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1. Introduction

The theory of n-ary generalizations of Lie algebras has been studied since the late 1960s, begin-

ning with fundamental work by Russian mathematicians; see the survey articles by Kurosh [24] and

Baranovich and Burgin [3]. This theory also appeared naturally and independently in various domains

of theoretical physics. Indeed, the discovery of Nambu mechanics [27] in 1973, as well as the work of

Fillippov [14] in 1985, gave impulse to a significant development of this theory. From a physical point

of view, wemention the work of Takhtajan [30], Michor and Vinogradov [26], de Azcárraga and Pérez-

Bueno [13], Gautheron [17], Vaisman [31], Curtright and Zachos [11], Curtright et al. [10], andAtaguema

et al. [1]. From an algebraic point of view, we mention the work of Kasymov [23], Ling [25], Hanlon

and Wachs [20], Gnedbaye [18], Bremner [5], Filippov [15], Bremner and Hentzel [6], and Pozhidaev

[28]. The latest development in mathematical physics related to n-ary algebras is the influential work
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of Bagger and Lambert [2] and Gustavsson [19], which aims at a world-volume theory of multiple

M2-branes. For a very recent comprehensive survey of this area, referring to both the physical and

mathematical literature, see de Azcárraga and Izquierdo [12].

The main difficulty in this theory is to find a useful generalization of the Jacobi identity. There are

two principal candidates: (1) the derivation identity, which states that the multiplication operators in

the algebra are derivations of the n-ary structure, and (2) the alternating sum identity, which states

that the alternating sum over all possible nested pairs of operations is identically zero. For n = 2 both

of these identities reduce to the familiar Jacobi identity for Lie algebras.

Alternating n-ary algebras which satisfy the derivation identity were called n-Lie algebras by Filip-

pov; adisadvantageof this theory is that forn� 3 itwas shownbyLing [25] that there is only one simple

finite-dimensional object over an algebraically closed field of characteristic 0. That is, n-Lie algebras

generalize the three-dimensional simple Lie algebra to the n-ary case for n� 3, but not any of the

other simple Lie algebras. It seems that the definition of n-Lie algebra is too restrictive: the derivation

identity is too strong. From this point of view, the alternating sum identity is a good candidate for

a weaker identity which can still be regarded as a natural generalization of the Jacobi identity. It is

an open problem to classify the simple alternating n-ary algebras which satisfy the alternating sum

identity, but it is clear from the results in Bremner and Hentzel [8] and the present paper that there is

more than one simple object, at least for n = 3 and n = 4.

Our approach in this paper is to use the representation theory of Lie algebras to construct new alter-

nating algebra structures and to discover natural n-ary generalizations of Lie algebras. In particular, we

study the exterior powers of an irreducible representation of a simple Lie algebra; these are important

objects in invariant theory, algebraic geometry, and the theory of Lie groups (see for example Fulton

and Harris [16]). If ΛnV , the nth exterior power of an irreducible representation V of a simple Lie

algebra L, contains V itself as a direct summand, then the projection ΛnV → V defines an alternating

n-ary algebra structure on V which is L-invariant in the sense that the derivation algebra of this n-ary

structure contains a subalgebra isomorphic to L. This approachwas used by Bremner andHentzel [8] in

the case of the third exterior power of an irreducible representation of the three-dimensional simple

Lie algebra. In this paper, we extend this work to the fourth exterior power.

We recall somebasic informationabout representation theoryof Lie algebras. The simple Lie algebra

sl2(C) has basis {H, E, F} and structure constants

[H, E] = 2E, [H, F] = −2F, [E, F] = H.

All other brackets follow from bilinearity and anticommutativity. For n ∈ Z, n� 0, the irreducible

representation V(n) of sl2(C) with highest weight n has dimension n + 1; the action of sl2(C) with

respect to the basis {vn−2i|i = 0, . . . , n} is
H · vn−2i = (n − 2i)vn−2i, (1)

E · vn = 0, E · vn−2i = (n − i + 1)vn−2i+2 (i = 1, . . . , n), (2)

F · vn−2i = (i + 1)vn−2i−2 (i = 0, . . . , n − 1), F · v−n = 0. (3)

Anyfinite dimensional irreducible representation of sl2(C) is isomorphic toV(n) for some n. Any finite

dimensional representation of sl2(C) is isomorphic to a direct sum of irreducible representations. The

multiplicity of V(n) in its kth exterior power ΛkV(n) is the dimension of the vector space

Homsl2(C)(Λ
kV(n), V(n))

of sl2(C)-invariant linear maps P:ΛkV(n) → V(n). If this multiplicity is positive then P defines an

alternating k-ary algebra structure on V(n),

[x1, . . . , xk] = P(x1 ∧ · · · ∧ xk),

which is sl2(C)-invariant in the sense that the action of any L ∈ sl2(C) is a derivation of the k-ary

multiplication: for any x1, . . . , xk ∈ V(n) we have

L · [x1, . . . , xi, . . . , xk] =
k∑

i=1

[x1, . . . , L · xi, . . . , xk].
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For the representation theory of sl2(C) we refer to Humphreys [22].

2. Multiplicity formulas

Bremner and Hentzel [7] studied the case k = 2 corresponding to alternating binary algebra struc-

tures on V(n). We have

dim Homsl2(C)(Λ
2V(n), V(n)) =

{
1 if n ≡ 2 (mod 4),
0 otherwise.

In this case n = 2 gives the three-dimensional adjoint representation of sl2(C), n = 6 gives the

seven-dimensional simple non-Lie Malcev algebra, and n = 10 gives a new 11-dimensional anticom-

mutative algebra satisfying a polynomial identity of degree 7. Bremner andHentzel [8] studied the case

k = 3 corresponding to alternating ternary algebra structures on V(n). For n = 6q + r (0� r � 5) we

have

dim Homsl2(C)(Λ
3V(n), V(n)) =

{
q if r = 0, 1, 2, 4,

q + 1 if r = 3, 5.

Themultiplicity is 1 for n = 3, 5, 6, 7, 8, 10; the corresponding V(n) provide new examples of alternat-

ing ternary algebras.

In this paper, we consider the case k = 4: we study alternating quaternary algebra structures on

V(n) obtained from sl2(C)-invariant linear maps Λ4V(n) → V(n). We first obtain a closed formula

for themultiplicity dim Homsl2(C)(Λ
4V(n), V(n)) using a general approachwhich applies to arbitrary

exterior powers.

Theorem 1. If n is odd then dim Homsl2(C)(Λ
4V(n), V(n)) = 0. If n is even then n = 24q + r with

0� r < 24 (r even) and we have

dim Homsl2(C)

(
Λ4V(n), V(n)

)

= 1

1152

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
30n2 + 96n if r = 0, 16 30n2 − 120n + 120 if r = 2,

30n2 + 96n + 288 if r = 4, 12 30n2 − 120n + 792 if r = 6, 22,

30n2 + 96n − 384 if r = 8 30n2 − 120n + 504 if r = 10, 18,

30n2 − 120n + 408 if r = 14 30n2 + 96n − 96 if r = 20.

Proof. A proof using Pólya enumeration is given in Section 9. �

Corollary 2. The representation V(n) of sl2(C) occurs in Λ4V(n) with multiplicity 1 (resp. 2) if and only

if n = 4 or n = 6 (resp. n = 8 or n = 10).

Proof. The vertices of the parabolas in Theorem 1 occur at either n = −8/5 or n = 2, so for each r the

multiplicity is an increasing function of q. �

For n = 4, 6, 8, 10, we use computational linear algebra to find all the multilinear polynomial

identities of degree � 7 satisfied by the resulting quaternary algebras.

