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Abstract

In this paper, we describe a numerical approach based on finite difference method to
mathematical model arising from a model of neuronal variability. The mathematical modelli
the determination of the expected time for generation of action potentials in nerve cells b
dom synaptic inputs in dendrites includes a general boundary-value problem for singular
turbed differential–difference equation with small shifts. In the numerical treatment for such
of boundary-value problems, first we use Taylor approximation to tackle the terms containing
shifts which converts it to a boundary-value problem for singularly perturbed differential equ
A rigorous analysis is carried out to obtain priori estimates on the solution of the problem a
derivatives up to third order. Then a parameter uniform difference scheme is constructed to so
boundary-value problem so obtained. A parameter uniform error estimate for the numerical s
so constructed is established. Though the convergence of the difference scheme is almost li
its beauty is that it converges independently of the singular perturbation parameter, i.e., the nu
scheme converges for each value of the singular perturbation parameter (however small it ma
remains positive). Several test examples are solved to demonstrate the efficiency of the nu
scheme presented in the paper and to show the effect of the small shift on the solution behav
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1. Introduction

A human brain consists of approximately 1011 computing elements called neuron
A typical neuron has three major regions: soma, axon and the dendrites. Dendrites
dendritic tree, which is very fine bush of thin fibers around the neuron’s body. Den
receive information from neurons through axons long fibers that serve as transm
lines. An axon is a long cylindrical connection that carries impulses from the neuron
end part of an axon splits into a fine arborization. Each branch of it terminates in a
end-bulb almost touching the dendrites of neighboring neurons. The axon-dendrit
tact organ is called a synapse. The synapse is where the neuron introduces its s
the neighboring neuron. The neurons communicate through a connection network o
and synapses having a density of approximately 104 synapses per neuron. The hypothe
regarding the modeling of the natural nervous system is that neurons communica
each other by means of electrical impulses. The neurons operate in chemical enviro
that is even more important in terms of actual brain behavior. The input to the ne
is provided by sensory receptors. Receptors deliver stimuli both from within the bo
well as from sense organs when the stimuli originate in the external world. The stimu
in the form of electrical impulses that convey the information into the network of neu
As a result of information processing in the central nervous systems, the effectors a
trolled and give human responses in the form of diverse actions. We thus have a thre
system, consisting of receptors, neural network, and effectors.

On the theoretical side there have been many advanced model of nerve membr
tential in the presence of random synaptic input. Reviews can be found in J.P. Segu
al. [4], S.E. Fienberg [5], Holden [6]. Due to the analytic difficulties in solving any real
model, computer simulation has played an important role as a first step. Stein have
a differential–difference equation model incorporating stochastic effects due to ne
variability and approximate the solution using Monte Carlo techniques [1]. Stein’s m
contains the following assumptions:

(i) Excitatory impulses arrive according to a Poisson processπ(fe, t), each event o
which leads to an instantaneous increase in the membrane depolarizationV (t) by ae,
whereas inhibitory current impulses arrive at event times in a second Poisson p
π(fi, t), which is independent ofπ(fe, t) and causesV (t) to decreases byai .

(ii) If depolarization reaches a threshold ofr units, the neuron fires an impulse.
(iii) After each neuronal firing there is a refractory period of duration,t0, during which the

impulses have no effect and the membrane depolarization,V (t), is reset to zero.
(iv) At times t > t0, each impulse produces unit depolarization.
(v) For sub-threshold levels, the depolarization decays exponentially among im

with time constantµ.

In 1967, Stein generalized this model to deal with a distribution of postsynapti
tential amplitudes [7]. Johannesma [8] and Tuckwell [9] included the reversal pote
into account. Various other models for neuronal activity have been proposed and ma

discussed in Holden’s book [6].
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The depolarization in Stein’s model is a continuous time, continuous state space M
process whose sample paths have discontinuities of the first kind. The time for gen
of action potential in a nerve cell is the time of first passage to level at or above a thre
of r units and determinations of this random variable have proven to be difficult d
the fact that the equations involved are differential–difference equations. For this r
presumably, diffusion models, in which the discontinuities ofV (t) are smoothed out, hav
been considered as approximations to Stein’s model, the initial efforts in this dire
being those of Gluss [10], Johannesma [8] and Roy and Smith [11]. In 1980, Tuckwe
Cope [12] studied the Stein’s model and compared with diffusion model. Lange and
[2] presented mathematical model of the determination of expected time for genera
action potentials in nerve cell by random synaptic inputs in the dendrites. In Stein’s m
the distribution representing inputs is taken as a Poisson process with exponential
If in addition, there are inputs that can be modeled as a Wiener process with va
parameterσ and drift parameterµ, then the problem for expected first-exit timey, given
initial membrane potentialx ∈ (x1, x2), can be formulated as a general boundary-va
problem for linear second order differential–difference equation (DDE)

σ 2

2
y′′(x) + (µ − x)y′(x) + λey(x + ae) + λiy(x − ai) − (λe + λi)y(x) = −1,

(1.1)

where the valuesx = x1 andx = x2 correspond to the inhibitory reversal potential a
to the threshold value of membrane potential for action potential generation, respec
Hereσ andµ are variance and drift parameters, respectively,y is the expected first-ex
time and the first order derivative term−xy′(x) corresponds to exponential decay betwe
synaptic inputs. The undifferentiated terms correspond to excitatory and inhibitory s
tic inputs, modeled as Poisson process with mean ratesλe andλi , respectively, and produc
jumps in the membrane potential of amountsae andai , respectively, which are small qua
tities and could be dependent on voltage. The boundary condition is

y(x) ≡ 0, x /∈ (x1, x2).

Pertaining to the above biological phenomena, we present a numerical stu
boundary-value problems for singularly perturbed differential–difference equations
lier Lange and Miura [2,3,13–16] have given an asymptotic approach to study such
of boundary-value problems.

