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1. Introduction

If a complex function f (z) is holomorphic (analytic) in the annular domain (0 � R1 < |z| < R2 � ∞), then the function f
can be expanded into a unique Laurent series

f (z) =
+∞∑
−∞

anzn.

Restricted in |z| = 1, {zn} become the orthonormal basis of the compact group {eiθ | 0 � θ � 2π}. In hypercomplex func-
tion theory, including quaternionic analysis and Clifford analysis, the above facts have their high-dimensional analogues [2].
It is the fact that quaternionic analytic functions exist orthonormal basis helps us to calculate the Cauchy–Szegö kernel
in the quaternionic Heisenberg type group [3]. In order to get the Cauchy–Szegö kernel in the octonionic Heisenberg type
group, we need the existence of orthonormal basis for the octonionic analytic functions. But, because of the non-associativity
of octonions, the existence of octonionic orthonormal basis is still keeping in open.

In this paper, by confirming a conjecture proposed in [1], we obtain the orthonormal basis for the octonionic analytic
function. As an application, we give the explicit formulas to calculate the coefficients in the octonionic Laurent series ob-
tained in [4].

2. Preliminaries

As we know, there are only four normed division algebras [5–7]: the real numbers R, complex numbers C, quaternions H

and octonions O, with the relations R ⊆ C ⊆ H ⊆ O. In other words, for any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n , if we

define a product “xy” such that xy ∈ R
n and |xy| = |x||y|, where |x| =

√∑n
1 x2

i , then the only four values of n are 1,2,4,8.
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Quaternions H is not commutative and octonions O is neither commutative nor associative. Unlike R, C and H, the
non-associative octonions cannot be embedded into the associative Clifford algebras. Let e0, e1, . . . , e7 be the basis of O and
denote the set W by

W = {
(1,2,3), (1,4,5), (2,4,6), (3,4,7), (2,5,7), (6,1,7), (5,3,6)

}
,

the multiplication rules between the basis are given as follows [7,8]:

e2
0 = e0, eie0 = e0ei = ei, e2

i = −1, i = 1,2, . . . ,7,

and for any triple (α,β,γ ) ∈ W ,

eαeβ = eγ = −eβeα, eβeγ = eα = −eγ eβ, eγ eα = eβ = −eαeγ .

For each x = ∑7
0 xiei ∈ O (xi ∈ R, i = 0,1, . . . ,7), Sc x = x0 is called the scalar part of x and x = ∑7

1 xiei is termed its

vector part. The norm of x is |x| = (
∑7

0 x2
i )

1
2 and its conjugate is defined by x̄ = ∑7

0 xi ēi = x0 − x. We have xx̄ = x̄x = ∑7
0 x2

i ,

xy = ȳx̄ (x, y ∈ O), x−1 = x̄
|x|2 (x �= 0).

Let x = ∑7
0 xiei = x0 + x, y = ∑7

0 yiei = y0 + y (xi, yi ∈ R, i = 0,1, . . . ,7), then

xy = x0 y0 − x · y + x0 y + y0x + x × y,

where x · y := ∑7
1 xi yi is the inner product of vectors x, y and

x × y := e1(A2 3 + A4 5 − A6 7) + e2(−A1 3 + A4 6 + A5 7) + e3(A1 2 + A4 7 − A5 6) + e4(−A1 5 − A2 6 − A3 7)

+ e5(A1 4 − A2 7 + A3 6) + e6(A1 7 + A2 4 − A3 5) + e7(−A1 6 + A2 5 + A3 4),

Aij = det

(
xi x j

yi y j

)
, i, j = 1,2, . . . ,7.

For any x, y ∈ O, we have (see [9]):

(x × y ) · x = 0, (x × y ) · y = 0, x ‖ y ⇐⇒ x × y = 0, x × y = −y × x.