3. Quaternary algebra structures

In this section, we explain how to compute explicitly the decomposition of Λ4V(n) as a direct

sum of irreducible representations of sl2(C), together with an explicit multiplication table for the

alternating quaternary algebra structure on V(n) obtained from a projection Λ4V(n) → V(n). Recall
thatV(n) has the vector space basis {vn−2i|i = 0, 1, . . . , n} and that the subscript on vn−2i is itsweight:

its eigenvalue for the action of H ∈ sl2(C).
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Lemma 3 [8, Lemma 5.1]. Let M be an sl2(C)-module with dimM < ∞. For n ∈ Z let Mn = {v ∈
M|H · v = nv} be the subspace of all vectors of weight n together with 0. For n� 0 the multiplicity of V(n)
in the decomposition of M as a direct sum of simple sl2(C)-modules is dimMn − dimMn+2.

Definition 4. The tensor basis of Λ4V(n) consists of

(
n + 1

4

)
quadruples:

vp ∧ vq ∧ vr ∧ vs = ∑
σ∈S4

ε(σ )(vσ(p) ⊗ vσ(q) ⊗ vσ(r) ⊗ vσ(s)),

where n� p > q > r > s� −n with p, q, r, s ≡ n (mod 2) and ε: S4 → {±1} is the sign homomor-

phism. We usually abbreviate vp ∧ vq ∧ vr ∧ vs by [p, q, r, s]. The action of L ∈ sl2(C) satisfies the

derivation property,

L · (vp ∧ vq ∧ vr ∧ vs)= L · vp ∧ vq ∧ vr ∧ vs + vp ∧ L · vq ∧ vr ∧ vs

+ vp ∧ vq ∧ L · vr ∧ vs + vp ∧ vq ∧ vr ∧ L · vs, (4)

and hence the weight of the quadruple T = [p, q, r, s] is w(T) = p + q + r + s. The standard order

of the quadruples is given by decreasing weight, and within each weight by reverse lex order: T =
[p, q, r, s] precedes T ′ = [p′, q′, r′, s′] if and only if either w(T) > w(T ′) or w(T) = w(T ′) and t > t′
where t, t′ are the components of T, T ′ in the leftmost position where the components are not equal.

Remark 5. If we apply Lemma 3 to the tensor basis of V(n) for n = 4, 6, 8, 10 then we obtain the

decomposition of Λ4V(n) as a direct sum of irreducible representations:

Λ4V(4) ∼= V(4), Λ4V(6) ∼= V(12) ⊕ V(8) ⊕ V(6) ⊕ V(4) ⊕ V(0),

Λ4V(8) ∼= V(20) ⊕ V(16) ⊕ V(14) ⊕ 2V(12) ⊕ V(10) ⊕ 2V(8) ⊕ V(6) ⊕ 2V(4) ⊕ V(0),

Λ4V(10) ∼= V(28) ⊕ V(24) ⊕ V(22) ⊕ 2V(20) ⊕ V(18) ⊕ 3V(16) ⊕ 2V(14)

⊕3V(12) ⊕ 2V(10) ⊕ 3V(8) ⊕ V(6) ⊕ 3V(4) ⊕ V(0).

The next step is to determine the highest weight vectors for the irreducible summands of Λ4V(n)
as linear combinations of the quadruples in the tensor basis.

Lemma 6. The quadruple [n, n − 2, n − 4, n − 6] is the quadruple with highest weight in Λ4V(n) and is

a highest weight vector for the summand V(4n − 12).

Proof. This follows directly from Eqs. (2) and (4). �

Example 7. For n = 4 we have Λ4V(4) ∼= V(4), and so the quadruple [4, 2, 0,−2] is the only highest

weight vector in Λ4V(4). If we identify [4, 2, 0,−2] with the highest weight vector v4 of V(4), and
repeatedly apply F using Eqs. (3) and (4), then we obtain the weight vectors of Λ4V(4) corresponding
to the basis vectors v2, v0, v−2, v−4 of V(4):

v4 = [4, 2, 0,−2], v2 = F · v4 = 4[4, 2, 0,−4], v0 = 1

2!F
2 · v4 = 6[4, 2,−2,−4],

v−2 = 1

3!F
3 · v4 = 4[4, 0,−2,−4], v−4 = 1

4!F
4 · v4 = [2, 0,−2,−4].

The matrix expressing the weight vectors in V(4) in terms of the quadruples in Λ4V(4) is C =
diag(1, 4, 6, 4, 1). The matrix expressing the quadruples in terms of the weight vectors is C−1 =
diag

(
1, 1

4
, 1
6
, 1
4
, 1
)
. We now have the structure constants for the sl2(C)-invariant alternating qua-

ternary algebra structure on V(4), which we denote by [vp, vq, vr , vs]:
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[v4, v2, v0, v−2] = v4, [v4, v2, v0, v−4] = 1
4
v4, [v4, v2, v−2, v−4] = 1

6
v4,

[v4, v0, v−2, v−4] = 1
4
v4, [v2, v0, v−2, v−4] = v4.

The LCMof thedenominators of the coefficients is 12. Taking a = 3
√

12 and setting v′
t = vt/a, we obtain

integral structure constants:

[v′
4, v

′
2, v

′
0, v

′−2] = 12v′
4, [v′

4, v
′
2, v

′
0, v

′−4] = 3v′
4, [v′

4, v
′
2, v

′−2, v
′−4] = 2v′

4,[v′
4, v

′
0, v

′−2, v
′−4] = 3v′

4, [v′
2, v

′
0, v

′−2, v
′−4] = 12v′

4.

In general, for all other weights w < 4n − 12 we need to find a basis for the subspace of highest

weight vectors of weight w in Λ4V(n). The dimension of this subspace is the multiplicity of V(w) as
a summand of Λ4V(n).

Definition 8. Suppose that 4n − 14�w � 0 (w even). Let d(w) be the dimension of the weight space

of weight w in Λ4V(n): the number of quadruples of weight w. We define the matrix E
(n)
w of size

d(w + 2) × d(w) by setting the (i, j) entry equal to the coefficient of the ith quadruple of weight

w + 2 in the expression for the action of E ∈ sl2(C) on the jth quadruple of weight w. We call this

the E-action matrix for weight w of Λ4V(n); the nonzero vectors in its nullspace are the highest

weight vectors of weight w in Λ4V(n). We compute the row canonical form (RCF) and extract the

canonical integral basis (CIB) by setting the free variables equal to the standard unit vectors, clearing

denominators, and canceling common factors.

Example 9. For Λ4V(6) we use the weight space basis of V(6) and obtain

E
(6)
8 = [

2 4
] RCF−→ [

1 2
] CIB−→ [−2 1

]
,

E
(6)
6 =

[
1 4 ·
· 2 5

]
RCF−→

[
1 · −10

· 1 5/2

]
CIB−→ [

20 −5 2
]
,

E
(6)
4 =

⎡
⎣4 · · ·
1 3 5 ·
· · 2 6

⎤
⎦ RCF−→

⎡
⎣1 · · ·

· 1 · −5

· · 1 3

⎤
⎦ CIB−→ [· 5 −3 1

]
,

E
(6)
0 =

⎡
⎢⎢⎣
2 5 · · ·
· 3 · 6 ·
· 1 4 · 6

· · · 1 3

⎤
⎥⎥⎦ RCF−→

⎡
⎢⎢⎣
1 · · · 15

· 1 · · −6

· · 1 · 3

· · · 1 3

⎤
⎥⎥⎦ CIB−→ [−15 6 −3 −3 1

]
.

