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Abstract

In the context of a rolling mill case study, this paper presents a methodical framework based on data mining for predicting the 
physical quality of intermediate products in interlinked manufacturing processes. In the first part, implemented data preprocessing
and feature extraction components of the Inline Quality Prediction System are introduced. The second part shows how the
combination of supervised and unsupervised data mining methods can be applied to identify most striking operational patterns, 
promising quality-related features and production parameters. The results indicate how sustainable and energy-efficient interlinked 
manufacturing processes can be achieved by the application of data mining.
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1. Introduction

Steel industry production is characterized by highly
resource-consuming, complex and automated interlinked 
manufacturing processes. Technological and temporal 
restrictions limit physical product quality inspections to 
the final process step. Hence, undetected quality
deviations passing through the entire value chain have 
severe impact on internal failure costs due to increasing 
rejection and reworking.

In this respect, recently Alwood and Cullen [1]
presented remarkable research results summarizing that
in 2008 60% (334 million tons) of world-wide re-melted 
steel scrap (574 mill. tons) never reached final products
but was scrapped in advance. In contrast to 30% (98
mill. tons) accruing from steelmaking and casting 
processes, 70% (236 mill. tons) of production-related
scrap can be associated with waste products resulting at
later stages due to offcuts, surplus and defects.

New solutions for continuous quality monitoring are
therefore needed and investigated in the context of a hot 
rolling mill case study, provided by a leading German
steel company (see Fig. 1). In this context, nowadays

internal material defects cannot be monitored by external
state-of-ff the-art sensors. Therefore, the goal is to identify
quality deviations as early as possible and in real-time
by data mining on distributed sensor measurements
along the process chain. More specifically, since final 
product quality depends on how it was processed,
value series of sensor measurements recorded at each
processing step might contain quality-related patterns.
Given also quality labels generated from ultrasonic tests,
supervised learning may derive prediction models which
can predict the quality related physical properties of a 

Fig. 1. Hot rolling mill process chain and recorded series data [5]
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product already at intermediate production steps. Early 
detection of defects will save production resources and
lead to more sustainable and energy-efficient interlinked
manufacturing processes.

Previous publications have discussed the general
challenges of distributed data mining on sensor data of 
interlinked processes [2] and the problem of deriving
appropriate quality labels [a 3, 4]. Moreover, in [5] the
implementation of a data acquisition and storage system
was described and first prediction results on data
recorded at the rotary hearth furnace were presented. 

As now value series data from all processing units is
available, there are three key contributions of this paper:

First, an approach for automatically preprocessing
value series data, extracting features and compiling
them into a table format which is suitable for many
supervised and unsupervised data mining algorithms
is presented.
Second, it is shown that by combining supervised and
unsupervised data mining methods striking patterns in 
rolling mill process data can be identified, e.g.
operational modes.
Third, first results on predicting the final quality of 
steel bars and a selection of promising features for 
quality prediction are presented.
The remainder of this paper is arranged as follows: In

the next section, related work regarding the state of the
art of data mining in manufacturing is presented. Section 
3 gives a general overview of the Inline Quality
Prediction (IQP) System realized as automated processes 
in the open source data mining software RapidMiner [6]. 
Subsequently, section 4 introduces implemented system 
components focusing on data preprocessing and feature
extraction. Followed by an overview of data mining
tasks and algorithms in section 5, section 6 provides 
results of several analysis steps conducted on the
preprocessed data. Finally, we conclude and discuss
forthcoming work in section 7.

2. Data Mining in Manufacturing Processes

Literature reviews such as Choudhary et al. [7]
illustrate the diversity of data mining techniques used in 
industrial manufacturing applications, like process
characterization, reporting, fault diagnostics, product 
development, production scheduling as well as
preventive maintenance, defect prediction and decision 
support systems. However, contrary to the increasing 
interest in manufacturing related knowledge discovery
activities, data miner surveys by Rexer Analytics [8] or 
KDnuggets [9] annually show that production related
data mining projects in manufacturing are still 
underrepresented in comparison to more well-
established fields, e.g. consumer-analytics, fraud-
detection or banking.