Now we state a model problem for a general boundary-value problem for a sing
perturbed differential–difference equation containing both type of shifts (negative a
as positive shifts) and letΩ = (0,1),

εy′′
ε (x) + a(x)y′

ε(x) + α(x)yε(x − δ) + ω(x)yε(x) + β(x)yε(x + η) = f (x), (1.2)

∀x ∈ Ω and subject to interval conditions

yε(x) = φ(x) on−δ � x � 0,

yε(x) = γ (x) on 1� x � 1+ η, (1.3)

whereε is small parameter 0< ε � 1, δ andη are ofo(ε); a(x), α(x), β(x), ω(x), f (x),

φ(x) andγ (x) all are smooth functions. When the shifts are zero (i.e.,δ = 0, η = 0), the
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(1.3).
solution of the corresponding ordinary differential equation exhibits layer behavior or
ing point behavior depending on the coefficient of the convection term, i.e., ifa(x) does
not change the sign or changes the sign onΩ . Here, we consider the problems whose so
tion exhibits the layer behavior. The layer will be on the left or the right end of the do
depending on the sign of the coefficient of convection term, i.e., according toa(x) < 0
or a(x) > 0 on theΩ̄ = [0,1], respectively. The layer is maintained forδ �= 0, η �= 0 but
sufficiently small.

The singularly perturbed boundary-value problems cannot be solved numerical
satisfactory manner by standard finite difference methods on uniform mesh. This e
ages the need for the methods that behave uniformly well, i.e., which converges ind
dent of the singular perturbation parameter. Such methods are referred asε-uniform or
parameter uniform methods, whereε is the singular perturbation parameter. In the c
struction of anε-uniform method, there are mainly two approaches. The first are the
operator methods which comprise of specially designed finite difference operator
reflects the singularly perturbed nature of the solution. Such fitted operator method
first suggested by de G. Allen and Southwell [17] for solving the problem of viscous
flow past a cylinder. An extensive account ofε-uniform fitted operator methods is di
cussed in Doolan et al. [18]. The second are the fitted mesh methods which comp
standard finite difference operators on fitted piecewise-uniform meshes condensing
boundary layers [19].

The fitted mesh methods have probably received less detailed attention in the lite
than the construction of an appropriate finite difference fitted operator or finite ele
subspace methods. In 1996 [19], Miller et al. established the great importance of
mesh methods for solving singular perturbation problems. There are some proble
which noε-uniform method can be constructed using a fitted operator approach on
form mesh while for such problem anε-uniform fitted mesh method can be construc
(see [20, Problem 3.6]).

In this paper, anε-uniform numerical scheme is constructed for a class of bound
value problems for singularly perturbed differential–difference equations with small s
The numerical method comprises a standard upwind finite difference operator on a
piecewise-uniform mesh which is condensed in the boundary layers. We first appro
the terms containing small shift by Taylor series and then apply the fitted mesh m
provided shifts are ofo(ε). Finally, we carry out some numerical experiments to dem
strate the accuracy of our scheme and to examine the effect of the small shifts on so

Through out this paper,C denotes generic positive constant that is independent ofε and
in the case of discrete problems, also independent of the mesh parameterN which may
assume different values but remains to be constant.‖.‖ denotes the global maximum nor
over the appropriate domain of the independent variable, i.e.,

‖f ‖ = max
x∈Ω̄

∣∣f (x)
∣∣.

2. Numerical treatment

In this section, we consider the numerical treatment for the model problem (1.2),

The first step in this direction is the use of Taylor approximations for the terms containing
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the small shifts in the problem (1.2), (1.3) which converts it to the following bound
value problem for singularly perturbed differential equation:

εz′′
ε (x) + (

a(x) + β(x)η − α(x)δ
)
z′
ε(x) + (

α(x) + β(x) + ω(x)
)
zε(x) = f (x),

(2.1)

zε(0) = φ0, φ0 = φ(0), (2.2a)

zε(1) = γ1, γ1 = γ (1), (2.2b)

which differ from the original problem (1.2), (1.3) by terms ofO(δ2z′′, η2z′′). Here, we
assume shifts, i.e.,δ andη are sufficiently small, so the solutionzε of the problem (2.1)
(2.2) will provide a good approximation to the solutionyε of the problem (1.2), (1.3)
The differential operatorLε corresponding to the boundary-value problem (2.1), (2.2
defined by

Lεzε(x) = εz′′
ε (x) + (

a(x) + β(x)η − α(x)δ
)
z′
ε(x) + (

α(x) + β(x) + ω(x)
)
zε(x).

2.1. Left side boundary layer

In this section, we consider the case when the solution of the model problem
(2.2) exhibit layer behavior on the left side on the interval[0,1], i.e., it is assumed tha
(a(x) + β(x)η − α(x)δ) � M > 0 throughout the interval[0,1], whereM is a positive
constant.

2.1.1. Analytical results
Continuous minimum principle. Let ψ be a smooth function satisfyingψ(0) � 0,
ψ(1) � 0 andLεψ(x) � 0 ∀x ∈ Ω . Thenψ(x) � 0 ∀x ∈ Ω̄ .

Proof. Supposex∗ ∈ Ω̄ be such thatψ(x∗) = minx∈Ω̄ ψ(x) and assume thatψ(x∗) < 0.
Sinceψ(0) � 0 andψ(1) � 0, thereforex∗ cannot be 0 or 1. Thusψ ′(x∗) = 0,ψ ′′(x∗) � 0
and clearlyLεψ(x∗) > 0, which contradicts the hypothesis. Thereforeψ(x∗) � 0 and since
x∗ ∈ Ω̄ is chosen arbitrarily, thusψ(x) � 0 ∀x ∈ Ω̄ . �
Lemma 1. The solutionzε(x) of the boundary-value problem(2.1), (2.2)is bounded and
satisfies the following estimate:

‖zε‖ � 1

θ
‖f ‖ + max

(|φ0|, |γ1|
)
.