Example 10. For Λ4V(8) we use the weight space basis of V(8) and obtain

E
(8)
16 = [

4 6
] RCF−→ [

1 3/2
] CIB−→ [−3 2

]
,

E
(8)
14 =

[
3 6 ·
· 4 7

]
RCF−→

[
1 · −7/2
· 1 7/4

]
CIB−→ [

14 −7 4
]
,

E
(8)
12 =

⎡
⎣2 6 · · ·

· 3 5 7 ·
· · · 4 8

⎤
⎦ RCF−→

⎡
⎣1 · −5 · 14

· 1 5/3 · −14/3
· · · 1 2

⎤
⎦

CIB−→
[

15 −5 3 · ·
−42 14 · −6 3

]
,

E
(8)
10 =

⎡
⎢⎢⎢⎢⎣
1 6 · · · ·
· 2 5 7 · ·
· · 3 · 7 ·
· · · 3 5 8

· · · · · 4

⎤
⎥⎥⎥⎥⎦

RCF−→

⎡
⎢⎢⎢⎢⎣
1 · · · 70 ·
· 1 · · −35/3 ·
· · 1 · 7/3 ·
· · · 1 5/3 ·
· · · · · 1

⎤
⎥⎥⎥⎥⎦
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CIB−→ [−210 35 −7 −5 3 ·] ,

E
(8)
8 =

⎡
⎢⎢⎢⎢⎢⎢⎣

6 · · · · · · ·
1 5 · 7 · · · ·
· 2 4 · 7 · · ·
· · · 2 5 · 8 ·
· · · · 3 6 · 8

· · · · · · 3 5

⎤
⎥⎥⎥⎥⎥⎥⎦

RCF−→

⎡
⎢⎢⎢⎢⎢⎢⎣

1 · · · · · · ·
· 1 · · · 7 · 56/3
· · 1 · · −7 · −14

· · · 1 · −5 · −40/3
· · · · 1 2 · 8/3
· · · · · · 1 5/3

⎤
⎥⎥⎥⎥⎥⎥⎦

CIB−→
[· −7 7 5 −2 1 · ·
· −56 42 40 −8 · −5 3

]
,

E
(8)
6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 · 7 · · · · · ·
1 4 · 7 · · · · ·
· 2 · · 7 · · · ·
· · 1 5 · · 8 · ·
· · · 2 4 6 · 8 ·
· · · · · 3 · · 8

· · · · · · 2 5 ·
· · · · · · · 3 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

RCF−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · · · · · −224/3
· 1 · · · · · · 70/3
· · 1 · · · · · 160/3
· · · 1 · · · · −8/3
· · · · 1 · · · −20/3
· · · · · 1 · · 8/3
· · · · · · 1 · −5

· · · · · · · 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CIB−→ [
224 −70 −160 8 20 −8 15 −6 3

]
,

E
(8)
4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 · 7 · · · · · · · ·
1 3 · 7 · · · · · · ·
· · 5 · · · 8 · · · ·
· · 1 4 6 · · 8 · · ·
· · · 2 · 6 · · 8 · ·
· · · · 2 4 · · · 8 ·
· · · · · · 1 5 · · ·
· · · · · · · 2 4 6 ·
· · · · · · · · · 3 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

RCF−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · · · · · −28 · 98

· 1 · · · · · · 14 · −245/3
· · 1 · · · · · 16 · −56

· · · 1 · · · · −2 · 21

· · · · 1 · · · −4 · 14/3
· · · · · 1 · · 2 · −7

· · · · · · 1 · −10 · 35

· · · · · · · 1 2 · −7

· · · · · · · · · 1 7/3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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CIB−→
[

28 −14 −16 2 4 −2 10 −2 1 · ·
−294 245 168 −63 −14 21 −105 21 · −7 3

]
,

E
(8)
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 7 · · · · · · · · · ·
· 3 6 · · 8 · · · · · ·
· 1 · 6 · · 8 · · · · ·
· · 4 · · · · 8 · · · ·
· · 1 3 5 · · · 8 · · ·
· · · · 2 · · · · 8 · ·
· · · · · 4 · 6 · · · ·
· · · · · 1 3 · 6 · · ·
· · · · · · · 1 4 · 7 ·
· · · · · · · · 2 5 · 7

· · · · · · · · · · 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

RCF−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · · · · · · · · 224

· 1 · · · · · · · · · −64

· · 1 · · · · · · · · 16

· · · 1 · · · · · · · 12

· · · · 1 · · · · · · −8

· · · · · 1 · · · · · 12

· · · · · · 1 · · · · −1

· · · · · · · 1 · · · −8

· · · · · · · · 1 · · −3/2
· · · · · · · · · 1 · 2

· · · · · · · · · · 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CIB−→ [−448 128 −32 −24 16 −24 2 16 3 −4 −4 2
]
.

Definition 11. We construct the weight vector basis of Λ4V(n) as follows. We first determine the

highest weight vectors for each summand of Λ4V(n) as described in Definition 8 and Examples 9 and

10. For each highest weight vector X (of weight w, say) we apply F ∈ sl2(C) repeatedly w times to

obtain weight vectors of weights w − 2, w − 4, . . . ,−w forming a basis of the summand isomorphic

to V(w):

X, F · X, 1
2!F

2 · X, . . . , 1

w!F
w · X.

The set of all these weight vectors is the weight vector basis of Λ4V(n). The standard order on this

basis is as follows:We order theweight vectors first by decreasingweight of the corresponding highest

weight vector and then by increasing power of F within each summand. (When there is more than one

highest weight vector with the same weight, we order them as in the canonical integral basis.)

Definition 12. The weight vector matrix C is the

(
n + 1

4

)
×
(
n + 1

4

)
matrix which expresses the

weight vector basis in terms of the tensor basis: the (i, j) entry is the coefficient of the ith quadruple

in the jth element of the weight vector basis.

Definition 13. The alternating quaternary algebra structure on V(n) is defined in terms of structure

constants as follows. The inverse C−1 of the weight vector matrix expresses the tensor basis in terms

of the weight vector basis. Let [p, q, r, s] be the jth quadruple in the tensor basis. Column j of C−1

expresses [p, q, r, s] as a linear combination of the elements of the weight vector basis. Suppose that

the highest weight vector for the summand of Λ4V(n) isomorphic to V(n) is the kth element of the

weight vector basis. The entries of C−1 in column j and rows i = k, . . . , k + n are the coefficients of
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the projection of [p, q, r, s] onto the summand isomorphic to V(n). Let P:Λ4V(n) → V(n) be this

surjective homomorphism of sl2(C)-modules. The quadruple [p, q, r, s] has weight p + q + r + s,

and the summand isomorphic to V(n) has (at most) one basis vector of this weight. Hence there

is at most one nonzero entry in C−1 in column j and rows i = k, . . . , k + n. If all these entries are

zero then P(vp ∧ vq ∧ vr ∧ vs) = 0. If there is a nonzero entry, say in row �, then P(vp ∧ vq ∧ vr ∧
vs) = (C−1)i�vp+q+r+s. The resulting alternating quaternary algebra structure on V(n) is denoted by

[vp, vq, vr , vs] and defined by [vp, vq, vr , vs] = P(vp ∧ vq ∧ vr ∧ vs).

Example 14. For n = 6, from rows 23 to 29 of the matrix inverse we obtain the structure constants

for the alternating quaternary algebra structure on V(6). We ignore the equations for which |p + q +
r + s| > 6 since in these cases the result is obviously zero: there is no vector of the given weight in

V(6). The LCM of the denominators of the coefficients is 120, so we can scale the basis vectors of V(n)

by setting v′
t = vt/

3
√

120 to obtain integral structure constants.