Focusing particularly on the steel industry, related
work can be found by Peters et al. [10] who are
conducting research on data mining techniques with
focus on cause analyses, e.g. surface defects of flat steel 
products. In contrast to Peters et al., the intention of the 
project presented in this paper is to develop universal
distributed data mining techniques for real-time inline
quality prediction focusing on detecting internal material
defects that nowadays cannot be monitored by external
state-of-ff the-art sensors.

3. Inline Quality Prediction (IQP) System

A final goal of the hot rolling mill case study is the
design of a distributed Inline Quality Prediction (IQP)
system that integrates and automates all necessary data
mining steps, analyzing and classifying process patterns 
in real-time. Fig. 2 shows common data mining steps
that are defined and summarized in the Cross Industry
Standard Process for Data Mining (CRISP-DM) [11] and 
the widespread methodology of Knowledge Discovery in 
Databases (KDD) [12].

While the mining problem and the data acquisition
component of the system were already discussed in
previous work, the next section describes the general
design of components for preprocessing and extracting
features from value series, transforming them into a 
format that is suitable for many well-known data mining 
algorithms. The modular design is easily extensible and 
has been implemented as automated processes in 
RapidMiner. Future goals are already respected, like the
distributed deployment of all preprocessing and feature
extraction processes across real production units.

4. Data Preprocessing

Different types of sensor measurements like rolling
force, speed and temperature (see Fig. 1) are transmitted
in separate signal channels. For each steel bar, the value
series of all recorded channels must be individually
preprocessed. Fig. 3 shows the general steps for
preprocessing on the upper right.
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The steps are realized as a master process that 
executes different types of sub-processes (global and 
local cleansing, global and local feature extractions, etc.) 
for each bar and signal channel. These automatically call 
more generic procedures for preprocessing, like filtering, 
outlier cleansing or normalization (Table 1). These 
procedures can be reused by different processes of the 
system, providing specific parameters like thresholds 
depending on the particular channel. 

Table 1. Excerpt of available preprocessing procedures  

Generic Preprocessing Procedures  

Outlier smoothing based on thresholds 
Data cleansing by filtering 
Rounding 
Normalization 
Segmentation 

 
Fig. 3 shows an example series consisting of rolling 

force measurements, recorded during the processing of a 
single steel bar. Global cleansing involves removing 
irrelevant values where the steel bar was not processed. 
Since the sensors measure continuously, such intervals 
would be hard to detect by an automated process without 
knowledge about the domain.  

The cleansing therefore relies on the meaning of 
values in other channels. For instance, a roll position 
above a certain threshold indicates no processing, 
allowing to remove values from the same interval in 
other channels. Similarly, the segmentation of series into 
meaningful intervals, like individual rolling steps, is 
easy visually, but sometimes hard to automate. Although 
methods for the automatic segmentation exist [13], it is 

much more reliable and faster to count rolling steps with 
a sensor and use that information for the splitting. 

Table 2. Excerpt of available feature extraction procedures  

Feature Extraction Procedures 

Time-related statistics (length of the series or of segments)  
Value statistics (min./max. values, sum, mean, median, std.deviation) 
Statistics on differences between following values (min., max., etc.) 
Statistics on differences between start and end values (min., max., etc.) 
Measures for the deviation between target and actual values 
Frequency statistics and counts (histograms, number of segments) 
 

Global features (G) are extracted from the whole 
series right after global cleansing, while local features 
(L) are extracted from individual segments after a local 
preprocessing step (LP). Table 2 shows an excerpt of the 
types of features that can be calculated from series 
values. In a postprocessing step (FP), extracted features 
from segments may be aggregated further by the same 
methods. At the end, features extracted from each 
channel for each steel bar are collected in a single data 
table (see the lower part of Fig. 3), together with quality 

OK NOK
generated from ultrasonic test records [4]. The resulting 
table, in this case consisting of 470 rows and 2,170 
extracted features, can be analyzed by different data 
mining algorithms introduced in the next section. 

The reasoning behind extracting aggregated statistics 
like the median or standard deviation is that if there were 
quality-related issues already on a large scale, the costly 
extraction of features describing fine-grained differences 
can be avoided. Moreover, knowledge on global patterns 
may support the identification of local ones.  
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5. Modeling 

In the following, an overview of basic data mining 
tasks and algorithms is given and the methods used in 
the experimental section are introduced. 

5.1. Unsupervised Learning and Clustering 

Unsupervised methods, like visualization, clustering, 
outlier detection or dimension reduction are often used 
as a first step in data mining for getting an impression of 
patterns and relationships in complex data sets. 