Proof. Supposeψ+ andψ− be the two barrier functions defined by

ψ±(x) = 1

θ
‖f ‖ + max

(|φ0|, |γ1|
) ± zε(x), x ∈ Ω̄.

Thenψ±(0) � 0, ψ±(1) � 0 and

Lεψ
±(x) = (

α(x) + β(x) + ω(x)
)
θ−1‖f ‖( ) ( )
+ α(x) + β(x) + ω(x) max |φ0|, |γ1| ± Lεzε(x)
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using the definition of the continuous operatorLε and the inequality(α(x) + β(x) +
ω(x))θ−1 � −1, we getLεψ(x) � 0 for all x ∈ Ω . Therefore the continuous minimu
principle implies that

ψ±(x) = 1

θ
‖f ‖ + max

(|φ0|, |γ1|
) ± zε(x) � 0, x ∈ Ω̄,

which on simplification gives the required estimate.�
Theorem 1. The derivatives of the solutionzε of the boundary-value problem(2.1), (2.2)
satisfy the following estimates fork = 1,2,3,∥∥z(k)

ε

∥∥ � Cε−k.

Proof. For x ∈ Ω and construct a neighborhoodNx = (c, c + ε), wherec is a positive
constant chosen so thatx ∈ Nx andNx ⊂ Ω . Then by the mean value theorem, for so
u ∈ Nx , we have

z′
ε(u) = zε(c + ε) − zε(c)

ε

and so∣∣εz′
ε(u)

∣∣ � 2‖zε‖. (2.3)

We have
x∫

z

z′′
ε (t) dt = z′

ε(x) − z′
ε(u),

i.e.,

z′
ε(x) = z′

ε(u) +
x∫

z

z′′
ε (t) dt

using Eq. (2.1) in the above equation, we obtain

εz′
ε(x) = εz′

ε(u) +
x∫

u

f (t) dt −
x∫

u

(
a(t) + β(t)η − α(t)δ

)
z′
ε(t) dt

−
x∫

u

(
α(t) + β(t) + ω(t)

)
zε(t) dt.

Taking modulus on both the sides and using the fact that the maximum norm of a fu
is always greater than the value of the function over the domain of consideration, we

∣∣εz′
ε(x)

∣∣ �
∣∣εz′

ε(u)
∣∣ + ‖f ‖|x − u| +

∣∣∣∣∣
x∫

u

(
a + β(t)η − α(t)δ

)
z′
ε(t) dt

∣∣∣∣∣

+ ‖α + β + ω‖‖zε‖|x − u|. (2.4)
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By integration by parts, we have

x∫
u

(
a(t) + β(t)η − α(t)δ

)
z′
ε(t) dt

= (
a(t) + β(t)η − α(t)δ

)
zε(t)

∣∣x
u

−
x∫

u

(
a′(t) + β ′(t)η − α′(t)δ

)
zε(t) dt.

Taking modulus on both the sides and using the fact that the maximum norm of a fu
is always greater than the value of the function over the domain of consideration, we

∣∣∣∣∣
x∫

u

(
a(t) + β(t)η − α(t)δ

)
z′
ε(t) dt

∣∣∣∣∣
�

(
2‖a + βη − αδ‖ + ‖a′ + β ′η − α′δ‖|x − u|)‖zε‖. (2.5)

Using inequalities (2.3) and (2.5) in inequality (2.4), we get∣∣εz′
ε(x)

∣∣ � 2‖zε‖ + ‖f ‖|x − u|
+ (

2‖a + βη − αδ‖ + ‖a′ + β ′η − α′δ‖|x − u|)‖zε‖
+ ‖α + β + w‖‖zε‖|x − u|. (2.6)

Using Lemma 1 for the bound onzε and the inequality 0< |x − u| � 1 in the above
inequality (2.6), we get∣∣z′

ε(x)
∣∣ � Cε−1

which gives‖z′
ε‖ � Cε−1, where

C = ‖f ‖ + (
2+ 2‖a + βη − αδ‖ + ‖a′ + β ′η − α′δ‖

+ ‖α + β + w‖)(θ−1‖f ‖ + max
(|φ0|, |γ1|

))
.

Similarly the bounds forz′′
ε andz′′′

ε can be obtained by using the differential equation
the bounds onzε andz′

ε. �
These bounds for the derivatives ofzε were first obtained by Miller et al. [19], usin

techniques based on Kellogg et al. [21]. However in order to prove that the num
method isε-uniform, one needs more precise information on the behavior of the
solution of the boundary-value problem (2.1), (2.2). This is obtained by decomposin
solutionzε into a smooth componentvε and a singular componentwε as follows:

y = vε + wε,

wherevε can be written in the formvε(x) = v0(x) + εv1(x) + ε2v2(x) andv0(x), v1(x)
andv2(x) are defined to be the solutions of the problems
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(
a(x) + β(x)η − α(x)δ

)
v′

0(x) + (
α(x) + β(x) + ω(x)

)
v0(x) = f (x), x ∈ Ω,

v0(1) = zε(1), (2.7a)(
a(x) + β(x)η − α(x)δ

)
v′

1(x) + (
α(x) + β(x) + ω(x)

)
v1(x) = −v′′

0(x), x ∈ Ω,

v1(1) = 0, (2.7b)

Lεv2(x) = −v′′
1(x), x ∈ Ω, v2(0) = 0, v2(1) = 0. (2.7c)

Thus the smooth componentvε(x) is the solution of

Lεvε(x) = f (x), x ∈ Ω, vε(0) = v0(0) + εv1(0), vε(1) = zε(1) (2.8)

and consequently the singular componentwε(x) is the solution of the homogeneous pro
lem

Lεwε(x) = 0, x ∈ Ω, wε(0) = zε(0) − vε(0), wε(1) = 0. (2.9)

