdl-program KB = (L,P,C,l), denoted Prwf
KB, is defined by

(i) Prwf
KBðIBÞ ¼ lðBÞ, where IB is the well-founded model of (L,P [ {p j p 2 B}), for every

total choice B of C, and (ii) Prwf
KBðIÞ ¼ 0 for all other I 2 Ip

U. A probabilistic formula F is a
well-founded consequence of KB, denoted KB wf F, iff F is true in Prwf

KB under every variable
assignment r. A conditional constraint (w j/)[l,u] is a tight well-founded consequence of
KB, denoted KB wf

tightðw j /Þ½l; u�, iff (i) Prwf
KBð/Þ under every variable assignments r is dif-

ferent from undefined, and (ii) l (resp., u) is the infimum (resp., supremum) of Prr(w j/)
subject to Pr ¼ Prwf

KB and all variable assignments r with Prr(/) > 0.
The well-founded model of a stratified pdl-program KB is total and coincides with the

canonical model of KB. As an advantage of the well-founded semantics, every general pdl-
program KB has a unique well-founded model, but not necessarily an answer set model.
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Furthermore, the unique well-founded model can be easily computed by fixpoint itera-
tion [13]. As a drawback, the well-founded model associates only with some classical
formulas under r a probability, while every answer set model associates with all classi-
cal formulas under r a probability. The following theorem shows that the answer set
semantics is a refinement of the well-founded semantics. That is, if an answer to a query
under the well-founded semantics is defined, then it coincides with the answer under
the answer set semantics. The theorem follows from the result that the well-founded
semantics of dl-programs approximates their answer set semantics [13]. The advantages
of both semantics can thus be combined in query processing by first trying to compute
the well-founded answer, and only if this does not exist the answer under the answer set
semantics.

Theorem 4.5. Let KB = (L,P, C,l) be a consistent pdl-program, and let (w j/)[l, u] be a
ground conditional constraint. If Prwf

KBð/Þ; Prwf
KBðw ^ /Þ 6¼ undefined, then

(a) KB wf(w j/)[l, u] iff KB as (w j/)[l, u], and

(b) KB wf
tightðw j/Þ½l; u� iff KB as

tightðw j/Þ½l; u�.
Proof (Sketch). Let a 2 {w, w ^ /}. It is sufficient to show that Prwf
KBðaÞ is equal to Pr(a)

for all answer set models Pr of KB. Observe that Prwf
KBðaÞ is the sum of all l(B) such that (i)

B is a total choice of C, (ii) l(B) > 0, and (iii) IB(a) = true, where IB denotes the well-
founded model of (L,P [ {p j p 2 B}). By induction on the structure of classical formu-
las, it is not difficult to see that IB(a) = true iff I � a for all answer sets I of
(L,P [ {p j p 2 B}). This already shows that Prwf

KBðaÞ is equal to Pr(a) for all answer
set models Pr of KB. h
5. Query processing in stratified pdl-programs

The canonical model of an ordinary positive (resp., stratified) normal program P has a
fixpoint characterization in terms of an immediate consequence operator TP, which gen-
eralizes to positive (resp., stratified) dl-programs. This can be used for a bottom-up com-
putation of the canonical model of a positive (resp., stratified) dl-program, and thus also
for computing the canonical model of a stratified pdl-program and for query processing in
stratified pdl-programs.

5.1. Fixpoint iteration in positive dl-programs

We first describe a fixpoint characterization of the canonical model of a positive dl-pro-
gram. For any dl-program KB = (L,P), we define the operator TKB on the subsets of HBP

as follows. For every I � HBP, let

T KBðIÞ ¼ fHðrÞ j r 2 groundðP Þ; I �L ‘ for all ‘ 2 BðrÞg:

If KB is positive, then TKB is monotonic. Hence, TKB has a least fixpoint, denoted lfp(TKB).
Furthermore, lfp(TKB) can be computed by a finite fixpoint iteration (given finiteness of P

and the number of constant symbols in U). For every I � HBP, we define TKB
i(I) = I, if

i = 0, and TKB
i(I) = TKB(TKB

i�1(I)), if i > 0.
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Theorem 5.1. For every positive dl-program KB = (L, P), it holds that lfp(TKB) = MKB.