Clustering algorithms divide a set of observations into 
groups (clusters) such that observations inside clusters 
are more similar to each other than to those in other 
clusters. Thus, clustering can provide a first insight into 
similarity relationships. The feature values that were 
extracted according to section 4 are all numeric and can 
be interpreted as points in a metric space. Given a set 

of  observations represented by data 
points in a p-dimensional Euclidean space, i.e. 

, , the dissimilarity between two 
observations  and can, for instance, be measured by 
the Euclidean distance. 

The k-Means algorithm [14] computes a partitioning 
of   into a user-specified number of  clusters, with the 
goal of minimizing the average Euclidean distance 
between the points in each cluster. Initially, it assigns all 
data points randomly to  clusters. Then, in alternating 
steps, it calculates the mean vector of each cluster and 
(re)assigns each data point to the cluster whose mean is 
closest, until the means do not change anymore. The 
algorithm should be started several times, since it can 
only find a locally optimal clustering. 

The Self Organizing Map (SOM) [15] achieves a 
clustering and a dimensionality reduction by mapping 
input vectors from a higher dimensional continuous 
space to a fixed number of points (neurons) on a lower 
dimensional grid. Since similar input vectors are also 
lying close to each other on the grid, similarity 
relationships between high-dimensional input vectors 
can easily be visualized on a two dimensional map. 

5.2. Supervised Methods and Classification 

Supervised methods are used if some observations 
can already be labeled according to a known target 
concept and a rule or function (also called model) for 
this assignment should be learned from the data. Given 
distinct class labels, the Naïve Bayes [16] classifier 
predicts the class of a given observation  based on the 
prior probability  of the class and , 
the likelihood  of the feature values given the class :   

 

 is a normalization constant and can be ignored for 

classification. The probabilities  and  are 
estimated from the set of labeled observations. Predicted 
is usually the class with the highest estimated 
probability. Although the method assumes the often not 
given independence of features it has achieved sufficient 
prediction accuracy in many practical applications. 

Decision trees [17] classify observations by sorting 
them into axis parallel rectangular regions of the input 
space. The method recursively determines features 
whose values can be used for sorting observations into 
regions that contain as many points of the same class as 
possible. The actual classification is then performed by 
tests on the chosen features and their values, along a 
path from the root to the leaves of the tree. 

The nearest neighbor method (k-NN) [18] stores a set 
of labeled observations. New observations are classified 
by majority vote of the k nearest neighbors. 

The support vector machine (SVM) [19] determines 
the support vectors of a hyperplane which separates the 
observations of two classes with maximum margin. 
Providing a kernel function that measures the similarity 
of observations in a higher dimensional feature space 
allows for a non-linear separation of observations in the 
original input space. 

5.3. Feature Selection 

Often only a subset of features is relevant. In the case 
of distance based methods, noisy or highly correlated 
features can even disturb learning. If the selection of 
features is not already embedded in an algorithm, filter 
or wrapper approaches may be used for automatically 
determining a subset of relevant features [20]. While 
filters select features based on simple criteria, the 
wrapper approach evaluates generated subsets of 
features by training and applying a prediction model. In 
Section 6, an evolutionary wrapper approach is used for 
the selection of subsets. Starting with a population of 
random feature subsets, the algorithm successively 
combines and mutates the fittest individuals over several 
generations and returns the best found subset. 

5.4. Evaluation 

One possible measure for the accuracy of a model is 
the percentage of correctly classified observations. 
Maximizing the accuracy on the training set will usually 
underestimate the true error, which is the expected error 
also on unseen observations. A better estimation is the 
accuracy on an independent hold-out set not shown to 
the learning algorithm. If only few labeled observations 
are available, a standard procedure for estimating the 
accuracy is the n-fold cross-validation [21]. The training 
set is divided randomly into  equally sized subsets and 
each subset is used once as a hold-out set. The total 
accuracy is then the average of the accuracies on these 
hold-out subsets.  
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6. Data Analysis and Results 

For an analysis of the data set described in section 4, 
some of the extracted features are excluded. The block 
roll temperature is removed due to an unreliable sensor. 
Features on individual segments are not included since it 
is unclear how to compare different numbers of rolling 
steps in distance calculations. Therefore, only global and 
aggregated features are kept, resulting in 218 features 
describing each of the 470 processes. 

