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Object recognition: view-specificity and motion-specificity
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Abstract

This paper describes an experiment to distinguish between two theories of human visual object recognition. According to the
6iew-specificity hypothesis, object recognition is based on particular learned views, whereas the motion-specificity hypothesis states
that object recognition depends on particular directed view-sequences. Both hypotheses imply a degree of 6iew-bias (i.e.
recognition of a given object is associated with a small number of views). Whereas the view-specificity hypothesis attributes this
view-bias to a preference for particular views, the motion-specificity hypothesis attributes view-bias to a preference for particular
directed view-sequences. Results presented here suggest that recognition of 3D rotating objects involves significant view-bias. This
view-bias appears to be associated with an underlying bias for particular directed view-sequences, and not for particular views.
© 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The physical world does not present a cacophony of
random events to the nervous system. There is struc-
ture, but it is hidden amongst the many layers of the
sensory array. More importantly, there exist powerful
and generic short-cuts for recovering this structure that
do not require near-infinite spans of time for their
biological evolution, nor near-infinite numbers of neu-
rons for their learning.

The laws of physics impose severe constraints on the
behaviour of an object in motion. It would, therefore,
be surprising if perceptual systems had not evolved to
take advantage of these physical constraints as a means
of imposing corresponding computational constraints
on learning. For example, the temporal proximity of
images of a given object provides a temporal binding of
its perceptually salient properties, such as orientation in
3-space. It is this temporal binding which permits us to
infer that temporally proximal images are derived from
similar physical scenarios (e.g. similar 3D pose). Con-
versely, it also permits us to infer that images separated
by long time intervals are likely to be derived from

different physical scenarios. The compelling logic of
this type of argument suggests that a perceptual system
would be at a selective disadvantage if it did not utilise
temporal aspects of stimuli.

It is now well established that a proportion of neu-
rons in the primary visual cortex are selective for
particular types of motion within their small receptive
fields, and that motion is detected over large retinal
areas by single neurons in MT (Bradley, Grace &
Anderson, 1998). Evidence that neurons in the primate
inferotemporal cortex respond selectively to particular
types of complex motion was first presented in (Perrett,
Harries, Mistlin & Chitty, 1990). Neurons were found
to respond to human walkers (or to Johansson (1973)
figures1.). The neurons were highly selective; a large
neuronal response to a Johansson figure was observed,
but if the figure was walking forwards whilst translating
backwards then the neuronal response was much re-
duced. In a related study, (Mather & Murdoch, 1994)
Mather created male-female cue-conflict Johansson
figures by combining the 3D structure of a male figure
with the dynamics of a female figure, and vice versa.
Results suggested that observers’ gender judgements
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1 A Johansson figure is a moving human viewed in the dark with
lights attached to each major joint.

0042-6989/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 4 2 -6989 (99 )00123 -6



J.V. Stone / Vision Research 39 (1999) 4032–4044 4033

were based on the different dynamics of male and
female Johansson figures, and not on their 3D struc-
ture. This finding contradicts conventional theories
which assume that motion contributes to recognition
only via structure-from motion mechanisms. As to
whether these types of stimuli are represented in terms
of 2D or 3D information, evidence presented in
(Bülthoff, Bülthoff & Sinha, 1997) suggests that they
are represented as 2D traces.

Neurophysiological evidence suggests that the tempo-
ral order of static stimuli is a factor in neuronal firing
rates. After prolonged exposure to a constant (ran-
domly chosen) sequence of fractal patterns, the tempo-
ral proximity of static pictures was found to affect the
activity of neurons in the anterior inferior temporal
lobe of monkeys (Miyashita, 1988). These results have
been modelled in (Wallis, 1998) using a Hebbian learn-
ing rule derived from (Griniasty, Tsodyks & Amit,
1993) which includes a temporal trace of the activity of
model neurons. Using a similar learning rule, a model
of temporal binding in recognition of faces which ro-
tated in depth was presented in (Bartlett & Sejnowski,
1998). On a more general level, temporal continuity has
been proposed as a generic heuristic for learning of
perceptual invariances (Stone, 1996a). The utility of this
heuristic has been demonstrated in a number of artifi-
cial neural network models (Stone, 1996b; Becker,
1992, 1996).

These computational studies are consistent with a
range of psychophysical experiments which have been
interpreted within a Bayesian framework in (Weiss &
Adelson, 1998); the ‘perceptual prior’ (probability den-
sity function) adopted implies that motion tends to be
slow and smooth. In a similar vein, it has been shown
(Kellman & Short, 1987) that infants dis-habituate to
static views of 3D objects only if they had been previ-
ously presented in continuous motion. In contrast, pre-
vious exposure to a set of static views failed to induce
dis-habituation to static views. Again, these psycho-
physical results are consistent with computational stud-
ies which make use of temporal associations to learn to
recognise objects (Edelman & Weinshall, 1991). How-
ever, Edelman and Weinshall argue for a view-specific
mechanism which uses temporal proximity only as a
means of providing information about which particular
views belong to the same object. This contrasts with
Kellman’s interpretation, which states that dis-habitua-
tion could not be based on matching to particular
learned views, and also with evidence presented in
(Stone, 1998a) that motion per se is involved in object
recognition.