Theorem 2. Let zε be the solution of boundary-value problem(2.1), (2.2)and let zε =
vε + wε. Then for sufficiently smallε; vε, wε and their derivatives satisfy the followin
bounds,0� k � 3:∥∥v(k)

ε

∥∥
Ω̄

� Cε2−k, (2.10)∣∣w(k)
ε (x)

∣∣ � Cε−k exp(−Mx/ε), x ∈ Ω̄. (2.11)

Proof. The problem (2.7a) is a first order linear differential equation inv0; therefore it has
a unique solution given by

v0(x) = 1

B(x)

[
γA − exp

(∫
p(t) dt

)

×
1∫

x

f (t)

(a(t) + β(t)η − α(t)δ)
exp

(∫
p(t) dt

)
dt

]
,

where A = exp(
∫

p(t) dt)|t=1, B(x) = exp(
∫

p(t) dt)|t=x and p(t) = (α(t) + β(t) +
ω(t))/(a(t) + β(t)η − α(t)δ) < 0. Now sinceα(x), β(x), ω(x) andf (x) are bounded
for all x ∈ [0,1], thereforev0 is bounded. Again from Eq. (2.7a), we have

v′
0(x) = f (x)/

(
a(x) + β(x)η − α(x)δ

) − p(x)v0(x)

and the boundedness ofv0 implies thatv′
0 is bounded. Using the boundedness ofv0 andv′

0
and differentiating the differential equation (2.7a) successively, we obtain the boun
v′′

0 andv′′′
0 . Thus for 0� k � 3, we have∣∣v(k)

0 (x)
∣∣ � C for all x ∈ Ω̄. (2.12)

The problem (2.7b) is also a first order linear differential equation inv1; therefore it has a
unique solution

v1(x) = −
1∫

v′′
0(t)

exp

(∫
p(t) dt

)
dt/B(x). (2.13)
x
(a(t) + β(t)η − α(t)δ)
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Sincev′′
0(x), (a(x) + β(x)η − α(x)δ), (α(x) + β(x) + ω(x)) andp(x) < 0 are bounded

for all x ∈ [0,1]. Thus by similar arguments as we have used to obtain the boundsv1
and its derivatives, we obtain the bounds onv1 and its derivatives up to the third orde
v′′

1 is bounded by a constant independent ofε, so the right side of Eq. (2.7c) is bound
independently ofε. Thusv2 is the solution of a boundary-value problem similar to (2
(2.2). Hence by Theorem 1, we have for 0� k � 3,∥∥v

(k)
2

∥∥ � Cε−k. (2.14)

Sincev0 andv1 are independent ofε, therefore inequality (2.14) gives the required
timate for the regular componentvε. Now to obtain the required bounds on the singu
componentwε and its derivatives, we use the two barrier functionsΨ + andΨ − defined by

Ψ ±(x) = (∣∣y(0)
∣∣ + |v0|

)
exp(−xM/ε) ± wε(x).

Then we haveΨ ±(0) � 0, Ψ ±(1) � 0 andLεΨ
±(x) � 0 ∀x ∈ (0,1), therefore by the

minimum principle, we getΨ ±(x) � 0, x ∈ Ω̄ , which gives∣∣wε(x)
∣∣ � C exp(−xM/ε), x ∈ Ω̄, (2.15)

whereC = (|y(0)| + |v0(0)|). To find the required bounds on the derivatives of the
gular partwε of the solutionzε , we go along the same lines as we did in the proo
Theorem 1. Forx ∈ Ω , construct a neighborhoodNx = (x, x + ε). Therefore by the mea
value theorem, there exists a pointu ∈ Nx such that

w′
ε(u) = (

wε(x + ε) − wε(x)
)
/ε,

which implies that∣∣εw′
ε(u)

∣∣ � 2‖wε‖Nx . (2.16)

Now we have

w′
ε(x) = w′

ε(u) +
x∫

u

w′′
ε (t) dt.

Using Eq. (2.9) forw′′
ε (t) in the above equation and adopting the similar steps as we d

establishing the bound forz′
ε, we get∣∣w′

ε(x)
∣∣ � Cε−1‖wε‖Nx . (2.17)

We have

‖wε‖Nx = sup
x∈Nx

∣∣wε(x)
∣∣

� C exp(−Mx/ε), from inequality (2.15).

Using this value ofwε in inequality (2.17), we obtain∣∣w′
ε(x)

∣∣ � Cε−1 exp(−Mx/ε),

which gives the required result. The estimate forw′′
ε can be easily obtained from the d

′
ferential equation and the bounds onwε andwε. �
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2.1.2. Discretization
We discretize the boundary-value problem (2.1), (2.2) using fitted mesh method

posed with a finite difference operator on a piecewise uniform mesh which is conden
the left side boundary layer region. The fitted piecewise-uniform meshΩ̄N

ε on the interval
[0,1] is constructed by partitioning the interval into two subintervals(0, τ ) and(τ,1), on
each of these subintervals, a uniform mesh is placed, i.e., the each subinterval is
into N/2 equal parts. The resulting piecewise uniform mesh depends on one par
(τ ) which is called the transition parameter and chosen such thatτ ≡ min[1/2,Cε lnN ]
with C > 1/|θ |. Assuming thatN = 2r with r � 2, which guarantees that there is at le
one point in the boundary layer. The fitted finite difference method for the boundary-
problem (2.1), (2.2), on the piecewise uniform meshΩ̄N

ε is defined by

LN
ε,lz

N
ε (xi) = f (xi), xi ∈ ΩN

ε , (2.18)

zN
ε (x0) = φ0, (2.19a)

zN
ε (xN) = γ1, (2.19b)

where for any mesh functionΨi , the discrete operatorLN
ε,l is defined as

LN
ε,lΨi = εD±Ψi + (

a(xi) + β(xi)η − α(xi)δ
)
D+Ψi + (

α(xi) + β(xi) + ω(xi)
)
Ψi,

with

D−Ψi = (Ψi − Ψi−1)/hi, D+ = (Ψi+1 − Ψi)/hi+1,

D±Ψi = 2(D+Ψi − D−Ψi)

(hi + hi+1)
.