For any x, y, z ∈ O, the associator [x, y, z] is defined by [x,y, z] = (xy)z − x(yz). Octonions obey some weakened asso-
ciative laws, including the so-called Moufang identities [5,6]: for any x, y, z, u, v ∈ O,

[x, y, z] = [y, z, x] = [z, x, y], [x, y, z] = −[y, x, z], [x, x, y] = [x̄, x, y] = 0,

(uvu)x = u
(

v(ux)
)
, x(uvu) = (

(xu)v
)
u, u(xy)u = (ux)(uy).

Proposition 2.1. (See [8].) For any i, j,k ∈ {0,1, . . . ,7}, we have

[ei, e j, ek] = 0 ⇐⇒ i jk = 0, or (i − j)( j − k)(k − i) = 0, or (eie j)ek = ±1.

Proposition 2.2. (See [8].) Let ei, e j, ek be three different elements of {e1, e2, . . . , e7}, (eie j)ek �= ±1. Then (eie j)ek = −ei(e jek).

Proposition 2.3. Let x1, x2, . . . , xn ∈ O, (l1, . . . , lk) be k elements out of {1, . . . ,n}, repetitions being allowed. Let (xl1 xl2 · · · xlk )⊗k be
the product of k octonions in a fixed associative order ⊗k. Then

∑
π(l1,...,lk)

(xl1 xl2 · · · xlk )⊗k is independent of the associative order ⊗k,
where the sum runs over all distinguishable permutations of (l1, . . . , lk).

Proof. To see this, notice that for any associative order ⊗k , the sum∑
π(l1,...,lk)

(xl1 xl2 · · · xlk )⊗k

is just the coefficient of (s1!s2! · · · sn!)λ1λ2 · · ·λk in the expression (xx · · · x)⊗k , where x = ∑k
i=1 λi xli , and si is the appearing

times of i in (l1, . . . , lk), 1 � i � n. The result follows by the power-associativity of octonions (see [10,11]). �
Let Ω be an open set in R

8. A function f in C1(Ω,O) is said to be left (right) O-analytic function in Ω when

D f =
7∑

i=0

ei
∂ f

∂xi
= 0

(
f D =

7∑
i=0

∂ f

∂xi
ei = 0

)
,

where the Dirac D-operator and its adjoint D are the first-order systems of differential operators in C1(Ω,O) defined by
D = ∑7

0 ei
∂ , D = ∑7

0 ēi
∂ .
∂xi ∂xi
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If f is a simultaneously left and right O-analytic function, then f is called an O-analytic function. If f is a left (right)
O-analytic function in R

8, then f is called a left (right) O-entire function. Since D D = D D = 
8 = ∑7
0

∂2

∂x2
i

, the real-valued

components of any left (right) O-analytic function are always harmonic.
μ = (μ0,μ1, . . . ,μn) is called a Stein–Weiss conjugate harmonic system if they satisfy the following equations [12]:

n∑
i=0

∂μi

∂xi
= 0,

∂μi

∂x j
= ∂μ j

∂xi
, 0 � i < j � n.

It is easy to see that if F (x0, x1, . . . , x7) = ( f0, f1, . . . , f7) is a Stein–Weiss conjugate harmonic system in an open set Ω

of R
8, then there exists a real-valued harmonic function Φ in Ω such that F is the gradient of Φ . Thus F = f0e0 − f1e1 −· · ·

− f7e7 = DΦ is an O-analytic function. But inversely, this is not true [13].

Proposition 2.4. (See [8].) If f is left (right) O-analytic in an open set Ω ⊂ R
8 and vanishes in the open set E ⊂ Ω ∩ {x0 = a0} �= ∅,

then f is identically zero in Ω .

For any (l1, . . . , lk) ∈ {1,2, . . . ,7}k , the polynomials Vl1···lk of order k are defined by

Vl1···lk (x) = 1

k!
∑

π(l1,...,lk)

(· · · ((zl1 zl2)zl3

) · · ·)zlk ,

where the sum runs over all distinguishable permutations of (l1, . . . , lk) and zl j = xl j e0 − x0el j , j = 1, . . . ,k. Vl1···lk are called

the inner spherical analytic functions of order k [1], note that the polynomials Vl1···lk ’s are the suitable substitutions of zk ’s
in complex analysis. For more references about octonions and octonionic analysis, we refer the reader to [1,4,8,13–15].