4. Polynomial identities and computational methods

Definition 15. The nonassociative polynomial I(x1, . . . , xn) is a polynomial identity for the algebra A

if I(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ A.

We are concerned with multilinear polynomial identities of degree n for an alternating quaternary

algebra. This means that each term consists of a coefficient and a monomial, where the monomial is

some permutation of n distinct variables x1, x2, . . . , xn together with some association type, by which

wemean some placement of brackets representing the quaternary operation. For any k-ary operation,

the degree of a monomial has the form n = 1 + �(k − 1)where � is the number of occurrences of the

operation in the monomial. Thus for a quaternary operation the degree of a monomial is congruent to

1 modulo 3.

In degree 4, we have only the single association type [−,−,−,−]; the alternating property implies

that we have only the singlemonomial [x1, x2, x3, x4]. In degree 7, the alternating property implies that

we have only one association type [[−,−,−,−],−,−,−] and only

(
7

4

)
= 35 distinct multilinear

monomials,

[[xσ(1), xσ(2), xσ(3), xσ(4)], xσ(5), xσ(6), xσ(7)],
whereσ ∈ S7 is a (4, 3)-shuffle; that is, 1� σ(1) < σ(2) < σ(3) < σ(4) � 7and1� σ(5) < σ(6) <
σ(7) � 7. In degree 10, the alternating property implies that we have two association types,

[[[−,−,−,−],−,−,−],−,−,−], [[−,−,−,−], [−,−,−,−],−,−],
and that the corresponding numbers of distinct multilinear monomials are

(
10

4, 3, 3

)
+ 1

2

(
10

4, 4, 2

)
= 4200 + 1575 = 5775.

Thenumber T(�)of association typeswhich involve�occurrences of analternatingquaternaryproduct

is equal to the number of rooted trees with � internal vertices in which each internal vertex has four

children; see Sloane [29], sequence A036718. The first terms in this sequence are

� 0 1 2 3 4 5 6 7 8 9 10 11 12 13

T(�) 1 1 1 2 4 9 19 45 106 260 643 1624 4138 10683

The monomials [[[a, b, c, d], e, f , g], h, i, j] and [[a, b, c, d], [e, f , g, h], i, j] correspond, respectively, to the

following trees:



1694 M.R. Bremner, H.A. Elgendy / Linear Algebra and its Applications 433 (2010) 1686–1705

4.1. Fill-and-reduce algorithm

Supposewewish to find all themultilinear polynomial identities of degree n satisfied by an algebra

A of dimension d.We assume thatwehave chosen a basis ofA and thatwe know the structure constants

with respect to this basis.Wewritem for thenumber of distinctmultilinearmonomials of degreen, and

we assume that these monomials are ordered in some way. We create a matrix X of size (m + d) × m

and initialize it to zero; the columns of M correspond bijectively to the monomials. We choose two

parameters p and s: we generate pseudorandom integers in the range 0 to p − 1.

We perform the following “fill-and-reduce” algorithm until the rank of the matrix X has remained

stable for s iterations:

(1) Generate n pseudorandomelements a1, . . . , an of A: vectors of length d inwhich the components

are integers in the range 0 to p − 1.

(2) For j from 1 tom do:

(a) Evaluate monomial j by setting the variable xk equal to the vector ak for k = 1, . . . , n and

using the structure constants for A, obtaining another vector b of length d.

(b) Store b as a column vector in column j of X in rows m + 1 tom + d.

(3) Compute the row canonical form of X; the last d rows are now zero.

After this process has terminated, if the nullspace of X is not zero then it contains candidates for

polynomial identities satisfied by A. We usually find that s = 10 is a sufficient number of iterations

after the rank has stabilized, but we use s = 100 to increase our confidence in the results. We now

compute the canonical integral basis of the nullspace.

4.2. Module generators algorithm

We assume that we have the canonical integral basis of the nullspace of the matrix X used in the

fill-and-reduce algorithm. Let r be the number of these basis vectors; these are the coefficient vectors

of polynomial identities satisfied by the algebra A. These identities are linearly independent over Q
but they are not necessarily independent as generators of the Sn-module of identities. We want to

find a minimal set of module generators. We start by sorting the basis vectors by increasing Euclidean

norm. We create a new matrixM of size (m + n!) × m and initialize it to zero.

We perform the following algorithm for k from 1 to r:

(1) For i from 1 to n! apply permutation i of the variables {x1, . . . , xn} to basis identity k and store

the result in row m + i of M. More precisely, for each nonzero coefficient c of the identity,

apply permutation i to the corresponding monomial, use the alternating property to straighten

the monomial, obtain a standard basis monomial (with index j say) and store ±c in position

(m + i, j) ofM (straightening may introduce a sign change).

(2) Compute the row canonical form ofM. If the rank has increased from the previous iteration, then

we record basis identity k as a new generator.
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5. Multiplicity 1: representation V(4)

In this section and the next we describe computer searches for polynomial identities satisfied by

the two irreducible representations of sl2(C) which admit an alternating quaternary structure which

is unique up to a scalar multiple; we determine all their identities of degree 7, and show that there

are no new identities in degree 10. For all our calculations we use the computer algebra system Maple,
especially the packages LinearAlgebra and LinearAlgebra[Modular].

Theorem 16. The vector space of multilinear polynomial identities in degree 7 for the alternating quater-

nary structure on V(4) has dimension 21.

Proof. We use the fill-and-reduce algorithm with n = 7, d = 5, m = 35, p = 10 and s = 100. We

create a matrix X of size 40 × 35 consisting of an upper block of size 35 × 35 and a lower block of

size 5 × 35; the columns are labeled by the ordered basis of multilinear monomials in degree 7 for an

alternating quaternary operation. We generate seven random elements of V(4) and evaluate the 35

monomials on these seven elements. We put the 35 resulting elements of V(4) as column vectors into

the lower block of the matrix. Each of the last five rows of the matrix now contains a linear relation

that must be satisfied by the coefficients of any identity for the alternating quaternary structure on

V(4). We repeat the fill-and-reduce process until the rank of the matrix stabilizes. The rank reached

14 and did not increase further. Therefore, the nullspace of the matrix has dimension 21. �

Theorem 17. Every multilinear polynomial identity in degree 7 for the alternating quaternary structure

on V(4) is a consequence of the alternating property in degree 4 together with the quaternary derivation

identity in degree 7:
[a, b, c, [d, e, f , g]]

= [[a, b, c, d], e, f , g] + [d, [a, b, c, e], f , g] + [d, e, [a, b, c, f ], g] + [d, e, f , [a, b, c, g]].
Proof. We use the module generators algorithm, slightly modified to use less memory. We create

a matrix of size 59 × 35 with an upper block of size 35 × 35 and a lower block of size 24 × 35. We

generate all 5040permutationsof seven letters anddivide theminto210groupsof 24permutations. For

each of the 21 basis identities, we perform the following computation. For each group of permutations,

we apply the corresponding 24 permutations to the identity, obtain 24 new identities which we store

in the lower block of the matrix, and compute the row canonical form of the matrix. After all 210

groups of permutations have been processed, the rank of the matrix is equal to the dimension of the

module generated by all the identities up to and including the current identity. After the first identity

has been processed, the rank of the matrix is 21, which is the same as the entire nullspace; the rank

does not increase as we process the remaining identities. Therefore, every identity is a consequence

of the first identity, which has the form

[[a, b, c, d], e, f , g] − [[a, b, c, e], d, f , g] + [[a, b, c, f ], d, e, g] − [[a, b, c, g], d, e, f ]
+[[d, e, f , g], a, b, c].