Furthermore, lfpðT KBÞ ¼
Sn

i¼0T i
KBð;Þ ¼ T n

KBð;Þ for some n P 0.
5.2. Fixpoint iteration in stratified dl-programs

We next describe a fixpoint characterization for stratified dl-programs. Using Theorem
5.1, we can characterize the canonical model MKB of a stratified dl-program KB = (L,P) as
follows. Let bT i

KBðIÞ ¼ T i
KBðIÞ [ I for all i P 0.

Theorem 5.2. Suppose that KB = (L,P) has a stratification k of length k P 0. Let

Mi � HBP, i 2 { � 1,0, . . ., k}, be defined by M�1 = ; and Mi ¼ bT ni
KBi
ðMi�1Þ for i P 0, where

ni P 0 such that bT ni
KBi
ðMi�1Þ ¼ bT niþ1

KBi
ðMi�1Þ. Then, Mk = MKB.
5.3. Query processing in stratified pdl-programs

Algorithm canonical_model (see Fig. 2) computes the canonical model Pr of a given
stratified pdl-program KB = (L,P,C,l). It is essentially based on a reduction to comput-
ing the canonical model of stratified dl-programs in line 4, which can be done using the
above finite sequence of finite fixpoint iterations.

Example 5.3. Consider again the stratified pdl-program KB1 = (L1,P1,C1,l1) of Example
4.1. The computation of canonical_model in Fig. 2 on KB1 is summarized as follows. For
each of the 16 total choices B of C1, the canonical model IB of the stratified dl-program
(L1,P1 [ {p j p 2 B}) is computed, and IB is associated with the probability l1(B), while
all the other I 2 IU are associated with the probability 0. For example, for the total choice
B1 = {avoid_pos, offer_pos, v_buy_pos, a_buy_pos} of C1, the canonical model IB1

of the
stratified dl-program (L1,P1 [ {p j p 2 B1}) satisfies exactly the ground atoms in lines
(1)–(3) of Example 3.1 as well as offer(pc3), offer(pc_ibm), offer(pc_hp), provider(dell),
provider(ibm), provider(hp), similar(tb_ai, tb_lp), and similar(pc_ibm,pc_hp), and IB1

is
associated with the probability l1(B1) = 0.9 · 0.9 · 0.7 · 0.7 = 0.3969.
Fig. 2. Algorithm canonical_model.
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Algorithm tight_answer (see Fig. 3) computes tight answers h = {R/l, S/u} for a given
probabilistic query ?(bja)[R,S] to a given stratified pdl-program KB. It computes the
canonical model of KB in line 1 and the tight answer in lines 2–8.

Example 5.4. To compute the tight answer for the query ?(offer(pc3) j>)[R,S] to the
stratified pdl-program KB1 = (L1,P1,C1,l1) of Example 4.1, Algorithm tight_answer in
Fig. 3 first computes the canonical model Pr of KB1, using Algorithm canonical_model.
Then, since b ja = offer(pc3) j> is ground and unconditional, Algorithm tight_answer

computes only the probability of offer(pc3) in Pr. Finally, since the latter is given by 0.9,
the algorithm returns h = {R/0.9, S/0.9}.
6. Related work

In this section, we discuss related work on the combination of logic programs with
description logics and on uncertainty reasoning for the Semantic Web. Note that an over-
view of the large body of previous work on the combination of logic programs with prob-
abilistic uncertainty is contained in [30,26].

6.1. Description logic programs

Related work on the combination of description logics and logic programs can
be divided into (a) hybrid approaches using description logics as input to logic programs,
(b) approaches reducing description logics to logic programs, (c) combinations of
description logics with default and defeasible logic, and (d) approaches to rule-based
well-founded reasoning in the Semantic Web. Below we give some representatives for
(a)–(d). Further works and details are given in [12,13].

The works by Donini et al. [10], Levy and Rousset [27], and Rosati [37,38] are represen-
tatives of hybrid approaches using description logics as input. Donini et al. [10] introduce
a combination of (disjunction-, negation-, and function-free) datalog with the description
logic ALC. An integrated knowledge base consists of a structural component in ALC
and a relational component in datalog, where the integration of both components lies
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in using concepts from the structural component as constraints in rule bodies of the
relational component. The closely related work by Levy and Rousset [27] presents a com-
bination of Horn rules with the description logic ALCNR. In contrast to Donini et al.
[10], Levy and Rousset also allow for roles as constraints in rule bodies, and do not require
the safety condition that variables in constraints in the body of a rule r must also appear in
ordinary atoms in the body of r. Finally, Rosati [37] presents a combination of disjunctive
datalog (with classical and default negation, but without function symbols) with ALC,
which is based on a generalized answer set semantics.