3. Proof of a conjecture

In [1], the authors proved that the polynomials Vl1···lk (x) are all O-analytic functions, and proposed the following con-
jecture:

Let (l1, . . . , lk) ∈ {1,2, . . . ,7}k and (s1, . . . , st) ∈ {1,2, . . . ,7}t . M ∈ M8(R
8) (by M8(Ω) we mean a set that consisting

of M , where M is an 8-dimensional compact and oriented differentiable manifold with boundary ∂M contained in some
open subset Ω of R

8), for each x ∈ ∂M , let n(x) = ∑7
0 n je j be the outer unit normal to ∂M at x, dSx is the scalar element

of surface area on ∂M , and dσ = n dS . Then∫
∂M

(Vl1···lk dσ)V s1···st =
∫

∂M

Vl1···lk (dσ V s1···st ) = 0. (3.1)

Now, we prepare to confirm this conjecture by proving the following theorems.

Theorem 3.1. Let Ω be an open set of R
8 and M ∈ M8(Ω).

(i) If f is a right O-analytic function in Ω and g is a Stein–Weiss conjugate harmonic system in Ω , then
∫
∂M( f dσ)g = 0;

(ii) If g is a left O-analytic function in Ω and f is a Stein–Weiss conjugate harmonic system in Ω , then
∫
∂M f (dσ g) = 0.

Proof. Let f = ∑7
0 ei f i , dσ = ∑7

0(−1) je j d x̂ j and g = ∑7
0 ek gk . Then by Stokes’s Theorem we have∫

∂M

( f dσ)g =
∫

∂M

(
7∑

i=0

ei f i

7∑
j=0

(−1) je j d x̂ j

)(
7∑

k=0

ek gk

)

=
∫

∂M

7∑
i, j,k=0

(−1) j(eie j)ek fi gk d x̂ j

=
∫
M

7∑
i, j,k=0

(eie j)ek
∂

∂x j
( f i gk)dx

=
∫ 7∑

i, j,k=0

(eie j)ek

(
∂ f i

∂x j
gk + f i

∂ gk

∂x j

)
dx
M
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=
∫
M

7∑
i, j,k=0

(eie j)ek
∂ f i

∂x j
gk dx +

∫
M

7∑
i, j,k=0

(
ei(e jek) + [ei, e j, ek]

)
f i

∂ gk

∂x j
dx

=
∫
M

( f D)g dx +
∫
M

f (Dg)dx +
∫
M

7∑
j,k=0

[ f , e j, ek]∂ gk

∂x j
dx. (3.2)

If f is a right O-analytic function and g is a Stein–Weiss conjugate harmonic system in Ω , then f D = 0, Dg = 0. Thus
(3.2) leads to∫

∂M

( f dσ)g =
∫
M

7∑
j,k=0

[ f , e j, ek]∂ gk

∂x j
dx.

In view of Proposition 2.1, we have [ f , e j, ek] = 0 when j = 0 or k = 0 or j = k. Note that [ f , ek, e j] = −[ f , e j, ek]
(1 � j �= k � 7) and

∂ g j

∂xk
= ∂ gk

∂x j
, j,k = 1,2, . . . ,7,

we have∫
∂M

( f dσ)g =
∫
M

7∑
j,k=1
j �=k

[ f , e j, ek]∂ gk

∂x j
dx

=
∫
M

∑
1� j<k�7

(
[ f , e j, ek]∂ gk

∂x j
+ [ f , ek, e j]∂ g j

∂xk

)
dx

=
∫
M

∑
1� j<k�7

[ f , e j, ek]
(

∂ gk

∂x j
− ∂ g j

∂xk

)
dx = 0.