Applying the alternating property of the quaternary product, we see that this identity can be written

in the stated form. �
Remark 18. The alternating property in degree 4 and the quaternary derivation identity together

define the case n = 4 of the variety of n-Lie algebras introduced by Filippov [14]. Thus the isomor-

phism Λ4V(4) ∼= V(4) makes V(4) into an alternating quaternary algebra isomorphic to one of the

five-dimensional 4-Lie algebras in Filippov’s classification of (n + 1)-dimensional n-Lie algebras.

Forn = 7,wecanuse rational arithmetic for thesecalculationssince thematrixX isnot large.Wecan

extend these calculations to n = 10, but we need to usemodular arithmetic to savememory, since the

matrixX is very large: it has 5775 columns (the number of alternating quaternarymonomials in degree
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10). The fill-and-reduce algorithm stabilizes at rank 660, and so the nullspace has dimension 5115.We

need to determinewhich of these identities in degree 10 are consequences of the quaternary derivation

identity in degree 7, which we denote by D(a, b, c, d, e, f , g). Since this polynomial alternates in a, b, c

we only need to consider six consequences in degree 10, using the variables {a, b, c, d, e, f , g, h, i, j}:
D([a, h, i, j], b, c, d, e, f , g), D(a, b, c, [d, h, i, j], e, f , g), D(a, b, c, d, [e, h, i, j], f , g),
D(a, b, c, d, e, [f , h, i, j], g), D(a, b, c, d, e, f , [g, h, i, j]), [D(a, b, c, d, e, f , g), h, i, j].

We use amodification of themodule generators algorithm to determine that these identities generate

amodule of dimension 5115. Since this equals the dimension of the nullspace from the fill-and-reduce

algorithm, it follows that the alternating quaternary structure on V(4) satisfies no new identities in

degree 10; that is, every identity in degree 10 is a consequence of the known identities in lower degrees.

We used p = 101 for these calculations; since the group algebra of Sn is semisimple over any field of

characteristic p > n, andwe are studying identities of degree n = 10, it follows that any prime p > 10

would give the same dimensions.

6. Multiplicity 1: representation V(6)

Theorem 19. The vector space of multilinear polynomial identities in degree 7 for the alternating quater-

nary structure on V(6) has dimension 1.

Proof. We use the fill-and-reduce algorithm with n = 7, d = 7, m = 35, p = 10 and s = 100. The

details of the computations are similar to those described in the proof of Theorem16. The rank reached

34 and did not increase further. Therefore, the nullspace of the matrix has dimension 1. �

Theorem 20. Every multilinear polynomial identity in degree 7 for the alternating quaternary structure

on V(6) is a consequence of the alternating property in degree 4 together with the quaternary alternating

sum identity in degree 7:∑
σ∈S7

ε(σ )[[aσ , bσ , cσ , dσ ], eσ , f σ , gσ ].

Proof. Since the nullspace has dimension 1, this is an immediate corollary of Theorem 19; we do not

need to apply the module generators algorithm. �

Remark 21. The referee provided the following alternative proof. The quaternary alternating sum

identity is an alternating multilinear function of 7 variables. Evaluating this function on the seven-

dimensional spaceV(6)gives amapα:Λ7V(6) → V(6). ButΛ7V(6) is 1-dimensional (it is isomorphic

to V(0) as an sl2(C)-module), and α is invariant under the action of sl2(C). Hence the image of α is

an sl2(C)-submodule which has dimension 0 or 1. Since V(6) is irreducible, it has no submodule of

dimension 1, and so α must be the zero map.

Remark 22. It is shown inBremner [4] (Theorems3and4) that thequaternary alternating sum identity

in degree 7 is satisfied by the followingmultilinear operation (the alternating quaternary sum) in every

totally associative quadruple system,

[x1, x2, x3, x4] = ∑
π∈S4

ε(π) xπ(1)xπ(2)xπ(3)xπ(4),

and that the quaternary alternating sum identity of Theorem 20 is a consequence of the quaternary

derivation identity of Theorem 16.

Wecanextend thesecalculations ton = 10usingmodulararithmetic. Thefill-and-reducealgorithm

stabilizes at rank 1903, and so the nullspace has dimension 3872.We need to determinewhich of these

identities in degree 10 are consequences of the quaternary alternating sum identity in degree 7, which
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we denote by S(a, b, c, d, e, f , g). Since this polynomial alternates in all 7 variables, we only need to

consider two consequences in degree 10:

S([a, h, i, j], b, c, d, e, f , g), [S(a, b, c, d, e, f , g), h, i, j].
We can use an elementary argument to find an upper bound on the dimension of the submodule

generated by these two identities. The first identity alternates in a, h, i, j and also in b, c, d, e, f , g;

hence any permutation of the first identity is equal, up to a sign, to one of

(
10

4

)
= 210 possibilities.

Similarly, the second identity alternates in a, b, c, d, e, f , g and in h, i, j; hence any permutation of

the second identity is equal, up to a sign, to one of

(
10

7

)
= 120 possibilities. Altogetherwe see that the

submodule generated by these two identities has dimension at most 330. (In fact our computations

show that this submodule has dimension 329.) Since this is less than the dimension of the nullspace

from the fill-and-reduce algorithm, the alternating quaternary structure on V(6) satisfies new iden-

tities in degree 10 that are not consequences of the known identities in lower degrees. It is an open

problem to determine generators for the S10-module of new identities in degree 10.

7. Multiplicity 2: representation V(8)

In this section and the next we describe computer searches for polynomial identities satisfied by

the two irreducible representations of sl2(C) which admit a two-dimensional space of alternating

quaternary structures; we determine all their identities of degree 7.

Any sl2(C)-module homomorphism Λ4V(8) → V(8) is a linear combination of the structures f

and g corresponding to the summands isomorphic to V(8) generated by the highest weight vectors

computed in Example 10. Up to a scalar multiple, we need to consider only the single structure

g and the one-parameter family of structures f + xg for x ∈ C. For g our methods are similar to

those used for V(4) and V(6). For f + xg we need to use the Smith normal form to determine the

values of the parameter x which produce a nonzero nullspace. For this we use the Maple command

linalg[smith] instead of LinearAlgebra[SmithForm] since the former ismuchmore efficient than the

latter.

Theorem 23. The vector space of multilinear polynomial identities in degree 7 for the alternating qua-

ternary structure g on V(8) has dimension 1 and is spanned by the quaternary alternating sum

identity.

Proof. Similar to the proofs of Theorems 19 and 20. �

Theorem 24. For any x ∈ C, the vector space of multilinear polynomial identities in degree 7 for the alter-

nating quaternary structure f + xg on V(8) has dimension 1 and is spanned by the quaternary alternating

sum identity.

Proof. In order to determine how the space of identities depends on the parameter x, we use the Smith

normal form of a matrix over the polynomial algebra C[x]. Since the computation of the Smith form

performs not only row operations but also column operations, wemust fill the matrix using a suitable

number of trials, and then compute the Smith form once. In the general case, we create a matrix of

size t(n + 1) × m where n is the highest weight (recall that V(n) has dimension n + 1) and m is the

number of multilinear monomials in degree d; the matrix consists of t blocks of size (n + 1) × m. We

choose t so that t(n + 1) > m in order to guarantee that we have enough nonzero rows in the matrix

to eliminate false nullspace vectors. We perform the following algorithm:

(1) For b from 1 to t do:

(a) Generate d pseudorandom vectors of length n + 1 representing elements of V(n).
(b) For j from 1 to m do:
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(i) Evaluate the jth alternating quaternary monomial on the d pseudorandom vectors

to obtain another vector of length n + 1 with components which are polynomials in

the parameter x.