The role of temporal change in terms of shifts in
facial expression has also been investigated as a cue for
face recognition. No advantage for moving over static
faces was found for recognition of unfamiliar faces
(Christie & Bruce, 1998). However, recognition of mov-

ing (famous, and therefore familiar) faces was found to
be significantly better than that of static faces (Lander,
Christie & Bruce, 1998), and the authors argue that the
difference in performance between moving and static
faces cannot be explained away by mechanisms such as
shape-from-motion.

Computational vision research has demonstrated
utility for motion, where it has not only been used as a
means of recovering shape (Ullman, 1979; Blake,
Cipolla & Zisserman, 1990), but also as a direct cue for
recognition of human walkers (Niyogi & Adelson,
1994), and of characteristic motion of natural objects
such as tree canopies (Nelson & Polana, 1992). Collec-
tively, these studies suggest that motion is critical for
learning to recognise objects and faces, and perhaps
that motion per se might be used as a cue for recogni-
tion in human vision (Stone, 1993)

2. The view-specificity and motion-specificity hypotheses

The view-specificity hypothesis (Cutzu & Edelman,
1994a; Logothetis & Pauls, 1995) states that an object is
recognised by utilising learned characteristic views, and
that recognition from other views is mediated by a
process of interpolation over these characteristic views.
The present research was motivated by several studies
(Tinbergen, 1951; Mather, Radford & West, 1992;
Sinha & Poggio, 1996), including rotation-reversal ex-
periments (Stone, 1998a,b), which are consistent with a
motion-specificity hypothesis. This hypothesis posits
that objects can be recognised on the basis of character-
istic directed view-sequences, or spatiotemporal signa-
tures (Stone, 1993; Niyogi & Adelson, 1994; Stone,
1995).

Both the view-specificity and motion-specificity hy-
potheses predict that particular views tend to be fa-
voured over others during recognition. If a given object
is repeatedly recognised on the basis of a short sub-se-
quence of learned images then the precise timing of
recognition tends to occur toward the end of that
sub-sequence, creating an apparent bias for views to-
ward the end of the sub-sequence. However, whereas
view-specificity attributes this 6iew-bias to a preference
for certain 6iews, motion-specificity attributes the ob-
served view-bias to a preference for certain directed
6iew-sequences.

In Stone (1998a), it was demonstrated that, after
subjects learn to recognise a novel 3D object which has
a constant rotational direction, subsequent recognition
performance is compromised if the direction of rotation
is reversed. Specifically, subjects learned to recognise
novel, 3D, rotating objects (see Fig. 1) from short
movies, each of which was played in a constant tempo-
ral direction during learning. After learning, the tempo-
ral order of images in certain movies was reversed. This
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rotation-reversal (i.e. playing movies of learned objects
‘backwards’) produced a significant reduction in recog-
nition performance. The effects of rotation-reversal
cannot be interpreted in terms of atemporal 2D nor 3D
shape information derived via shape-from-shading/mo-
tion/texture cues, 2D characteristic views (Bülthoff &
Edelman, 1992), nor ‘geons’ (Biederman, 1995), because
all of these are invariant with respect to the temporal
order of images. Results were, therefore, interpreted in
terms of object-specific spatiotemporal signatures.

The experiments presented here are intended to in-
vestigate whether view-bias is associated with view-spe-
cificity and/or motion-specificity. Specifically, these
experiments are intended to test the hypothesis that a
decrease in view-bias after rotation-reversal is associ-
ated with a corresponding decrease motion specificity.

2.1. Predictions

If recognition of an object is mediated only in terms
of a small number of views then the amount of view-
bias should not be altered by rotation-reversal, because
rotation-reversal does not affect which views are seen
by a subject. However, if recognition is mediated by
directed 6iew-sequences then rotation reversal should
reduce view-bias.

3. Methods

Two rotation-reversal experiments were run. The first
experiment is described in (Stone, 1998a), which used
synthetic, grey-level objects (see Fig. 1). The other
experiment was similar in design: the principal differ-
ence being that objects were defined only in terms of an
homogeneous texture of white dots on a black back-
ground (see Fig. 2). Results for this experiment are
described below. These experiments will be referred to
as GL and DOT, respectively.

Fig. 2. Example of a textured object

3.1. Stimuli

Experiments DOT and GL have the following fea-
tures in common. The stimuli consisted of image se-
quences (movies) of rigid, smooth, ‘amoeboid’ objects
rotating against a black background (see Figs. 1 and 2).
Each 90-image sequence was generated using the Mat-
Lab programming language. In each sequence, one
object rotated around an axis which itself rotated over
time, giving the appearance of a tumbling motion. All
rotations were around a fixed point, which approxi-
mated the centre of mass of the object. Each image was
300×300 pixels. Image sequences were played at a
constant number of frames per second, and were dis-
played in a darkened room on an Apple Multiple Scan
20 computer screen (set to 1024×768 pixel resolution),
using a Videotoolbox software (Pelli, 1997). Note that
the starting image of each sequence was chosen at
random every time it was played to prevent subjects
from attending only to the first image in each movie
sequence. Each movie displayed an object which began
and ended with the same 3D pose, and could therefore
be played for 90 frames from any starting image.