The proof of (ii) is similar to (i). �
Theorem 3.2. Let Ω be an open set in R

8 and f ∈ C1(Ω,O). Then∫
∂M

(λdσ) f = 0

( ∫
∂M

f (dσ λ) = 0

)

for any M ∈ M8(Ω) and any constant λ ∈ O if and only if f is a Stein–Weiss conjugate harmonic system in Ω .

Remark. This theorem shows the conditions in Theorem 3.1 are reasonable.

Lemma 3.3. (See [16].) Let Ω be an open set in R
8 and f ∈ C1(Ω,O). Then f λ (λ f ) is a left (right) O-analytic function for any λ ∈ O

if and only if f is a Stein–Weiss conjugate harmonic system.

Lemma 3.4 (Morera type). Let Ω be an open set in R
8 and f ∈ C1(Ω,O). Then for any M ∈ M8(Ω),∫

∂M

dσ f = 0

( ∫
∂M

f dσ = 0

)
,

if and only if f is a left (right) O-analytic function in Ω .

Proof. We only prove the necessity. If there exists a point x0 ∈ Ω such that D f (x0) �= 0, we assume without loss of gener-
ality that Sc(D f (x0)) > 0. Then there exists M0 ∈ M8(Ω) such that Sc(D f (x)) > 0 for any x ∈ M0, thus we have

Sc

( ∫
∂M0

dσx f (x)

)
=

∫
M0

Sc
(

D f (x)
)

dx > 0.

This is a contradiction. �
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Proof of Theorem 3.2. By Theorem 3.1, the sufficiency is obvious. Inversely, we take λ = 1 in
∫
∂M(λdσ) f , and M is arbitrarily,

Lemma 3.4 gives D f = 0. Combining this with (3.2), for any constant λ and for any M ∈ M8(Ω), we have∫
∂M

(λdσ) f =
∫
M

7∑
j,k=0

[λ, e j, ek]∂ fk

∂x j
dx =

∫
M

7∑
j,k=0

(
(e jek)λ − e j(ekλ)

)∂ fk

∂x j
dx

=
∫
M

(
(D f )λ − D( f λ)

)
dx = −

∫
M

D( f λ)dx = 0.

Hence D( f λ) = 0 in Ω for any constant λ and then Lemma 3.3 shows that f is a Stein–Weiss conjugate harmonic sys-
tem. �
Theorem 3.5. All the V l1···lk (x) are Stein–Weiss conjugate harmonic systems in R

8 .

Proof. We claim that

Vl1···lk (x) = 1

s!
[ k

2 ]∑
n=0

(−1)n D

(
x2n+1

0

(2n + 1)!

n
7xs1

1 · · · xs7
7

)
, (3.3)

where si (i = 1,2, . . . ,7) is the appearing times of i in (l1, · · · , lk), s! = s1!s2! · · · s7! and 
7 = ∂2

∂x2
1

+ ∂2

∂x2
2

+ · · · + ∂2

∂x2
7

is the

Laplace operator in R
7.

Indeed, let x0 = 0, then the both sides of (3.3) equal to 1
s! xs1

1 · · · xs7
7 . Also,

D

(
1

s!
[ k

2 ]∑
n=0

(−1)n D

(
x2n+1

0

(2n + 1)!

n
7xs1

1 · · · xs7
7

))

= 1

s!
[ k

2 ]∑
n=0

(−1)n
8

(
x2n+1

0

(2n + 1)!

n
7xs1

1 · · · xs7
7

)

= 1

s!
[ k

2 ]∑
n=1

(−1)n x2n−1
0

(2n − 1)!

n
7xs1

1 · · · xs7
7 + 1

s!
[ k

2 ]−1∑
n=0

(−1)n x2n+1
0

(2n + 1)!

n+1
7 xs1

1 · · · xs7
7

= 0.

Since all the Vl1···lk (x) are O-analytic functions in R
8 [1], by Proposition 2.4 we have (3.3).