(ii) Put the resulting vector into column j of block t.

(2) Compute the Smith normal form of the matrix.

For n = 8 and d = 7wehavem = 35 andwe choose t = 4. The entries of the resulting 36 × 35matrix

are quadratic polynomials in the parameter x since each monomial involves two occurrences of the

quaternary operation. In the Smith normal formof thematrix, the diagonal entries are 1 (34 times) and

0 (once). It follows that thematrix has a one-dimensional nullspace for every value of x. In Bremner [4]

(Proposition 3) it is shown that there a unique one-dimensional S7-submodule of the 35-dimensional

modulewith basis consisting of the alternating quaternarymonomials in degree 7, and this submodule

is spanned by the quaternary alternating sum identity. Hence the nullspace basis does not depend on

the value of the parameter x, and this completes the proof. We checked this result independently by

evaluating the quaternary alternating sum identity on pseudorandom vectors for the product f + xg

with indeterminate x and verifying that the result was zero. �

Remark 25. It is an open problem to determinewhether the alternating quaternary structures onV(8)
are isomorphic for all values of the parameter x.

8. Multiplicity 2: representation V(10)

As in the previous section, any sl2(C)-module homomorphism Λ4V(10) → V(10) is a linear

combination of two structures f and g, and we consider separately the single structure g and the

one-parameter family of structures f + xg for x ∈ C.

Theorem 26. The vector space of multilinear polynomial identities in degree 7 for the alternating quater-

nary structure g on V(10) has dimension 0: every identity is a consequence of the alternating properties in

degree 4.

Proof. Similar to the proofs of Theorem 23 except that the matrix achieves the full rank of 35. �

Theorem 27. For x = 5
4
, the vector space ofmultilinear polynomial identities in degree 7 for the alternating

quaternary structure f + xg on V(10) has dimension 1 and is spanned by the quaternary alternating sum

identity. For all other x ∈ C, the vector space of multilinear polynomial identities in degree 7 for the

alternating quaternary structure f + xg on V(10) has dimension 0.

Proof. Similar to theproof of Theorem24except thatnown = 10.Asbefore, the entries of the resulting

44 × 35matrix are quadratic polynomials in the parameter x. In the Smith normal form of thismatrix,

the diagonal entries are 1 (28 times) and x − 5
4
(7 times). It follows that the matrix has zero nullspace

except in the case x = 5
4
. We now specialize to this value of x and consider the structure f + 5

4
g; the

rest of the proof is similar to that of Theorems 19 and 20. �

9. Proof of multiplicity formula

In this section, we prove the multiplicity formula of Theorem 1. We reduce the problem to a

combinatorial question and apply the theory of Pólya enumeration.

Lemma 28 [8, Lemma 5.2]. Let M = ΛkV(n) be the kth exterior power of V(n). If w ∈ Z with kn�w
� −kn and w ≡ kn (mod 2) then the dimension of the weight space Mw is the number of sequences

(w1, w2, . . . , wk) ∈ Zk satisfying
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n�w1 > w2 > · · · > wk � −n; w1 + w2 + · · · + wk = w; w1, . . . , wk ≡ n (mod 2).

We now specialize to k = 4 since we are interested in the fourth exterior power. To compute the

multiplicity of V(n) as a direct summand of Λ4V(n) using Lemmas 3 and 28, we must determine the

number of quadruples (p, q, r, s) satisfying

n� p > q > r > s� −n; p + q + r + s = w; p, q, r, s ≡ n (mod 2) (5)

for w = n and w = n + 2. Let n be a non-negative integer and let w be a weight of Λ4V(n): thus w is

an integer satisfying

4n�w � −4n, w ≡ 0 (mod 2).

For integers p, q, r, s satisfying (5) we define

P′ = p + n, Q ′ = q + n, R′ = r + n, S′ = s + n.

Then (P′, Q ′, R′, S′) is a quadruple of even integers satisfying

2n� P′ > Q ′ > R′ > S′ � 0, P′ + Q ′ + R′ + S′ = W ′, W ′ = w + 4n.

We need to count the number of partitions of W ′ into four distinct non-negative even parts less than

or equal to 2n. We only need W ′ = 5n and W ′ = 5n + 2 corresponding to w = n and w = n + 2. It

is clear that if n is odd then there are no solutions in both cases, so V(n) does not occur as a summand

of Λ4V(n): the multiplicity is zero. Therefore, we may assume that n is even and define

P = p + n

2
, Q = q + n

2
, R = r + n

2
, S = s + n

2
, W = w + 4n

2
.

Then (P, Q , R, S) is a quadruple of integers satisfying

n� P > Q > R > S � 0, P + Q + R + S = W .

Definition 29 [32, p. 612]. If G is a subgroup of the symmetric group Sn then the cycle index of G is the

following polynomial in the indeterminates x1, x2, . . . , xn:

ZG(x1, x2, . . . , xn) = 1

|G|
∑
σ∈G

x
b1
1 x

b2
2 · · · xbnn ;

here bi is the number of cycles of length i in the disjoint cycle factorization of σ .

Lemma 30 [21, p. 36]. The cycle index of the alternating group An is

ZAn(x1, x2, . . . , xn) = ZSn(x1, x2, . . . , xn) + ZSn(x1,−x2, . . . , (−1)n−1xn).

Proof. The definition of cycle index gives

ZAn(x1, x2, . . . , xn) = 2

n!

⎡
⎣∑

σ∈Sn

x
b1
1 x

b2
2 · · · xbnn − ∑

σ∈Sn\An
x
b1
1 x

b2
2 · · · xbnn

⎤
⎦ .

Since σ ∈ Sn\An if and only if σ has an odd number of even length cycles, we get

ZAn(x1, x2, . . . , xn) = 2

n! · 1

2

⎡
⎣∑

σ∈Sn

x
b1
1 x

b2
2 · · · xbnn + ∑

σ∈Sn

x
b1
1 (−x2)

b2 · · ·
(
(−1)n−1xn

)bn⎤⎦ .

This completes the proof. �

The next result is the special case k = 4 of Theorem 2 inWu and Chao [32]; but note that we allow

0 ∈ S.
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Proposition 31. If S is a set of non-negative integers then the number of partitions of an integer n into four

distinct parts in S is the coefficient of xn in

ZA4

⎛
⎝∑

i∈S

xi,
∑
i∈S

x2i,
∑
i∈S

x3i,
∑
i∈S

x4i

⎞
⎠ − ZS4

⎛
⎝∑

i∈S

xi,
∑
i∈S

x2i,
∑
i∈S

x3i,
∑
i∈S

x4i

⎞
⎠ .

Corollary 32. If S is a set of non-negative integers then the number of partitions of a positive integer n into

four distinct parts in S is the coefficient of xn in

ZS4

⎛
⎝∑

i∈S

xi,−∑
i∈S

x2i,
∑
i∈S

x3i,−∑
i∈S

x4i

⎞
⎠ .

Proof. Take n = 4 in Lemma 30, set xj = ∑
i∈S x

ji, and apply Proposition 31. �

Definition 33. For us S = {0, 1, . . . , n} so we define the following polynomials:

Pn(x) = ZS4

⎛
⎝ n∑

i=0

xi,−
n∑

i=0

x2i,

n∑
i=0

x3i,−
n∑

i=0

x4i

⎞
⎠ .