3.2. GL stimuli

Aspects of the stimuli that were unique to the GL
experiment are as follows. The stimuli consisted of
image sequences of grey-level objects. The obliquely
placed light source was constant within and between
image sequences. In each sequence, one object rotated
through 360 degrees around an axis which rotated over
time. All objects underwent the same set of rotational
changes. Each image had 128 grey-levels. Image se-
quences were played at a constant rate of 25 images/s
(3.6 s per movie). Subjects viewed movies at a distance
of about 75 cm without a chin rest. The target and
distractor objects were different for each subject, and
were chosen randomly at the start of the experiment.
Data from a randomly selected 24 of the 27 subjects
reported in (Stone, 1998a) subjects were used, for com-Fig. 1. Example of a grey-level object
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Table 1
Experimental procedure for one of three blocks of stimuli, for a subject who requires ten trials to learn the target objects, followed by five test
trialsa

Learning trials Test trialsBlock 1

1512Trial Number 1 2 3 4 145 136 7 8 9 10 11

	 	 	Exp target 1 � � � 	� � � � � � � 	
� �Exp target 2 	 	 	 	 	 	 	 	 	 	 � � �

� �Cntrl target 3 � � � �� �� � � � � � �
	 	 	Cntrl target 4 	 	 		 	 	 	 	 	 	 	 	

a Each trial consists of four targets and four new distractors (not shown here) presented in random order, and counter-balanced for image
sequence order. Targets 1 and 2 are in the experimental condition E. The temporal order of images in each of these target sequences is constant
during the ten learning trials (the Epre condition), and reversed in the five test trials (condition Epost). Targets 3 and 4 are in the control condition
C, and the order of images in these sequences remains constant throughout the ten learning trials (condition Cpre) and the five learning trials
(condition Cpost). The symbol (	,� ) indicates whether an object’s 90-image sequence is presented in ascending order (	) (e.g. images 1�90),
or descending order (�) (e.g. images 90�1) from a starting image which was chosen randomly on each trial. Any image could be chosen as the
starting image without causing discontinuities in motion because all contiguous images (including frames 1 and 90) showed target views separated
by a small angular rotation.

parability with data from 24 subjects used in the DOT
experiment. Subjects were undergraduate psychology
students.

3.3. DOT Stimuli

Aspects of the stimuli that were unique to the DOT
experiment are as follows. The stimuli consisted of
image sequences of uniformly textured objects. The
texture consisted of white dots on a black object,
displayed against a black background, so that the ob-
ject outline was invisible. In each sequence, one object
rotated through 600° around an axis which itself ro-
tated over time. Each object underwent a unique set of
rotational changes. Image sequences were played at a
constant rate of 15 images/s (6 s/movie). Subjects
viewed movies at a distance of 57 cm, with a chin rest.
The target objects were the same for each subject, and
were chosen randomly from an initial set of stimuli.
The allocation of the 12 learned objects (and their
learned direction of motion) to the experimental and
control conditions was counter-balanced within the
male and female groups. The subjects were 12 male and
12 female undergraduate psychology students. Note
that the angular speed of object rotation was 10° per
second in the DOT and GL movies.

3.4. Procedure

For both GL and DOT experiments, there were three
learning blocks of about 20 min each (see Table 1). In
each block, each subject learned to recognise four
target objects, in a continuous recognition task, with
targets being shown for between 10 and 20 trials. At the
start of each block, subjects were shown four targets
once for two complete rotations (i.e. 180 images).
Thereafter, each subject was shown a series of test

image sequences, of which half displayed a target object
and half displayed a distractor object.

Target objects were presented as part of a trial set,
which comprised four targets and four previously un-
seen and randomly chosen distractor objects. Elements
of each trial set were displayed sequentially and in
random order. Each distractor was seen once only.

Subjects indicated if each image sequence contained a
target by pressing one of two response keys. Subjects
were asked to respond as quickly and as accurately as
possible at any time after the start of each image
sequence. The starting image of each sequence was
chosen at random every time it was presented, and each
sequence was presented in full irrespective of when a
response was made. No feedback was given at any time.

Subject performance was evaluated over each trial set
within a block. A score for each trial set was calculated
as follows. If T/4 is the proportion of targets correctly
recognised and F/4 is the proportion of distractors
identified as targets then score=1 if T]3 and F51;
else score=0. The learning criterion was reached by
obtaining a score of 1 for three out of four consecutive
trial sets. After the learning criterion had been reached,
each subject continued the task as before for five test
trial sets. Subjects were not informed that the learning
criterion had been reached, and the five test sets fol-
lowed the learning sets without interruption.

Within each block, half of the targets were allocated
to the experimental and half to the control condition.
In the experimental condition, the order of images in
each target sequence was reversed once the learning
criterion had been reached. In contrast, the order of
images in each target sequence remained unaltered
within the control condition. Subjects were informed at
the start of the experiment that the order of images in
some sequences would be reversed at some points in the
experiment.
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Fig. 3. DOT experiment: mean reaction times during learning (trials 1–10) and test (trials 11–15) for control (dashed lines) and experimental (solid
line) conditions. Bars indicate standard errors (see Methods section). Each movie presentation lasted for 6 s.