Equality (3.3) shows that V l1···lk (x) is just the gradient of real-valued harmonic function

1

s!
[ k

2 ]∑
n=0

(−1)n x2n+1
0

(2n + 1)!

n
7xs1

1 · · · xs7
7 ,

hence all the polynomials V l1...lk (x) are Stein–Weiss conjugate harmonic systems in R
8. �

Remarks.

(1) Combining Theorems 3.1 and 3.5 we confirm the conjecture.
(2) In the case of associative algebras, such as quaternion and Clifford algebra, the proofs of the conjecture and Theorem 3.1

are all trivial. In fact (see [2]), there only requires that f (x) is a right Clifford monogenic function and g(x) is a left
Clifford monogenic function in an open subset Ω of R

m+1, then
∫
∂M f dσ g = 0 for any M ∈ Mm+1(Ω). We also notice

that the set of left (right) Clifford monogenic functions is a right (left) Clifford module. But in the octonionic case, this
is not true, and Lemma 3.3 is a substitute for that.

4. Orthogonality of the octonionic analytic functions

For any (l1, . . . , lk) ∈ {1,2, . . . ,7}k , the outer spherical analytic functions of order k are defined by

Wl1···lk (x) = (−1)k∂xl1
· · · ∂xlk

E(x),

where E(x) = 1 x̄
8 and ω8 = π4

is the area of unit sphere S7 in R
8.
ω8 |x| 3
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Now, we study the orthogonality relations of the polynomials Vl1···lk (x) and Wl1···lk (x). It is easy to see that E is a Stein–
Weiss conjugate harmonic system in R

8
0 = R

8 \{0}. Hence, all the W l1···lk are Stein–Weiss conjugate harmonic systems in R
8
0.

In the rest of this section we suppose M ∈ M8(R
8) and 0 ∈ M̊ .

Theorem 4.1. Let (l1, . . . , lk) ∈ {1,2, . . . ,7}k and (s1, . . . , st) ∈ {1,2, . . . ,7}t . Then∫
∂M

(Wl1···lk dσ)W s1···st =
∫

∂M

Wl1···lk (dσ W s1···st ) = 0.

Proof. Choose a sufficiently large R such that M ⊂ B(0, R). Since all the W l1···lk are Stein–Weiss conjugate harmonic systems
in B(0, R) \ M̊ , from Theorem 3.1 it follows that∫

∂ B(0,R)+∂M−

(
Wl1···lk (x)dσx

)
W s1···st (x) = 0.

We thus get∫
∂M

(
Wl1···lk (x)dσx

)
W s1···st (x) = lim

R→∞

∫
∂ B(0,R)

(
Wl1···lk (x)dσx

)
W s1···st (x)

= lim
R→∞

∫
S7

R−(k+7)
(
Wl1···lk (ω)R7 dσω

)
R−(t+7)W s1···st (ω)

= lim
R→∞

1

Rk+t+7

∫
S7

(
Wl1···lk (ω)dσω

)
W s1···st (ω) = 0.

Similarly, we have
∫
∂M Wl1···lk (dσ W s1···st ) = 0. �

Theorem 4.2 (Orthogonality). Let (l1, . . . , lk) and (s1, . . . , st) be as above. Denote

J1 =
∫

∂M

(Vl1···lk dσ)W s1···st ,

J2 =
∫

∂M

Vl1···lk (dσ W s1···st ),

J3 =
∫

∂M

(W s1···st dσ)Vl1···lk ,

J4 =
∫

∂M

W s1···st (dσ Vl1···lk ).

Then for i = 1,2,3,4, we have

Ji = δ
s1...st
l1...lk

=
{

1, if (l1, . . . , lk) = (s1, . . . , st);
0, otherwise.