Lemma 34. We have⎛
⎝ n∑

i=0

xi

⎞
⎠t

=
nt∑

�=0

⎡
⎢⎢⎣
min

(
t,
⌊

�
n+1

⌋)
∑
k=0

(−1)k
(
t

k

)(
� − (n + 1)k + t − 1

t − 1

)⎤⎥⎥⎦ x�.

Proof. We use these three familiar identities:

1 − xn+1

1 − x
=

n∑
i=0

xi,
(
1 − xn+1

)t =
t∑

k=0

(−1)k
(
t

k

)
x(n+1)k,

1

(1 − x)t
=

∞∑
j=0

(
j + t − 1

t − 1

)
xj.

We obtain⎛
⎝ n∑

i=0

xi

⎞
⎠t

= (1 − xn+1)t

(1 − x)t
=

t∑
k=0

∞∑
j=0

(−1)k
(
t

k

)(
j + t − 1

t − 1

)
x(n+1)k+j. (6)

We set � = (n + 1)k + j so that � − j = (n + 1)k and � − j ≡ 0 (mod n + 1). We also have k =
(� − j)/(n + 1) and so k �
�/(n + 1)�. Substituting j = � − (n + 1)k in (6), and noting that nt is the

largest power of x, we obtain the stated formula. �

Definition 35. We use the following notation:

Δn
m =

{
1 if n ≡ 0 (mod m),
0 otherwise,

Δn
s,m =

{
1 if n ≡ s (modm),
0 otherwise.

Definition 36. We consider the following integer-valued functions of n:

α(n) =
⌈
n

4

⌉
, β(n) =

⌈
3n

4

⌉
, γ (n) =

⌊
3n − 2

4

⌋
, δ(n) =

⌊
5n

6

⌋
.

Proposition 37. For even n ∈ Z, the number of solutions P, Q , R, S ∈ Z to

n� P > Q > R > S � 0, P + Q + R + S = 5n

2
,
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equals

23

1152
n3 − 29

96
n2 + 1

288

(−36α(n) + 180β(n) + 36γ (n) + 27Δn
4 − 167

)
n

+ 1

24

(
6α(n)2 − 6β(n)2 − 6γ (n)2 + 12β(n) − 12γ (n) + 8δ(n) + 3Δn

4 − 6Δn
8 − 3

)
.

Proof. By Corollary 32, we need to find the coefficient of x5n/2 in the polynomial Pn(x) of Definition

33. The cycle index of S4 is

ZS4(x1, x2, x3, x4) = 1

24
(x41 + 6x21x2 + 8x1x3 + 3x22 + 6x4).

For the first four terms, we need to evaluate the following products:

A =
⎛
⎝ n∑

i=0

xi

⎞
⎠4

, B =
⎛
⎝ n∑

i=0

xi

⎞
⎠2

n∑
i=0

x2i, C =
n∑

i=0

xi
n∑

i=0

x3i, D =
⎛
⎝ n∑

i=0

x2i

⎞
⎠2

.

Lemma 34 gives

A =
4n∑

�=0

min
(
4,
⌊

�
n+1

⌋)
∑
k=0

(−1)k
(
4

k

)(
� − (n + 1)k + 3

3

)
x�.

Similarly,

B =
⎛
⎜⎜⎝

2n∑
�=0

min
(
2,
⌊

�
n+1

⌋)
∑
k=0

(−1)k
(
2

k

)
(� − (n + 1)k + 1) x�

⎞
⎟⎟⎠

n∑
i=0

x2i.

The upper limit of k is 0 for 0� � � n, and 1 for n + 1� � � 2n. Hence

B=
⎛
⎝ n∑

�=0

(� + 1)x� +
2n∑

�=n+1

[(� + 1) − 2(� − n)]x�

⎞
⎠ n∑

i=0

x2i

=
⎛
⎝ n∑

�=0

(� + 1)x� +
2n∑

�=n+1

(2n − � + 1)x�

⎞
⎠ n∑

i=0

x2i

=
n∑

�=0

n∑
m=0

(� + 1)x�+2m +
2n∑

�=n+1

n∑
m=0

(2n − � + 1)x�+2m.

We now set p = � + 2m, so that � = p − 2m. For 0� � � n we have 0� p − 2m� n and so 1
2
(p −

n) �m� 1
2
p, but m ∈ Z so

⌈
1
2
(p − n)

⌉
�m�

⌊
1
2
p
⌋
; since also 0�m� n we get max

(
0,
⌈
1
2
(p − n)

⌉)
�m�min

(
n,
⌊
1
2
p
⌋)

. Similarly, for n + 1� � � 2n we obtain max
(
0,
⌈
1
2
(p − 2n)

⌉)
�m�min(

n,
⌊
1
2
(p − (n + 1))

⌋)
. Therefore

B =
3n∑
p=0

min(n,
 p
2�)∑

m=max
(
0,
⌈
p−n
2

⌉) (p − 2m + 1) xp +
4n∑

p=n+1

min
(
n,
⌊
p−(n+1)

2

⌋)
∑

m=max
(
0,
⌈
p−2n

2

⌉) (2n − (p − 2m) + 1) xp.

Using a similar change of index we obtain

C =
n∑

i=0

n∑
j=0

xi+3j =
4n∑
p=0

min(n,
 p
3�)∑

m=max(0,� p−n
3

�)
xp =

4n∑
p=0

[
min

(
n,

⌊
p

3

⌋)
−max

(
0,

⌈
p − n

3

⌉)
+ 1

]
xp.
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Replacing x by x2 in Lemma 34 gives

D =
n∑

�=0

(� + 1)x2� +
2n∑

�=n+1

(2n − � + 1)x2�.

We now write

E =
n∑

�=0

x4�,

and obtain

A − 6B + 8C + 3D − 6E

=
4n∑
p=0

min
(
4,
⌊

p
n+1

⌋)
∑
k=0

(−1)k
(
4

k

)(
p − (n + 1)k + 3

3

)
xp

− 6

⎡
⎢⎢⎣

3n∑
p=0

min(n,
 p
2�)∑

m=max
(
0,
⌈
p−n
2

⌉) (p − 2m + 1) xp+
4n∑

p=n+1

min
(
n,
⌊
p−(n+1)

2

⌋)
∑

m=max
(
0,
⌈
p−2n

2

⌉) (2n−(p−2m)+1) xp

⎤
⎥⎥⎦

+ 8

⎡
⎣ 4n∑
p=0

[
min

(
n,

⌊
p

3

⌋)
− max

(
0,

⌈
p − n

3

⌉)
+ 1

]
xp

⎤
⎦

+ 3

⎡
⎣ n∑

�=0

(� + 1)x2� +
2n∑

�=n+1

(2n − � + 1)x2�

⎤
⎦ − 6

n∑
�=0

x4�.

We need the coefficient T of x5n/2 in the last equation:

T=
⌊

5n
2(n+1)

⌋
∑
k=0

(−1)k
(
4

k

)( 5n
2

− (n + 1)k + 3

3

)

− 6

⎡
⎢⎢⎣

n∑
m=

⌈
3n
4

⌉
(
5n

2
− 2m + 1

)
+

⌊
3n−2

4

⌋
∑

m=� n
4�

(
2m − n

2
+ 1

)⎤⎥⎥⎦

+ 8

(⌊
5n

6

⌋
− n

2
+ 1

)
+ 3δn4

(
0 + 3n

4
+ 1

)
− 6δn8 .