Discrete minimum principle. SupposeΨ0 � 0 and ΨN � 0. The LN
ε,lΨi � 0, i =

1(1)N − 1 implies thatΨi � 0, i = 1(1)N − 1.

Proof. Let k be such thatΨk = min0�i�N Ψi and assumeΨk < 0. Then we haveΨk −
Ψk−1 � 0, Ψk+1 − Ψk � 0 upon using these inequalities along with definition of disc
operatorLN

ε,l , one can easily obtainLN
ε,lΨk > 0 which is a contradiction, therefore o

assumption thatΨk < 0 is wrong, henceΨk � 0, whilek is chosen to be fixed but arbitrar
soΨi � 0 for all i, 0� i � N . �
Lemma 2. LetUi be any mesh function such thatU0 = UN = 0. Then for alli, 0� i � N ,

|Ui | � 1

|θ | max
1�j�N−1

∣∣LN
ε,lUj

∣∣.
Proof. Put A = 1

|θ | max1�j�N−1 |LN
ε,lUj | and introduce two barrier functionsΨ +

i , Ψ −
i

defined by

Ψ ±
i Ui = A ± Ui.

Then we haveΨ ±
0 � 0, Ψ ±

N � 0 and upon using the definition of the discrete operatorLN
ε,l
and the inequality(α(xi) + β(xi) + ω(xi))/θ � −1 yieldsLN
ε,l � 0 for 1� i � N − 1.



616 M.K. Kadalbajoo, K.K. Sharma / J. Math. Anal. Appl. 307 (2005) 606–627

ingular

imated
d dif-
Thus an application of discrete minimum principle givesΨ ±
i � 0, ∀i, 0 � i � N, which

proves the required estimate.�
Theorem 3. The solutionZN = 〈(zε)i〉Ni=0 of the discrete boundary-value problem(2.18),
(2.19)and the solutionzε(x) of the continuous boundary-value problem(2.1), (2.2)satis-
fies the followingε-uniform error estimate:

sup
0<ε�1

‖ZN − zε‖ � CN−1 lnN,

whereC is a constant independent ofε.

Proof. As in the case of the continuous problem (2.1), (2.2), the solutionYN of the dis-
crete boundary-value problem (2.18), (2.19) can be decomposed into regular and s
components. Thus

ZN = V N
ε + WN

ε ,

whereV N
ε is the solution of the inhomogeneous problem

LN
ε,lV

N
ε (xi) = f (xi) for all xi ∈ ΩN,

V N
ε (0) = vε(0), V N

ε (1) = vε(1), (2.20)

andWN
ε is the solution of the homogeneous problem

LN
ε,lW

N
ε (xi) = 0 for all xi ∈ ΩN,

WN
ε (0) = wε(0), WN

ε (1) = wε(1). (2.21)

The error can be written in the form

ZN − Zε = (
V N

ε − vε

) + (
WN

ε − wε

)
. (2.22)

Thus the errors in the regular and singular components of the solution can be est
separately. To estimate the error for the regular component, from the differential an
ference equations, we have

LN
ε,l

(
V N

ε − vε

)
(xi) = f (xi) − LN

ε,lvε(xi) = (
Lε,l − LN

ε,l

)
vε(xi)

= ε

(
d2

dx2
− D±

)
vε(xi)

+ (
a(xi) + β(xi)η − α(xi)δ

)( d

dx
− D+

)
vε(xi). (2.23)

Let xi ∈ ΩN . Then for anyψ ∈ C2(Ω̄), we have∣∣∣∣
(

D+ − d

dx

)
ψ(xi)

∣∣∣∣ � (xi+1 − xi)‖ψ(2)‖/2

and for anyψ ∈ C3(Ω̄),∣∣∣( ± d2 ) ∣∣∣ (3)
∣ D −
dx2

ψ(xi)∣ � (xi+1 − xi−1)‖ψ ‖/3.
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For the proof of these results, one can see Lemma 1 [19, p. 21]. Using these res
Eq. (2.23), we obtain∣∣Lε,l

(
V N

ε − vε

)
(xi)

∣∣
� C(xi+1 − xi−1)

(
ε

3

∥∥v(3)
ε

∥∥ + (a(xi) + β(xi)η − α(xi)δ)

2

∥∥v(2)
ε

∥∥)

using the Theorem 2 for the estimates ofv
(2)
ε andv

(3)
ε and the fact thatxi+1−xi−1 � 2N−1,

we get∣∣Lε,l

(
V N

ε − vε

)
(xi)

∣∣ � CN−1, xi ∈ ΩN. (2.24)

Now an application of Lemma 2 to the mesh function(V N
ε − vε)(xi) yields∣∣(V N

ε − vε

)
(xi)

∣∣ � θ−1 max
1�j�N−1

∣∣Lε,l

(
V N

ε − vε

)
(xj )

∣∣. (2.25)

Using inequality (2.24) in inequality (2.25), we get∣∣(V N
ε − vε

)
(xi)

∣∣ � CN−1, xi ∈ Ω̄N . (2.26)

Arguments for the estimation of the singular component of the error depends on the
of the transition parameterτ , whetherτ = 1/2 or τ = Cε lnN , whereC = 1/θ . In the first
case the mesh is uniform andCε lnN � 1/2. In this case, by using the same argument
we did in the case of estimation of the regular part of the error, we get for eachxi ,∣∣LN

ε,l

(
WN

ε − wε

)
(xi)

∣∣
� (xi+1 − xi−1)

(
ε

3

∥∥w(3)
ε

∥∥ + (a(xi) + β(xi)η − α(xi)δ)

2

∥∥w(2)
ε

∥∥)
.