Some approaches reducing description logic reasoning to logic programming are the
works by Van Belleghem et al. [44], Alsaç and Baral [1], Swift [43], Grosof et al. [19],
and Hufstadt et al. [25]. Early work on dealing with default information in description log-
ics is the approach due to Baader and Hollunder [4], where Reiter’s default logic is adapted
to terminological knowledge bases. Antoniou [2] combines defeasible reasoning with
description logics for the Semantic Web. In [3], Antoniou and Wagner summarize defea-
sible and strict reasoning in a single rule formalism.

An important approach to rule-based reasoning under the well-founded semantics for
the Semantic Web is due to Damásio [9]. He aims at Prolog tools for implementing differ-
ent semantics for RuleML [6]. So far, an XML parser library as well as a RuleML com-
piler have been developed, with routines to convert RuleML rule bases to Prolog and vice
versa. The compiler supports paraconsistent well-founded semantics with explicit nega-
tion; it is planned to be extended to use XSB [36].

6.2. Uncertainty reasoning for the Semantic Web

Related approaches to uncertainty reasoning for the Semantic Web can be roughly
divided into (a) description logic programs under non-probabilistic uncertainty, (b) prob-
abilistic generalizations of description logics, and (c) probabilistic generalizations of Web
ontology languages, such as DAML + OIL and OWL.

As for (a), previous works by Straccia combine (positive) description logic programs
with lattice-based uncertainty [41] and with fuzzy vagueness [42]. Whereas, to my knowl-
edge, the present paper is the first one combining (normal) description logic programs with
probabilistic uncertainty.

As for (b), Giugno and Lukasiewicz [18] present a probabilistic generalization of the
expressive description logic SHOQðDÞ that stands behind DAML + OIL, which is based
on lexicographic probabilistic reasoning. In earlier work, Heinsohn [20] and Jaeger [28]
present probabilistic extensions to the description logic ALC, which are essentially based
on probabilistic reasoning in probabilistic logics. Koller et al. [29] present a probabilistic
generalization of the CLASSIC description logic, which uses Bayesian networks as underly-
ing probabilistic reasoning formalism. Note that fuzzy description logics, such as the ones
by Straccia [39,40], are less closely related to probabilistic description logics, since they
deal with fuzzy vagueness, rather than probabilistic ambiguity and imprecision.

As for (c), there are especially the works by Costa [8], Pool and Aikin [34], and Ding
and Peng [11], which present probabilistic generalizations of the Web ontology language
OWL. In particular, Costa’s work [8] is semantically based on multi-entity Bayesian net-
works, while [11] has a semantics in standard Bayesian networks. In closely related work,
Fukushige [16] proposes a basic framework for representing probabilistic relationships in
RDF. Finally, Nottelmann and Fuhr [33] present pDAML + OIL, which is a probabilistic
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generalization of the Web ontology language DAML + OIL, along with a mapping to
stratified probabilistic datalog.

7. Conclusion

We have presented probabilistic dl-programs (or pdl-programs), which are a combina-
tion of dl-programs under the answer set and the well-founded semantics with Poole’s
independent choice logic. We have shown that query processing in such pdl-programs
can be reduced to computing all answer sets of dl-programs and solving linear optimiza-
tion problems, and to computing the well-founded semantics of dl-programs, respectively.
We have also shown that the answer set semantics of pdl-programs is a refinement of the
well-founded semantics of pdl-programs. Moreover, we have considered the special case of
stratified pdl-programs. In particular, we have presented an algorithm for query process-
ing in such pdl-programs, which is based on a reduction to computing the canonical model
of stratified dl-programs.

An interesting topic of future research is to further enhance pdl-programs towards a
possible use for Web Services. This may be done by exploiting and generalizing further
features of Poole’s ICL for dynamic and multi-agent systems [35]. It would also be inter-
esting to further explore the computational aspects of query processing in pdl-programs
under the stratified, answer set, and well-founded semantics.
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