(4.1)

Proof. The starting point is the known series expansion for the potential (see [17])

1

|y − x|6 =
∞∑

t=0

(−1)t

t! 〈x,∇y〉t 1

|y|6 , (4.2)

which converges, together with all possible series of derivatives, normally in |x| < R < |y| for each R > 0. Since |y|−6 is
the fundamental solution of the Laplacian 
8, each of the terms in (4.2) is a spherical harmonic in x, and is harmonic in
y ∈ R

8
0. The action of the operator Dx on (4.2) leads to the following expansion of the Cauchy kernel in |x| < R < |y| for

each R > 0:

E(y − x) =
∞∑(

(−1)t

t!
7∑

· · ·
7∑

xs1 · · · xst ∂ys1
· · · ∂yst

E(y)

)
. (4.3)
t=0 s1=0 st=0
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Denote

Et,y(x) = (−1)t

t!
7∑

s1=0

· · ·
7∑

st=0

xs1 · · · xst ∂ys1
· · · ∂yst

E(y),

then Et,y(x) is a Stein–Weiss conjugate harmonic system of order t in |x| < |y|.
Since Vl1···lk (x) is an O-analytic function in R

8, by Cauchy’s Integral Formula (see [14]) we have

Vl1···lk (x) =
∫
S7

E(ω − x)
(
dσωVl1···lk (ω)

)
for all x ∈ B̊(0,1).

Combing this with (4.3) we obtain

Vl1···lk (x) =
∞∑

t=0

∫
S7

Et,ω(x)
(
dσωVl1···lk (ω)

)
,

which converges normally in x ∈ B̊(0,1).
But Et,ω(x) is a Stein–Weiss conjugate harmonic system in |x| < 1, by Lemma 3.3 it follows that∫

S7

Et,ω(x)
(
dσωVl1···lk (ω)

)
, (4.4)

is a left O-analytic function in B̊(0,1), so (4.4) has the following Taylor expansion in |x| < 1 (see [1, Lemma 2]):∫
S7

Et,ω(x)
(
dσωVl1···lk (ω)

) =
∑

(s1,...,st )

V s1···st (x)

∫
S7

W s1···st (ω)
(
dσωVl1···lk (ω)

)
,

where (s1, . . . , st) runs over all possible combinations of t elements out of {1, . . . ,7}, repetitions being allowed.
Thus we have

Vl1···lk (x) =
∞∑

t=0

∑
(s1,...,st )

V s1···st (x)

∫
S7

W s1···st (ω)
(
dσωVl1···lk (ω)

)
.

By the uniqueness of the Taylor expansion of Vl1···lk (x) we have∫
S7

W s1···st (ω)
(
dσωVl1···lk (ω)

) =
{

1, if (l1, . . . , lk) = (s1, . . . , st);
0, otherwise.

(4.5)

In the following, we will show that J4 has another expression. By definition we have

W s1···st (x) = (−1)t

ω8
∂xs1

· · · ∂xst

x̄

|x|8

= (−1)t+1

6ω8
D

(
∂xs1

· · · ∂xst

1

|x|6
)

= D

(
Hs1···st (x)

|x|2t+6

)
,

where gs1···st (x) = |x|−2t−6 Hs1···st (x) is a real-valued homogeneous harmonic function of order −(t + 6) in R
8
0. Now


8 gs1···st (x) = 
8 Hs1···st (x)

|x|2t+6
, x ∈ R

8
0,

which means that Hs1···st (x) is a real-valued spherical harmonic of order t . Furthermore

W s1···st (x) = 1

|x|2t+8

(|x|2 D Hs1···st (x) − (2t + 6)x̄Hs1···st (x)
)
,

by Theorem 3.1 we have
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J4 =
∫

∂M

W s1···st (dσ Vl1···lk )

=
∫
S7

W s1···st (ω)
(
dσωVl1···lk (ω)

)
=

∫
S7

(
D Hs1···st (ω) − (2t + 6)ω̄Hs1···st (ω)

)(
dσωVl1···lk (ω)

)
=

∫
S7

D Hs1···st (ω)
(
dσωVl1···lk (ω)

) − (2t + 6)

∫
S7

ω̄Hs1···st (ω)
(
dσωVl1···lk (ω)

)
= −(2t + 6)