Since(xi+1 − xi−1) = 2N−1 for the uniform mesh and using Theorem 2 for the estim
of w

(2)
ε andw

(3)
ε , the above inequality reduces to∣∣LN

ε,l

(
WN

ε − wε

)
(xi)

∣∣ � Cε−1N−1, xi ∈ ΩN.

But in this caseε−1 � 2C lnN , so the above inequality reduces to∣∣LN
ε,l

(
WN

ε − wε

)
(xi)

∣∣ � CN−1(lnN)2, xi ∈ ΩN. (2.27)

Now applying Lemma 2 to the mesh function(WN
ε − wε)(xi), we get∣∣(WN

ε − wε

)
(xi)

∣∣ � θ−1 max
1�j�N−1

∣∣Lε

(
WN

ε − wε

)
(xj )

∣∣. (2.28)

Using inequality (2.27) in inequality (2.28), we get∣∣(WN
ε − wε

)
(xi)

∣∣ � CN−1(lnN)2, xi ∈ ΩN. (2.29)

In the second case the mesh is piecewise uniform with mesh spacing 2τ/N in the subinter-
val [0, τ ] and 2(1 − τ)/N in the subinterval[τ,1] and τ = Cε lnN . We will estimate
the singular component of the error in each subinterval separately. First suppos
xi ∈ [τ,1]. From the triangular inequality, we have∣ ∣ ∣ ∣ ∣ ∣
∣(Wε − wε)(xi)∣ � ∣Wε(xi)∣ + ∣wε(xi)∣. (2.30)
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From Theorem 2, we have∣∣wε(xi)
∣∣ � C exp(−Mxi/ε).

Since exp(−Mxi) is a decreasing function forxi ∈ [τ,1] andτ � xi , therefore using thes
facts in the above inequality, we obtain∣∣wε(xi)

∣∣ � C exp(−Mτ). (2.31)

But in this case we haveτ = Cε lnN . Using this value ofτ in the above inequality (2.31
we get∣∣wε(xi)

∣∣ � CN−1, N/2� i � N. (2.32)

To establish a similar bound onWN
ε , we construct a mesh function̂WN

ε defined as the
solution of the following problem:

εD±ŴN
ε (xi) + MD+ŴN

ε (xi) + (
α(xi) + β(xi) + w(xi)

)
ŴN

ε (xi) = 0 (2.33)

∀xi ∈ ΩN under the same boundary conditions as for theWN
ε . Then by Lemma 5 [19

p. 53], we get∣∣WN
ε (xi)

∣∣ �
∣∣ŴN

ε (xi)
∣∣, 0� i � N. (2.34)

Again an application of Lemma 3 [19, p. 51] for̂WN
ε yields∣∣ŴN

ε (xi)
∣∣ � CN−1, N/2� i � N.

Using this estimate for̂WN
ε in Eq. (2.34), we obtain∣∣WN

ε (xi)
∣∣ � CN−1, N/2� i � N. (2.35)

Using the inequalities (2.32) and (2.35) in the inequality (2.30), we obtain the req
bound for the singular component of the error in the outer region[τ,1],∣∣WN

ε − wε(xi)
∣∣ � CN−1, N/2� i � N. (2.36)

Now we estimate the singular component in the boundary layer region, i.e., in the
terval[0, τ ]. To do this, we use similar arguments as we used in the estimation of the r
component and obtain∣∣LN

ε,l

(
WN

ε − wε

)
(xi)

∣∣ � 2τN−1ε−1. (2.37)

From Eq. (2.21), we have∣∣WN
ε (0) − wε(0)

∣∣ = 0.

From inequalities (2.32) and (2.35), we have∣∣WN
ε (xN/2) − wε(xN/2)

∣∣ �
∣∣WN

ε (xN/2)
∣∣ + ∣∣wε(xN/2)

∣∣ � CN−1. (2.38)

Now let us consider the two barrier functionsψ+
i andψ−

i defined as

ψ±
i = (τ − xi)C1ε

−2τN−1 + C2N
−1 ± (

WN
ε − wε

)
(xi),
whereC1 andC2 are arbitrary constants. Then we have
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ψ±
0 = C1τN−1ε−2 + C2N

−1 � 0,

ψ±
N/2 = C2N

−1 ± (
WN

ε − wε

)
(xN/2).

Since from inequality (2.38), it is clear that(WN
ε − wε)(xN/2) is bounded, so we choos

C2 so that the first term dominates the second term on the right side of the above eq
which gives

ψ±
N/2 � 0.

Now consider

LN
ε,lψ

±
i = τN−1C1ε

−2LN
ε,l(τ − xi)

+ C2
(
α(xi) + β(xi) + w(xi)

)
N−1 ± LN

ε,l

(
WN

ε − wε

)
.

After doing some simplification and using inequality (2.37) for the bound onLN
ε,l(W

N
ε −

wε) in the above inequality, we obtain

LN
ε,lψ

±
i � −N−1ε−1(C1M lnN ± C) + (

α(xi) + β(xi) + w(xi)
)
C2N

−1

+ (
α(xi) + β(xi) + w(xi)

)
(τ − xi)C1ε

−2τN−1.

We chooseC1 such thatC1M lnN � C, whereC = 1/θ. Thus all the terms on the righ
side in the above inequality are negative. Therefore we have

LN
ε,lψ

±
i � 0, 1� i � N/2− 1.

Then by the discrete minimum principle, we have

ψ±
i = (τ − xi)C1ε

−2τN−1 + C2N
−1 ± (

WN
ε − wε

)
(xi) � 0, 0� i � N/2,

which gives∣∣(WN
ε − wε

)
(xi)

∣∣ � C1ε
−2τ2N−1 + C2N

−1.