The order of images was counter-balanced across
sequences. Half of the target and distractor image
sequences were played in ascending image order (e.g.
1�90, as denoted by a ‘	’ in Table 1), and half in
descending order (e.g. 90�1, as denoted by a ‘�’ in
Table 1) during learning and testing, in both the exper-
imental and control conditions.

4. Effects of rotation-reversal

Graphs for RT and hit-rate for the DOT experiment
are displayed in Figs. 3 and 4, respectively. In order to
reflect the within-subjects design, the standard error
bars plotted in Figs. 3 and 4 were computed only after
inter-subject variability had been removed (see (Loftus
& Masson, 1994) or (Stone, 1998a) for details). The
effects of rotation-reversal are larger, but qualitatively
similar to, those reported in (Stone, 1998a) where GL
objects were used. Indeed, the reason for using DOT
objects was to increase the effects of rotation-reversal
by precluding subjects from using atemporal cues such
as shading. Whereas the percentage change in hit-rate
was −13% in the GL experiment, it was −22% in the
DOT experiment. Corresponding percentages for the
RT were +10% (GL) and +25% (DOT).

Results are summarised in Tables 2–5. Rotation-re-
versal significantly increased RT and significantly re-
duced hit rates between the final learning trial (defined

as trial 10) and the first test trial (defined as trial 11),
for both the GL and DOT experiments2.

It is noteworthy that in both experiments, false alarm
rates were essentially unaffected by rotation-reversal,
suggesting that RT and hit-rate results are not due to
general cognitive effects of reversal. The false alarm
rates for trials 10 and 11 were 0.131 and 0.161 for the
GL experiment, and 0.229 and 0.233 for the DOT
experiment; the results of paired two-tailed t-tests on
these false alarm rates were P=0.194 (GL) and P=
0.846 (DOT).

For comparison with view-bias data to be presented,
the data were re-analysed in terms of the mean propor-
tion of 6alid responses m̄ made by each of 24 subjects. A
valid response is defined as a correct response which is
made before the presented movie ends3. Subject means
are presented in Table 6. Results for hit-rate are consis-
tent with those of m̄ for the DOT experiment. However,
whereas the GL hit-rate results show a significant effect

2 For notational convenience, the final learning trial is defined as
‘trial 10’, and the first test trial is defined as ‘trial 11’ (in practice,
subjects typically required 12 learning trials

3 Responses made 200–300 ms after a given movie ends could have
been counted as valid because these were likely to have been associ-
ated with the final displayed images of that movie. However, with
mean RTs of around 3.5 s and standard errors of 0.2 s, the number
of such uncounted valid responses is small, and the impact of
ignoring these is therefore minimal.
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Fig. 4. DOT experiment: mean recognition rates during learning (trials 11–15), during control (dashed line) and experimental (solid line)
conditions. Bars indicate standard errors (see Methods section).

of rotation-reversal, the corresponding m̄ results do not.
This suggests that a relatively high proportion of cor-
rect responses in the experimental condition of the GL
experiment were classified as invalid because they were
made after the presented movie had ended, and not
because they were incorrect responses.

Overall, the effects of rotation-reversal were larger
for DOT than GL objects. These two experiments differ
in several respects (as described above), and it is possi-
ble that these differences contributed to the difference
in results. However, it is conjectured that the differ-
ences in results are due principally to the increased
reliance on motion induced by use of DOT objects.

5. Effects of rotation-reversal: view-specificity and
motion-specificity

An obvious measure of view-specificity is the degree
of similarity between views of an object that evoke a
correct recognition response from a given subject. Un-
fortunately, this is also an obvious choice for measuring
the degree of motion-specificity. Thus, both the view-
specificity and motion-specificity hypotheses predict sig-
nificant view-bias for objects learned with a single
rotation direction. However, the view-specificity and
motion-specificity hypotheses predict different amounts
of view-bias after rotation-reversal, because view-bias

resulting from view-specificity should be unaltered by
rotation-reversal, whereas view-bias resulting from mo-
tion-specificity should be eliminated by rotation-
reversal.

5.1. Measuring 6iew-bias

The measure of view-bias b used here is defined in
terms of the propensity of subjects to make a correct
response4 while a particular image of an object’s movie
is being displayed (see Fig. 5). Briefly, each subject
responded to the kth movie over a number of trials,
and the identity of the image associated with each of nk

valid responses was recorded as an angle between 1 and

Table 2
GL experiment (RT): results of two-tailed paired t-tests for the mean
reaction times of subjects between trials 10 and 11

ExperimentalCondition Control

Trial 10 1.77 1.80
Trial 11 1.811.95
t 0.1452.52

2727df
B0.01 0.443P

4 Incorrect responses were excluded because, as might be expected,
it was found that subjects incorrect responses were not associated
with particular views of objects.
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Table 3
GL experiment (hit rate): results of two-tailed paired t-tests for the
mean hit rates of subjects between trials 10 and 11