∫
S7

ω̄Hs1···st (ω)
(
ωdSωVl1···lk (ω)

)
= −(2t + 6)

∫
S7

(ω̄ω)Hs1···st (ω)Vl1···lk (ω)dSω

= −(2t + 6)

∫
S7

Hs1···st (ω)Vl1···lk (ω)dSω. (4.6)

The fifth and sixth steps in (4.6) hold is due to D Hs1···st (x) is a Stein–Weiss conjugate harmonic system in R
8 and the

properties of associator, respectively.
A similar deduction yields

J1 = J2 = J3 = −(2t + 6)

∫
S7

Hs1···st (ω)Vl1···lk (ω)dSω = J4.

Combining this with (4.5) we have (4.1). �
5. Application

Let f (x) be left O-analytic in the annular domain D = B̊(0, R2) \ B̄(0, R1) (0 � R1 < R2). Then the function f may be
expanded into a unique Laurent series in D [4]:

f (x) =
∞∑

k=0

Pk f (x) +
∞∑

k=0

Q k f (x),

where

Pk f (x) =
∑

(l1,...,lk)

Vl1···lk (x)λl1···lk (5.1)

and

Q k f (x) =
∑

(l1,...,lk)

Wl1···lk (x)μl1···lk . (5.2)

But the representations of coefficients in (5.1) and (5.2) are not satisfying, because the authors did not determine the
analyticity of Q k f (x) = ∑

(l1,...,lk)
Wl1···lk (x)μl1···lk .

Since W l1···lk (x) is a Stein–Weiss conjugate harmonic system in R
8
0, by Lemma 3.3, we now conclude that Q k f (x) is a

left O-analytic function in R
8
0 for each k ∈ N. Furthermore, by using our new results, we can determine the coefficients in

the Laurent series.

Theorem 5.1. The coefficients in (5.1) and (5.2) are given by

λl1···lk =
∫

∂ B(0,R)

Wl1···lk (y)
(
dσy f (y)

)
(5.3)

and
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μl1···lk =
∫

∂ B(0,R)

Vl1···lk (y)
(
dσy f (y)

)
, (5.4)

respectively, where the radius R being arbitrary chosen in (R1, R2).

Proof. Let (s1, . . . , st) ∈ {1,2, . . . ,7}t . Since f (x) is left O-analytic in D , the integral∫
∂ B(0,R)

W s1···st (y)
(
dσy f (y)

)
exists for any R1 < R < R2. Thus we have∫

∂ B(0,R)

W s1···st (y)
(
dσy f (y)

) =
∫

∂ B(0,R)

W s1···st (y)

(
dσy

( ∞∑
k=0

Pk f (x) +
∞∑

k=0

Q k f (x)

))

=
∞∑

k=0

∑
(l1,...,lk)

∫
∂ B(0,R)

W s1···st (y)
(
dσy

(
Vl1···lk (y)λl1···lk

))

+
∞∑

k=0

∑
(l1,...,lk)

∫
∂ B(0,R)

W s1···st (y)
(
dσy

(
Wl1···lk (y)μl1···lk

))
. (5.5)

Note that Vl1···lk (y)λl1···lk is a left O-analytic function in R
8, a similar technique as (4.6) yields∫

∂ B(0,R)

W s1···st (y)
(
dσy

(
Vl1···lk (y)λl1···lk

)) = −(2t + 6)

∫
S7

Hs1···st (ω)Vl1···lk (ω)dSωλl1···lk .

Combining this with (4.6) and Theorem 4.2 we have∫
∂ B(0,R)

W s1···st (y)
(
dσy

(
Vl1···lk (y)λl1···lk

)) = λl1···lkδ
s1...st
l1...lk

. (5.6)

From Theorem 3.1 it follows that∫
∂ B(0,R)

W s1···st (y)
(
dσy

(
Wl1···lk (y)μl1···lk

)) = lim
R→∞

∫
∂ B(0,R)

W s1···st (y)
(
dσy

(
Wl1···lk (y)μl1···lk

))
= lim

R→∞
1

Rk+t+7

∫
S7

W s1···st (ω)
(
dσω

(
Wl1···lk (ω)μl1···lk

))
= 0. (5.7)

Combine (5.5), (5.6) and (5.7) we get (5.3). Similarly, we can get (5.4). �
Remarks.