Sinceτ = Cε lnN, whereC = 1/θ , we get∣∣(WN
ε − wε

)
(xi)

∣∣ � CN−1(lnN)2, 0� i � N/2. (2.39)

Now combining the separate estimates for the singular component of the error
two regions, i.e., boundary layer region as well as the outer region, we obtain∣∣(WN

ε − wε

)
(xi)

∣∣ � CN−1(lnN)2, 0� i � N. (2.40)

Finally by combining the two inequalities (2.26) to bound the regular error componen
(2.40) to bound the singular error component, we obtain the required error estimate�
2.2. Layer on the right side

Now we assume that(a(x)−β(x)η −α(x)δ) < −M < 0 throughout the interval[0,1],
whereM is a positive constant. This assumption implies that the boundary layer will

the neighborhood of 1, i.e., on the right side of the interval[0,1].
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2.2.1. Analytical results
As we have established the estimates for the solution of the continuous proble

its derivatives in the case when the solution of the problem exhibits boundary lay
havior on the left side of the interval[0,1], one can easily obtain similar estimates in t
case following the same lines as we did earlier. The key difference is that in this ca
approximate the first derivative by the backward finite difference operator in place
forward finite difference operator as we did in the case of the left side boundary laye

2.2.2. Discretization
In this case, we discretize the boundary-value problem (2.1), (2.2) using the fitted

finite difference method composed of a standard backward upwind finite differenc
erator on a fitted piecewise uniform mesh, condensing at the boundaryx = 1. The fitted
piecewise-uniform mesh̄ΩN

r on the interval[0,1] is constructed by partitioning the in
terval into two subintervals[0, (1 − τ)] and [(1 − τ),1], where the transition paramet
is chosen such thatτ ≡ min[0.5,Cε lnN ] with C = 1/θ and it is assumed thatN = 2m,
m � 2, is an integer, which guarantees that there is at least one point in the boundar
On each of these subintervals, a uniform mesh is placed. A fitted finite difference m
for the problem (2.1), (2.2) on the piecewise uniform meshΩ̄N

r is defined by

LN
ε,rz

N
ε (xi) = f (xi), xi ∈ ΩN

r , (2.41)

zN
ε (x0) = φ0, (2.42a)

zN
ε (xN) = γ1, (2.42b)

where for any mesh functionΨi , the discrete operatorLN
ε,r is defined by

LN
ε,rΨi = εD±Ψi + (

a(xi) − α(xi)δ + β(xi)η
)
D−Ψi + (

α(xi) + β(xi) + ω(xi)
)
Ψi.

Also it can be easily show that the solution of the discretized problem converges unif
in ε to the solution of the continuous problem. One can obtain the error estimate i
case on the same lines as we have done in Section 2.1 for the case of left side bo
layer.

3. Computational results

Some numerical examples are considered and solved using the methods presen
The exact solution of the boundary-value problem given by Eq. (2.1), (2.2) for con
coefficients, forcing term and interval conditions, i.e.,α(x) = α, β(x) = β, a(x) = a,
ω(x) = ω, f (x) = f , φ(x) = φ andγ (x) = γ are constants, then the solutionzε is given
by

zε(x) = c1 exp(m1x) + c2 exp(m2x) + f/c,

where

c1 = [−f + γ c + exp(m2)(f − φc)
]/[(

exp(m1) − exp(m2)
)
c
]
,[ ]/[( ) ]
c2 = f − γ c + exp(m1)(−f + φc) exp(m1) − exp(m2) c ,
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m1 = [−(a − αδ + βη) +
√

(a − αδ + βη)2 − 4εc
]
/2ε,

m2 = [−(a − αδ + βη) −
√

(a − αδ + βη)2 − 4εc
]
/2ε,

c = (α + β + ω).

Example 1. a(x) = 1, α(x) = 2, β(x) = 0, ω(x) = −3, f (x) = 0, φ(x) = 1, γ (x) = 1 in
boundary-value problem(1.2), (1.3).

Example 2. a(x) = 1, α(x) = 0, β(x) = 2, ω(x) = −3, φ(x) = 1, f (x) = 0, γ (x) = 1 in
boundary-value problem(1.2), (1.3).

Example 3. a(x) = 1, α(x) = −2, β(x) = 1, ω(x) = −5, φ(x) = 1, f (x) = 0, γ (x) = 1
in boundary-value problem(1.2), (1.3).

Table 1
Maximum error(ε = 0.1)

N → 8 32 128 512

δ ↓ Example 1
0.00 0.09907804 0.03700736 0.00954678 0.00214501
0.05 0.09659609 0.03640566 0.00924661 0.00202998
0.09 0.09277401 0.03556652 0.00895172 0.00192488

η ↓ Example 2
0.00 0.09907804 0.03700736 0.00954678 0.00214501
0.05 0.09977501 0.03727087 0.00979659 0.00224472
0.09 0.10031348 0.03723863 0.00996284 0.00458698
Fig. 1. Numerical solution of Example 1.



622 M.K. Kadalbajoo, K.K. Sharma / J. Math. Anal. Appl. 307 (2005) 606–627

64316
76030
25735
43635
45456
45639

75036
99076
63304
84236
86365
86578
Table 2
Maximum error for Example 2(η = 0.5ε)

ε ↓ N → 8 16 32 64 128 256

10−1 0.10233615 0.06103660 0.03823132 0.02299386 0.01295871 0.006
10−2 0.16053996 0.09171283 0.05062424 0.02640865 0.01344656 0.006
10−3 0.17511397 0.10213037 0.05896661 0.03133175 0.01623376 0.008
10−4 0.17669288 0.10327230 0.05991398 0.03189761 0.01656671 0.008
10−5 0.17685213 0.10338763 0.06001002 0.03195506 0.01660057 0.008
10−6 0.17686807 0.10339917 0.06001964 0.03196081 0.01660396 0.008

Fig. 2. Numerical solution of Example 2.