Experimental ControlCondition

0.89 0.86Trial 10
0.77 0.89Trial 11

t 4.42 −1.00
df 27 27

0.326B0.001P

Table 5
DOT experiment (hit rate): results of two-tailed paired t-tests for the
mean hit rates of subjects between trials 10 and 11

Condition Experimental Control

Trial 10 0.9170.93
Trial 11 0.890.73

1.282−4.87t
23df 23
B0.0001P 0.213

360°. The view-bias is then defined as bk=nk �rk �2,
where �rk � is the length of the mean resultant vector
of these angles. The value of �rk � is close to zero if
randomly chosen images are associated with valid re-
sponses, and approaches unity if similar views are
associated with correct responses. Defining bk as
nk �rk �2 (Fisher, 1995) ensures that that the expected
value of bk is unity for any number of valid re-
sponses, with large values of bk implying a large view
bias (see Appendix A).

View-bias for each movie was measured over the
final five learning trials (the pre trials), and also over
the five test trials (the post trials). Each of the S
subjects learned to recognise six control and six ex-
perimental objects, making a total of R=12S sets of
ten responses per subject. These were classified into
two control conditions, Cpre and Cpost and two experi-
mental conditions Epre and Epost, where the pre and
post subscripts refer to trials before and after rota-
tion-reversal, respectively. Recall that control objects
did not undergo rotation-reversal after learning
whereas experimental objects did. View-bias for each
condition was defined as the mean view-bias over all
movies in that condition.

5.2. Do subjects respond to particular 6iews?

View-bias is based on variables with a circular dis-
tribution, so that its significance cannot be assessed
using statistics based on Gaussian distributions
(Fisher, 1995). Consequently, statistical tests based on
randomisation are used (see Appendix B).

Evidence that subjects respond to particular views
is given by pooled view-biases from the GL and DOT

results. as shown in Table 7. Significant levels of
view-bias (PB0.01) were found in all conditions ex-
cept the post-reversal experimental condition Epost

(P=0.617). Thus 6iew-bias is significantly greater than
chance except after rotation-re6ersal.

A similar pattern emerges if data from the two
experiments are analysed separately (see Tables 8 and
9). Again, a non-significant view-bias was obtained
for experimental condition Epost in both GL and
DOT experiments, with (P\0.45) in both cases. For
the GL experiment, significant view-biases (PB0.05)
were found in control conditions Cpre and Cpost,
whereas view-bias approached significance in the ex-
perimental condition Epre (P=0.089) but not in Epost

(P=0.630). Similarly, for the DOT experiment, view-
bias approached significance in both control condi-
tions Cpre (P=0.060) and Cpost (P=0.103), whereas
significant view-bias was found in experimental condi-
tion Epre (P=0.003) but not in Epost (P=0.476).

These results suggest that the view-bias observed
before rotation-reversal was due to motion-specificity,
and not to view-specificity, because any view-specific-
ity acquired during learning should survive rotation-
reversal. In contrast, and by definition, any
motion-specificity acquired during learning could not
survive rotation-reversal.

Table 6
Results of paired t-tests (2-tailed) for the mean difference m̄pre-post in
proportion of valid responses m̄ per subject before and after rotation-
reversal, for the control and experimental conditions of the GL and
DOT experimentsa

Experiment DOTGL

Control ExperimentalCondition Control Experimental

−0.026 0.026m̄pre−m̄post −0.046 0.144
1.336 5.986−2.264−1.860T

23 23df 23 23
0.0330.195 B0.0010.076p(m̄pre-post)

a Note that the significant results for the control condition in the
DOT experiment was for an increase in m̄, whereas the corresponding
significant results for the experimental condition was for a decrease in
m̄.

Table 4
DOT experiment (RT): two-tailed paired t-tests for the mean reaction
times of subjects between trials 10 and 11.

Condition Experimental Control

Trial 10 3.82s3.58s
4.46s 3.50sTrial 11

1.78−4.04t
23df 23
B0.001P 0.089
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Fig. 5. Diagrammatic representation of small (A) and large (C) view-bias for five consecutive simulated responses to the kth movie, and the
corresponding mean resultant vector rk associated with each set of responses (B and D, respectively). (A, C) The five image identity numbers
(1–90) of object views which evoke correct responses are multiplied by four to produce a set of five image-angles. This circular representation of
image identity numbers is justified because images 1 and 90, which correspond to image angles 4 and 360, show similar views of an object. As
displayed in A and C, each image-angle can be plotted as a unit vector with a direction defined by one image-angle. (A) For nk=5 randomly
chosen response image angles, the mean resultant vector shown in B has a short length �rk �, denoting a small view bias. (C) For responses that
cluster around a single image-angle, the mean resultant vector shown in D has a length �rk � approaching unity, denoting a large view bias. In
practice, view bias is defined as bk=nk �rk �2 (see Appendix A). View-bias b within a single condition is defined as the mean value of bk over a total
of 144 sets of five responses.