(1) According to the Laurent series [4], together with Theorems 4.2 and 5.1, we conclude that the set {W s1···st , Vl1···lk }
becomes an orthonormal basis for the left (right) octonionic analytic functions, where (l1, . . . , lk) ∈ {1,2, . . . ,7}k and
(s1, . . . , st) ∈ {1,2, . . . ,7}t .

(2) Recently, by using some spherical harmonic functions, quite deferent with us, S. Bock and K. Gürlebeck construct a mu-
tually orthogonal complete system in L2(S,R). We refer the reader to [18].

Acknowledgments

The authors would like to express their gratitude to the referee for the useful remarks.

References

[1] X.M. Li, L.Z. Peng, Taylor series and orthogonality of the octonion analytic functions, Acta Math. Sci. 21 (2001) 323–330.
[2] F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Pitman Advanced Publishing Program, London, 1982.
[3] J.X. Wang, X.M. Li, Heisenberg type group, Hardy space H p(Un) and the Cauchy–Szegö kernel on hypercomplex system, preprint.



344 J. Liao et al. / J. Math. Anal. Appl. 366 (2010) 335–344
[4] X.M. Li, K. Zhao, L.Z. Peng, The Laurent series on the octonions, Adv. Appl. Clifford Algebr. 11 (S2) (2001) 205–217.
[5] N. Jacobson, Basic Algebra, W.H. Freeman and Company, New York, 1985.
[6] J.C. Baez, The octonions, Bull. Amer. Math. Soc. 39 (2002) 145–205.
[7] J.C. Baez, On quaternions and octonions: Their geometry, arithmetic, and symmetry, Bull. Amer. Math. Soc. 42 (2005) 229–243.
[8] X.M. Li, Octonion analysis, PhD thesis, Peking University, Beijing, 1998.
[9] L.Z. Peng, L. Yang, The curl in 7-dimensional space and its applications, Approx. Theory Appl. 15 (1999) 66–80.

[10] E. Artin, Geometric Algebra, Interscience Publishers, New York, 1957, reprinted by John Wiley & Sons, New York, 1988.
[11] D.S. Richard, Introduction to Non-Associative Algebras, Dover, New York, 1995.
[12] E.M. Stein, G. Weiss, On the theory of harmonic functions of several variables, I. The theory of H p spaces, Acta Math. 103 (1960) 26–62.
[13] X.M. Li, L.Z. Peng, On Stein–Weiss conjugate harmonic function and octonion analytic function, Approx. Theory Appl. 16 (2000) 28–36.
[14] X.M. Li, L.Z. Peng, The Cauchy integral formulas on the octonions, Bull. Belg. Math. Soc. Simon Stevin 9 (2002) 47–64.
[15] X.M. Li, L.Z. Peng, T. Qian, Cauchy integrals on Lipschitz surfaces in octonionic spaces, J. Math. Anal. Appl. 343 (2008) 763–777.
[16] J.Q. Liao, X.M. Li, The necessary and sufficient condition for [D,ϕ(x), λ] = 0, Acta Math. Sinica, 6 (2009), in press.
[17] C. Müller, Spherical Harmonic, Lecture Notes in Math., vol. 17, Springer-Verlag, Berlin, 1966.
[18] S. Bock, K. Gürlebeck, On a polynomial basis generated from the generalized Kolosov–Muskhelishvili formulae, Adv. Appl. Clifford Algebr. 19 (2009)

191–209.


	Orthonormal basis of the octonionic analytic functions
	Introduction
	Preliminaries
	Proof of a conjecture
	Orthogonality of the octonionic analytic functions
	Application
	Acknowledgments
	References