Table 3
Maximum error for Example 3(δ = η = 0.5ε)

ε ↓ N → 8 16 32 64 128 256

10−1 0.12011566 0.07181396 0.04482982 0.02694612 0.01516093 0.007
10−2 0.18727108 0.10697821 0.05904116 0.03079689 0.01567964 0.007
10−3 0.20429729 0.11915028 0.06879232 0.03655236 0.01893849 0.009
10−4 0.20614146 0.12048418 0.06989944 0.03721375 0.01932774 0.009
10−5 0.20632746 0.12061888 0.07001167 0.03728089 0.01936732 0.009
10−6 0.20634608 0.12063236 0.07002291 0.03728761 0.01937129 0.009

Example 4. a(x) = −1, α(x) = −2, β(x) = 0, ω(x) = 1, f (x) = 0, φ(x) = 1, γ (x) = −1
in boundary-value problem(1.2), (1.3).

Example 5. a(x) = −1, α(x) = 0, β(x) = −2, ω(x) = 1, f (x) = 0, φ(x) = 1, γ (x) = −1

in boundary-value problem(1.2), (1.3).
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Fig. 3. Numerical solution of Example 3 for different values ofδ.

Fig. 4. Numerical solution of Example 3 for different values ofη.

Example 6. a(x) = −(1 + exp(x2)), α(x) = −x, β(x) = −(1 − exp(−x)), ω(x) = x2,
f (x) = 1, φ(x) = 1, γ (x) = −1 in boundary-value problem(1.2), (1.3).

Example 7. a(x) = −1, α(x) = −2, β(x) = −2, ω(x) = 1, f (x) = 0, φ(x) = 1, γ (x) =
−1 in boundary-value problem(1.2), (1.3).

Example 8. a(x) = 1, α(x) = −2, β(x) = −1, ω(x) = 1, f (x) = −1, φ(x) = 1, γ (x) = 1

in boundary-value problem(1.2), (1.3).
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Table 4
Maximum error for Example 3(ε = 0.1)

N → 8 32 128 512

δ ↓ η = 0.05
0.00 0.09190267 0.03453494 0.01164358 0.00300
0.05 0.10233615 0.03823132 0.01295871 0.00335
0.09 0.11018870 0.04110846 0.01400144 0.00362

η ↓ δ = 0.05
0.00 0.09720079 0.03640446 0.01229476 0.00317
0.05 0.10233615 0.03823132 0.01295871 0.00335
0.09 0.10632014 0.03965833 0.01348348 0.00349

Table 5
Maximum error(ε = 0.1)

N → 8 32 128 512

δ ↓ Example 4
0.00 0.07847490 0.04678972 0.01727912 0.00443
0.05 0.09222560 0.03828329 0.01487799 0.00380
0.09 0.10509460 0.03149275 0.01299340 0.00331

η ↓ Example 5
0.00 0.07847490 0.04678972 0.01727912 0.00443
0.05 0.06834579 0.05516436 0.01972508 0.00506
0.09 0.08328237 0.06168267 0.02169662 0.00558

Fig. 5. Numerical solution of Example 5.

4. Conclusion
A finite difference approach has been taken into account to approximate the solution of
a more general class of singularly perturbed differential–difference equations which arises
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Fig. 6. Numerical solution of Example 6.

Table 6
Maximum error for Example 7(ε = 0.1)

N → 8 32 128 512

δ ↓ η = 0.05
0.00 0.09930002 0.03685072 0.01331683 0.00342
0.05 0.09997296 0.03218424 0.01167102 0.00299
0.09 0.10044578 0.02850398 0.01038902 0.00266

η ↓ δ = 0.05
0.00 0.10055269 0.02759534 0.01007834 0.00258
0.05 0.09997296 0.03218424 0.01167102 0.00299
0.09 0.09944067 0.03591410 0.01297367 0.00334

Table 7
Maximum error for Example 8(δ = η = 0.5ε)

ε ↓ N → 8 16 32 64 128 256

10−1 0.08579690 0.05129568 0.03202130 0.01924723 0.01098354 0.005
10−2 0.13376506 0.07641301 0.04217226 0.02199778 0.01119974 0.005
10−3 0.14592663 0.08510734 0.04913737 0.02610883 0.01352749 0.006
10−4 0.14724390 0.08606013 0.04992817 0.02658125 0.01380553 0.007
10−5 0.14737676 0.08615634 0.05000834 0.02662921 0.01383380 0.007
10−6 0.14739006 0.08616597 0.05001637 0.02663401 0.01383663 0.007

in the mathematical modeling of a model of neuronal variability. A numerical schem
constructed to solve such type of boundary-value problems. A parameter uniform

estimate is obtained for the presented difference scheme.
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Fig. 7. Numerical solution of Example 7 for different values ofδ.

Fig. 8. Numerical solution of Example 7 for different values ofη.

A number of numerical experiments are carried out in support of the predicted t
via tabulating the maximum absolute errors in Tables 1–7 for the examples cons
and to show the effect of the small shifts on the solution of the problem via plottin
graphs of the solution for different values of negative shift and positive shift for the e
ples considered, which are reported in the form of Figs. 1–8. We observe from the
Tables 1–5 that the difference scheme converges super-linearly and independently

singular perturbation parameter which supports the predicted theory.
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Figures 1–4 illustrate that in the case when the solution of the boundary-value pr
exhibits layer behavior on the left side, the effect of delay or advance on the solut
the boundary layer region is negligible while in the outer region it is considerable an
change in the advance affects the solution in similar fashion as the change in delay
but reversely. Figures 5–8 illustrate that in the case when the boundary-value pr
exhibits layer behavior on the right side, the changes in delay or advance affect the s
in boundary layer region as well as outer region. The thickness of the layer increases
size of the delay increases while it decreases as the size of the advance increases.
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