5.3. Does rotation-re6ersal decrease 6iew-bias?

If rotation-reversal decreases view-bias then (bpostB
bpre). The significance of the difference g= (bpre−bpost)
in view-bias before bpre and after bpost rotation-reversal
was computed using a (1-tailed) Wilcoxon matched-
pairs signed-ranks test5. Results are displayed in Table
10.

For the pooled (GL+DOT) view-bias data, a signifi-
cant decrease (P=0.024) in view-bias was found be-
tween conditions Epre and Epost, but not between the
control conditions Cpre and Cpost (P=0.389).

For the individual GL and DOT experiments, de-

creases in view-bias for the experimental conditions
approached significance, with (P=0.061) and (P=
0.057). respectively. As predicted, no significant change
in view-bias occurred in the control conditions of exper-
iments GL or DOT with P=0.430 and 0.194,
respectively.

Table 7
Pooled GL and DOT view-bias data: a mean view-bias b before and
after rotation reversal, and the probability p(b) of obtaining the
observed values of b (or greater) by chancea

Condition Control Experimental

Post-Pre-reversal Pre-reversal Post-
reversal reversal

View-bias 1.1471.121 0.9861.145
(b)

0.0030.008 0.617P(b\1) 0.003

a Each value of p(b) is based on 10 000 randomisation samples (see
Appendix B).

5 This probability could not be computed using a randomisation
test because the numbers of valid items for a given movie can differ
in the pre- and post-reversal conditions. Therefore, the underlying
distributions of pre- and post-reversal view-biases are different. In the
absence of an appropriate normalising term (e.g. standard deviation)
such a difference precludes the use of randomisation procedures (see
Appendix B).
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Table 8
GL experiment: view-bias b before and after rotation-reversala

Condition Control Experimental

Pre-reversal Post-rever-Pre-reversal Post-rever-
sal sal

0.9721.2041.136 1.093View-bias
(b)

0.6300.003 0.0890.031P(b\1)

a See caption of Table 7 for details.

quite radical changes, such as a change to a novel
viewpoint. For example, in (Bülthoff & Edelman,
1992), the largest decrease in recognition (around 35%)
was associated with a viewpoint change of 60° using
‘paper-clip’ objects; and it is reported that similar re-
sults were obtained using amoeboid objects like those
used here. Similarly, in (Hayward & Tarr, 1997), recog-
nition performance of synthetic objects with well
defined visual features decreased by around 6% follow-
ing a change in viewpoint of 30°. These figures suggest
that rotation-reversal produces changes in recognition
performance on a par with more radical interventions,
such as a change in viewpoint.

6.2. Implications of motion-specificity

Evidence that recognition is mediated by particular
static views has previously been obtained from experi-
ments in which subjects were trained with rotating
objects and then tested with static views (such experi-
ments use objects which rotate back and forth through
a small angle). These experiments show that recognition
is sensitive to viewpoint (e.g. Bülthoff & Edelman,
1992) and demonstrate the existence of view-bias (e.g.
Cutzu & Edelman, 1994b). However, results presented
here suggest that this type of experimental design pro-
duces motion-specificity, and that the observed view-
bias can be attributed to a preference for particular
learned view-sequences. It follows that, if subjects are
tested with static views which happen to be part of a
learned view-sequence then a preference for particular
views will be inferred. Thus, the view-bias observed in
such experiments may depend on an underlying prefer-
ence for particular view-sequences (learned view-se-
quences should be independent of a ‘forwards’ or
‘backwards’ directions in these experiments because
presented objects rotate back and forth). This is not
intended to suggest that view-specificity cannot mediate
recognition (indeed, it has been demonstrated that
static views of novel objects are sufficient for learning
and recognition (Bülthoff & Edelman, 1992)); it is
intended to suggest that the interpretation of view-bias
requires some care if subjects are trained using rotating
objects.

6.3. Experimental critique

From a purely logical viewpoint, what explanations
other than motion-specificity might account for the
effects of rotation-reversal?

6.3.1. Subjects learned ‘early’ 6iews of objects
It may be thought that the observed view-bias re-

sulted from preferential learning of views at the begin-
ning of different presentations of a given movie.
However, as stated above, this cannot occur because

The results are unequivocal for the pooled (GL+
DOT) data, showing significant amounts of view-bias
except after rotation-reversal, and a significant reduc-
tion in view-bias only after rotation-reversal. This sug-
gests that the less consistent results for the individual
GL and DOT data are due to a lack of statistical
power. The overall pattern of results is consistent with
the hypothesis that motion-specificity, and not view-
specificity, was responsible for the observed view-bias
and for the reduction in view-bias following rotation-
reversal.

6. Discussion

The findings presented here are consistent with the
hypothesis that recognition of objects in motion de-
pends on learned directed view-sequences. The resultant
view-bias is largely eliminated by rotation-reversal, sug-
gesting that view-bias is due to motion-specificity, and
not to view-specificity in the experiments reported here.