For n = 0 and n = 2 we get T = 0; this is expected since the sl2(C)-modules V(0) and V(2) have

dimensions 1 and 3, respectively, so in both cases Λ4V(n) is {0}. For n� 4 the upper limit of k is 2, and

we use the formula

b∑
m=a

m = 1

2
(b − a + 1)(b + a).

We obtain

T=
(

5n
2

+ 3

3

)
− 4

(
3n
2

+ 2 3
)

+ 6

( n
2

+ 1

3

)
− 6

(
n −

⌈
3n

4

⌉
+ 1

)(
5n

2
+ 1

)

+ 6

(
n −

⌈
3n

4

⌉
+ 1

)(
n +

⌈
3n

4

⌉)
− 6

(⌊
3n − 2

4

⌋
−
⌈
n

4

⌉
+ 1

)(
−n

2
+ 1

)
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− 6

(⌊
3n − 2

4

⌋
−
⌈
n

4

⌉
+ 1

)(⌊
3n − 2

4

⌋
+
⌈
n

4

⌉)
+ 8

⌊
5n

6

⌋
− 4n + 8

+ 3δn4

(
3n

4
+ 1

)
− 6δn8 .

Expanding this and collecting terms with the same power of n gives

23

48
n3 − 29

4
n2 + 1

12
(−36α(n) + 180β(n) + 36γ (n) + 27Δn

4 − 167)n

+(6α(n)2 − 6β(n)2 − 6γ (n)2 + 12β(n) + 8δ(n) − 12γ (n) + 3Δn
4 − 6Δn

8 − 3).

We check that this gives T = 0 for n = 0 and n = 2. Finally, we divide by 24. �

Corollary 38. For even n ∈ Z, write n = 24q + r with q, r ∈ Z and 0� r < 24. The dimension of the

weight space of weight n in the sl2(C)-module Λ4V(n) is

dim[Λ4V(n)]n

= 1

1152

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

23n3 − 42n2 + 48n (r = 0) 23n3 − 42n2 + 48n + 288 (r = 12),

23n3 − 42n2 − 60n + 104 (r = 2) 23n3 − 42n2 − 60n + 104 (r = 14),

23n3 − 42n2 + 48n + 160 (r = 4) 23n3 − 42n2 + 48n − 128 (r = 16),

23n3 − 42n2 − 60n + 360 (r = 6) 23n3 − 42n2 − 60n + 360 (r = 18),

23n3 − 42n2 + 48n − 256 (r = 8) 23n3 − 42n2 + 48n + 32 (r = 20),

23n3 − 42n2 − 60n + 232 (r = 10) 23n3 − 42n2 − 60n + 232 (r = 22).

Proof. The dimension is given by the formula of Proposition 37. The LCM of the denominators of

the functions α(n), β(n), γ (n), δ(n) and the periods of the functions Δn
4 and Δn

8 equals 24.

Hence the dimension is given by a cubic polynomial in n which depends on the remainder of n

modulo 24. �

Definition 39. We consider the following integer-valued functions of n:

ε(n) =
⌊
3n

4

⌋
, ζ(n) =

⌈
n + 2

4

⌉
, η(n) =

⌈
3n + 2

4

⌉
, θ(n) =

⌊
5n + 2

6

⌋
.

Proposition 40. For even n ∈ Z, the number of solutions P, Q , R, S ∈ Z to

n� P > Q > R > S � 0, P + Q + R + S = 5n + 2

2
,

equals

23

1152
n3 − 21

64
n2 + 1

288
(36ε(n) − 36ζ(n) + 180η(n) + 27Δn

4,2 − 254)n

+ 1

48
(−12ε(n)2 + 12ζ(n)2 − 12η(n)2 − 12ε(n) − 12ζ(n) + 36η(n) + 16θ(n)

+3Δn
4,2 − 12Δn

8,6 − 24).

Proof. Similar to the proof of Proposition 37. �

Corollary 41. For even n ∈ Z, write n = 24q + r with q, r ∈ Z and 0� r < 24. The dimension of the

weight space of weight n + 2 in the sl2(C)-module Λ4V(n) is
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dim[Λ4V(n)]n+2

= 1

1152

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

23n3 − 72n2 − 48n (r = 0) 23n3 − 72n2 − 48n (r = 12),

23n3 − 72n2 + 60n − 16 (r = 2) 23n3 − 72n2 + 60n − 304 (r = 14),

23n3 − 72n2 − 48n − 128 (r = 4) 23n3 − 72n2 − 48n − 128 (r = 16),

23n3 − 72n2 + 60n − 432 (r = 6) 23n3 − 72n2 + 60n − 144 (r = 18),

23n3 − 72n2 − 48n + 128 (r = 8) 23n3 − 72n2 − 48n + 128 (r = 20),

23n3 − 72n2 + 60n − 272 (r = 10) 23n3 − 72n2 + 60n − 560 (r = 22).

Proof. Similar to the proof of Corollary 38. �

Theorem 1 now follows by applying Lemma 3 to Corollaries 38 and 41.

Remark 42. We can use Corollary 32 to obtain another proof of the decompositions in Remark 5. For

n = 4, 6, 8, 10 we compute the polynomial Pn(x) from Definition 33. In each case, the coefficient of

x(w+4n)/2 is dim[Λ4V(n)]w , and we then apply Lemma 3 to find the multiplicity of V(w) in Λ4V(n):

P4(x) = x10 + x9 + x8 + x7 + x6,

P6(x) = x18 + x17 + 2x16 + 3x15 + 4x14 + 4x13 + 5x12 + 4x11 + 4x10 + 3x9 + 2x8

+ x7 + x6,

P8(x) = x26 + x25 + 2x24 + 3x23 + 5x22 + 6x21 + 8x20 + 9x19 + 11x18 + 11x17

+ 12x16 + 11x15 + 11x14 + 9x13 + 8x12 + 6x11 + 5x10 + 3x9 + 2x8 + x7 + x6,

P10(x)= x34 + x33 + 2x32 + 3x31 + 5x30 + 6x29 + 9x28 + 11x27 + 14x26 + 16x25

+ 19x24 + 20x23 + 23x22 + 23x21 + 24x20 + 23x19 + 23x18 + 20x17

+ 19x16 + 16x15 + 14x14 + 11x13 + 9x12 + 6x11 + 5x10 + 3x9 + 2x8 + x7 + x6.

10. Conclusion

Werecovered a five-dimensional 4-Lie algebra from the isomorphismΛ4V(4) ∼= V(4). This algebra
satisfies the quaternary derivation identity D, and hence also the quaternary alternating sum identity

S. We found that the identity S is also satisfied by the unique structure on V(6), every structure f + xg

on V(8), and the structure f + 5
4
g on V(10). By Bremner [4] it is known that the quaternary alternating

sumoperation ina totally associativequadruple systemalso satisfies S. This raises thequestionwhether

the structures which satisfy S can be embedded into totally associative quadruple systems if the

original associative operation is replaced by the quaternary alternating sum. An affirmative answer

to this question would provide a partial generalization of the Poincaré–Birkhoff–Witt theorem for

Lie algebras; see Pozhidaev [28] for related work. Simple associative n-tuple systems were classified

by Carlsson [9]. In particular, for n = 4, any simple associative quadruple system is isomorphic to a

subspace of matrices of the form⎡
⎣0 0 Z

X 0 0

0 Y 0

⎤
⎦ ,

where X, Y, Z have sizes q × p, r × q, p × r (respectively) and p, q, r are positive integers. It is an

open problem to determinewhether any of the alternating quaternary algebras presented in this paper

are isomorphic to such a subspace of matrices under the quaternary alternating sum.
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