6.1.  Quality Prediction and Important Features 

The feature vectors of the 470 processes (indicated by 
points) are mapped to different parts of a 40x30 SOM 
(see Fig. 4) for getting a first impression of the data. The 
color of a point represents the final quality (red for 
and blue for of the resulting steel bar. Here, 
quality deviations are known to be porosities related to 
processing in the rolling mill. Processes that are similar 
according to their feature values are lying close to each 
other on the map. The distance between two points is 
additionally weighted as indicated by the shading, where 
lighter shades can be interpreted like hills on a 
geographical map. Dark areas surrounded by very light 
borders therefore indicate separate clusters of similar 
processes. In many cases, processes leading to a low 
final product quality are lying very close to those leading 
to a high quality (see e.g. the zoomed area in Fig. 4). A 
visual inspection of corresponding plots verifies that 
such series look almost identical on a large scale and that 
differences can rather be found in fine-grained details. 

For assessing how well both classes can be separated 
quantitatively, the prediction accuracy of the supervised 
classification methods introduced in section 5 was 
estimated by a 10-fold cross-validation. Parameter 
settings and manually chosen subsets of features were 
varied in the experiments. Since k-NN looked most 
promising, an exhaustive evolutionary feature selection 
with k=7 over 50 generations was conducted and could 
achieve a prediction accuracy of 80.21%. The top 13 
selected features are believed to be quality-relevant by 

domain experts and include the heating time in the 
hearth furnace, rolling force, speed and temperature. 
Because seven of the features regard statistics which 
measure differences within or between rolling steps, 
future work on improving prediction performance should 
focus on a more detailed description of these deviations. 

Another promising result stems from focusing only 
on the correct prediction of high quality steel bars. Even 
though blue and red points are lying close together, the 
SOM in Fig. 4 also contains large continuous areas of 
processes resulting in high quality. If process parameters 
would stay in these ranges, avoiding those with higher 
probability for errors, it might already improve the 
process and reduce the amount of produced scrap metal.  

6.2. Detection of Distinct Operational Modes 

Asking what processes look most similar to each 
other reveals a high similarity between processes 
resulting in the same end dimension. 
Instead of plotting the quality, Fig. 5 shows the different 
end dimensions plotted in different colors on the SOM. 
Here, processes resulting in the same end dimension 
form large clusters, i.e. continuous separated areas of the 
same color. Further, Fig. 6 shows the distribution of end 
dimensions in each of ten clusters as determined by the 
k-Means algorithm. Many of the clusters include only

 Fig. 4. Quality levels of steel bars plotted on a 40x30 SOM  
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one or two end dimensions that are similar. A decision 
tree (see e.g. Fig. 7) trained solely on the features of the 
first finishing roll could decide on the end dimension 
with an accuracy of 90%, while k-NN (k=11) achieved 
about 97%, indicating a high correlation between end 
dimensions and processes. Most important for deciding 

 is the position of the 
roll (channel 501) which makes sense, since it 
determines the height of the end product. Experts have 
verified that the mapping between large scale process 
behavior and the end dimension produced, detected by 
means of automated data mining methods, reflects the 
real modes of operation in the rolling mill.  

7. Conclusion 

Data mining on features of a rolling mill process is 
able to detect meaningful and striking operational 
patterns previously only known to domain experts. The 
result is an improvement on previous work [4] where, 
only based on static features from the rotary hearth 
furnace, no such patterns could be detected. The 
clustering of aggregated sensor measurements now 
allows for a quantitative description of deviations from 
the intended operational modes, enabling e.g. automated 
process monitoring. Moreover, first prediction results 
indicate only a low correlation between modes and the 
quality of the end product, verifying the correctness of 
operation on a large scale. The description of distinct 
modes could further give valuable hints for the detection 
of quality-related patterns that are independent from the 
final product   

An exhaustive evolutionary feature selection indicates 
promising features for quality prediction, including 
heating times in the furnace and deviations of rolling 
force, speed and temperature within and between 
consecutive rolling steps. Future work will show if the 
extraction of more fine-grained deviations can lead to an 
improvement in prediction performance. Moreover, 
focusing only on the correct prediction of high-quality 
steel bars may help with learning a model for more safe 
and reliable process parameter ranges. 
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