6.1. Effect Size of rotation-re6ersal

The magnitude of the effects of rotation-reversal are
comparable with the effects of other visual transforma-
tions used in object recognition experiments. Rotation-
reversal reduces recognition rates by between 13% and
22% in the experiments reported here. However, object
recognition is notoriously robust with respect to experi-
mental manipulation, and reductions in performance of
the magnitude observed here can be induced only by

Table 9
DOT experiment: view-bias b before and after rotation-reversala

ControlCondition Experimental

Post-Pre-reversalPre-reversal Post-
reversal reversal

1.00View-bias 1.105 1.089 1.198
(b)

0.1030.060 0.476P(b\1) 0.003

a See caption of Table 7 for details.



J.V. Stone / Vision Research 39 (1999) 4032–4044 4041

Table 10
Difference in view-bias g= (bpre−bpost) before and after rotation-reversal, and associated 1-tailed significance p for control and experimental
conditions of the GL, DOT and (GL+DOT) pooled dataa

Experiment DOTGL GL+DOT

ExperimentalControlExperimentalControlCondition ExperimentalControl

−0.031g −0.079 0.134 0.1490.018 0.164
0.0240.3890.570.194P 0.0610.430

a Results were obtained using a (1-tailed) Wilcoxon matched-pairs signed-ranks test, with each rank being associated with one movie
presentation.

the starting image of each movie was chosen at random
on each occasion it was presented.

6.3.2. Cogniti6e effects
General cognitive effects can be discounted because,

not only is there no reduction in the recognition of
control objects which are inter-leaved with experimental
objects, but the false alarm rate for distractor objects is
essentially unaltered by rotation-reversal.

6.3.3. ‘Forward’ and ‘backward’ mo6ies imply different
3D shapes

It is possible that the 3D perception of an object
depends on the direction of rotation. From a purely
information-theoretic standpoint, the 3D shape infor-
mation implied by a movie is independent of whether
its images are displayed in ascending or descending
order. Nevertheless, the human visual system may inter-
pret a movie of a rotating object as one shape, and a
‘backward’ version of that movie as a slightly different
shape. The experiments presented here cannot be used
to address this issue.

6.3.4. The stimuli are ‘unnatural’
The objects were not everyday objects, but they were

not unnatural in any obvious sense. In order to argue
that the observed effects were peculiar to the type of
object used, one would have to demonstrate that the
effects of rotation-reversal only applied to certain
classes of objects. On the basis of recent results on
recognition of faces (Christie & Bruce, 1998; Lander et
al., 1998), such a class is more likely to be defined in
terms of familiarity than in terms of physical properties,
such as shape.

6.4. Motion-specificity or sequence-specificity?

Throughout this paper, the effects of rotation-rever-
sal have been attributed to motion-specificity. However,
motion could contribute in at least two ways to object
recognition: recognition from optic flow, or from tem-
poral order (sequence-specificity)6. Recognition from

optic flow requires that an object can be recognised
from the particular optic flow that its motion implies7.
In contrast, recognition from temporal order requires
that an object can be recognised from the particular
view-sequence its motion generates, without appealing
to mechanisms for computing the object’s motion per
se. The current paper is not designed to investigate this
critical distinction, and the effects reported here could
depend on both optic flow and sequence-specificity.
However, it is noteworthy that rotation-reversal should
have a profound effect on recognition based on both
optic flow and temporal sequence.

7. Conclusion

Rotation-reversal does not completely prevent recog-
nition, but it does largely eliminate view-bias. A pro-
portion of recognition performance must therefore
depend on motion-independent mechanisms. The point
of this paper is not to show that motion-specificity is
the predominant cue for recognition, but that the de-
crease in recognition performance following rotation-
reversal can be attributed to motion-specificity.

It might be argued that there is a contradiction
between motion as a cue to recognition via structure-
from-motion mechanisms, and motion as a direct cue to
recognition. In principle, motion can be used as a cue
for either or both of these. It follows that an efficient
perceiver would make direct use of temporal cues for
recognition, as well as using motion as a means of
estimating the underlying atemporal structure of the
physical world.

As efficient perceivers, we should be able to make use
of temporal change, not only as a cue for gauging the
atemporal structure of the physical world, but also as a
cue in its own right. Evidence presented here suggests
that this is precisely what we do.

7 An object’s motion defines two related optic flow patterns, one on
the retina, and one in 3-space; and either of these may contribute to
the recognition process.6 Thanks to N Hunkin for pointing this out.
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Appendix A. Measuring view-bias

Given five successive presentations of the kth movie
to a subject, each of (nk55) correct responses is associ-
ated with a particular image identity number of be-
tween 1 and 90. Each image identity number can be
converted to an image angle at=4at, where t=
{1,…, nk}. Each image-angle can then be plotted as a
unit vector, and the mean resultant nk of the set of nk

unit vectors is given by:

rk=
� 1

nk

%
nk

t=1

cos (at),
1
nk

%
nk

t=1

sin(at)
�

.

The length �rk � of rk is close to zero if randomly chosen
images are associated with valid responses, and ap-
proaches unity if similar views are associated with
correct responses. If we rewrite rk as rk= (Ck, Sk) then
its length is given by

�rk �=
Ck
2+Sk

2.

The measure �rk � tends to over-estimate view-bias for
small numbers of valid responses. The value of �rk � for
the kth movie is based on nkB5 responses, and tends
to increase as nk decreases. This can be seen from two
limiting cases. First, if nk=1 then �rk �=1. Second. if
nk=� randomly chosen angles, a scattergram of these
angles describes an isotropic distribution of points, so
that �rk �:0. The undesirable effect of nk on �rk � can be
accommodated by the transformation bk=nk �Fk �2
(Fisher, 1995). If responses are made randomly then the
expected value of bk is unity. with larger values indicat-
ing increased view-bias. The view-bias b for a given
condition is defined as the mean value of bk over all K
movies in that condition,

b= (1/K) %
K

k=1

bk.

The conversion of image identity numbers to image-
angles can be justified because the first and final images
in each movie display similar views of an object.
Movies were, therefore played for 90 images from a
randomly chosen starting image without producing a
motion discontinuity between images 1 and 90. For
example. if the randomly chosen starting image identity
number for a given presentation of a movie is i=15
then the movie can be played from image 15 to image

(15+90 modulo 90). The conversion from image iden-
tity number to image-angle implies that images dis-
played in close temporal proximity (e.g. images 85 and
1) are separated by small image-angles.

A.1. Reaction time does not affect measured 6iew-bias

It might be supposed that view-bias measured before
rotation-reversal cannot be compared to view-bias mea-
sured after rotation-reversal, due to the effects of sub-
ject reaction time. However, consider a subject who
consistently responds some (reaction) time Dt s after a
particular image Ij is shown, such that N intervening
images are shown before a key is pressed. The image
identity number associated with the response is then
j+N8. Now, if the movie is played backwards, and the
subject continues to respond Dt s after image Ij is
shown, then the image identity number associated with
the subject’s response is now j−N (because image
identity numbers increase as the movie is played for-
wards’ and decrease as it is played backwards). Even
though the subject responds to the same image before
and after rotation-reversal, the recorded image identity
number before rotation-reversal is j+N, and is j−N
after rotation-reversal. However, the measured view-
bias before rotation-reversal is the same as that mea-
sured after rotation-reversal, because view-bias
measures the extent to which any single view is associ-
ated with subject responses, without regard to which
particular view is associated with responses. Thus, if a
subject consistently presses a response key while the
( j+N)th image is displayed (e.g. before rotation-rever-
sal) then the measured view-bias is the same as if that
subject consistently presses a response key while the
(N− j )th image is displayed (e.g. after rotation-rever-
sal). Therefore, view-bias can be compared before and
after rotation-reversal for a given move.

Appendix B. Randomisation for estimating the
significance of view-bias

Randomisation is a numerical technique which per-
mits levels of significance to be associated with data
values even if the data is derived from a population
with an unknown statistical distribution. Given a data
array D with K columns (movies) and n=5 rows (trials
per movie), the view-bias bk associated with each of the
K presented movies can be computed, from which the
mean value bD of bk for that condition can be obtained.
What is the probability P(b) that a value of b equal to
(or greater than) bD could have been generated by a
subject whose responses coincide with all movie images

8 These image identity numbers are computed modulo 90, but this
is omitted for the sake of clarity here.
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with equal probability (i.e. a subject who responds at
random)?

An answer can be obtained by repeatedly filling D
with data generated from a uniform circular distribu-
tion, and computing b for each array of random
data. Like the observed data, the random data values
were chosen from the set {4, 8, 12, 16,…, 356, 360}. A
histogram h(b) of values of b is similar to what
would be observed if subjects responded at random.
After h(b) has been normalised so that it has unit
area, it is an approximation to the probability density
function (pdf) f(b). The probability of obtaining an
observed value bD (or greater) by chance is defined by
the integral of the function f(b) between b=bD and
b=�:

p(bD)=
&�

b=bD

f(b) db. (2)

Given that h(b) is an approximation to f (b), p(bD)
can be estimated by finding the area under h(b)
defined by all values greater than (or equal to) bD.

B.1. Randomisation with in6alid data items

Randomisation is complicated by the presence of
invalid data items in the K×n data array D for a
given condition, where K is the number of movies
learned and n is the number of trials per movie. For
each column, only the nk5n valid responses are used
in the computation of view-bias. A valid response is a
correct response made before a movie ends. Invalid
data were accommodated by leaving the locations of
invalid items in D fixed, and by changing values only
of valid items in the randomisation process (invalid
data is ignored when computing means, etc.).

For a given movie, the number of valid responses
determines the underlying distribution from which
randomly generated view-bias values are computed,
and from which the observed view-bias is derived.
The significance of view-bias could therefore be com-
puted for each movie, and implies that the signifi-
cance of the mean view-bias across all movies can be
computed (as here) using randomisation. In contrast,
the significance of the difference between pre-reversal
and post-reversal view-biases of a given movie cannot
be computed using randomisation because corre-
sponding pre-reversal and post-reversal view-biases
have different underlying distributions (due to un-
equal numbers of valid responses in pre- and post-re-
versal conditions). By implication, this precludes
computing the difference in mean view-bias between
pre-reversal and post-reversal conditions using ran-
domisation. Instead, a Wilcoxon matched-pairs signed
ranks test is used with each rank is associated with
one movie.
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