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Abstract

This paper deals with the study of the set of all self-adjoint di$erential operators which are generated
from 'rst-order, linear, ordinary boundary value problems. These operators are de'ned on a weighted Hilbert
function space and are examined as an application of the result obtained by Everitt and Markus in their paper
in 1997. An investigation is given so that 'rst-order self-adjoint boundary value problems are transformed
to a study of the nature of the spectrum of associated self-adjoint operators. However, the analysis of this
paper is restricted to consideration of conditions under which the spectral properties of these operators yield
a discrete spectrum, and consequently to the determination of conditions under which the construction of
Kramer analytic kernels, from the above boundary value problems, can be accomplished.
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1. Introduction

In this paper we are concerned with self-adjoint operators in a weighted Hilbert function space
which are produced by 'rst-order, linear, ordinary, boundary value problems and we apply the
classical Hilbert space theory for such operators in the light of the result in [5]. The theory we
consider here is the main tool that leads to the generation of Kramer analytic kernels from these
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'rst-order boundary value problems. However, we point out that the development of our operator
theory, as a source for the construction of the above kernels, is not given in this paper; see [8] for
details of these Kramer kernels.

1.1. Notations

Let R and C represent the real and complex number 'elds. Let I = (a; b) be an arbitrary open
interval on R; the use of ‘loc’ restricts a property to compact subintervals of R. Let AC denote
absolute continuity and L Lebesgue integration. All functions f : (a; b) → C are taken to be Lebesgue
measurable on (a; b). All integrals are in the sense of Lebesgue.

Throughout this paper w : I → R is a weight function on I , i.e. w is Lebesgue measurable on I ,
and w(x)¿ 0 for almost all x∈ I . Thus L2(I ;w) represents the class of all complex-valued, Lebesgue
measurable functions f : I → C such that∫ b

a
w|f|2 ≡

∫ b

a
w(x)|f(x)|2 dx¡ + ∞: (1.1)

Then, with due regard to equivalence classes, the norm and inner-product are given by

‖f‖2
w :=

∫
I
w|f|2 and (f; g)w :=

∫ b

a
w(x)f(x) Jg(x) dx: (1.2)

1.2. Brief survey of literature

First-order linear, ordinary, boundary value problems represented by self-adjoint operators are
best considered in the context of the general theory of quasi-derivatives; see [3,11]. All the classi-
cal di$erential expressions appear as special cases of quasi-di$erential expressions. This statement
requires the support of detailed analysis; to con'rm, see [6, Section I, Appendices A and B, 7,
9]. Earlier work in the general area of both real and complex-valued quasi-di$erential expressions
has been given in [13,15–17]. The results of Shin for arbitrary quasi-di$erential expressions were
re-discovered independently by Zettl in 1965 but not published until the paper Zettl [20]. For this
reason Everitt and Markus in [4] proposed to call the collection of such expressions by the name
of Shin–Zettl. The work in [20] was continued in [10] and then in [11]. It is conjectured that the
most general ordinary linear di$erential expressions so far de'ned, for order n∈N, and n¿ 2, are
the Shin–Zettl quasi-di$erential expressions; for details see [3,9,11]. Note that in [13,14, Chapter V]
the order of the quasi-di$erential expressions is even and the coeMcients are all real-valued; such
expressions are special cases of the general Shin–Zettl theory.

1.3. Quasi-di7erential expressions and operators

Let I be an arbitrary open interval of the real line R. Let Mn be a linear ordinary di$erential
expression (or a formal di$erential operator); in the classical case Mn is of 'nite order n¿ 1 on I ;
in the quasi-di$erential case Mn := MA is determined by a n× n Shin–Zettl complex-valued matrix



W.N. Everitt, A. Poulkou / Journal of Computational and Applied Mathematics 153 (2003) 201–211 203

A = [ars]∈Zn(I), with n¿ 2, and

ars ∈L1
loc(I) (r; s = 1; 2; : : : ; n);

ar; r+1(x) 	= 0 (almost all x∈ I and r = 1; 2; : : : ; n− 1);

ars(x) = 0 (almost all x∈ I ; s = r + 2; : : : ; n and r = 1; 2; : : : ; n− 2):

In the classical case Mn has complex coeMcients and is of the form

Mn[f] = pnf(n) + pn−1f(n−1) + · · · + p1f′ + p0f; (1.3)

where pj : I → C with pj ∈L1
loc(I), j = 0; 1; : : : ; n − 1; n and further pn ∈ACloc(I) with pn(x) 	= 0

for almost all x∈ I . For the special case n = 1 see details in [5].
In the more general quasi-di$erential case the expression Mn is de'ned as in [5,7, Section I, 11].

For n¿ 2 the expression Mn := MA is determined by a complex Shin–Zettl matrix A of size n with
the domain D(Mn) of MA de'ned by

D(MA) := {f : I → C :f[r−1]
A ∈ACloc(I) for r = 1; 2; : : : ; n}

and

MA[f] := inf[n]
A for all f∈D(MA); (1.4)

where the quasi-derivatives f[ j]
A for j = 1; 2; : : : ; n are taken relative to the matrix A∈Zn(I). If the

matrix A has certain smoothness properties, then the quasi-derivatives of f can be written in terms
of the classical derivatives f(j) for j = 1; 2; : : : ; n.

With every matrix A∈Zn(I), we associate the Lagrange adjoint matrix A+ de'ned by

A+ := −L−1
n A∗Ln;

with A∗ the normal adjoint matrix of A, and Ln = [lrs] the n× n matrix de'ned by

lr;n+1−r =

{
(−1)r−1; r = 1; 2; : : : ; n;

0; r; s otherwise:

It may be shown that A+ ∈Zn(I) and (A+)+ = A. Also, we assume in this paper that MA is La-
grange symmetric in the notation in [3,9] (in the older notation this extends the idea of formal
self-adjointness of classical di$erential expressions); that is A+ = A and M+

A = MA. For these results
and additional properties see the notes [3].

Quasi-di$erential expressions and operators of order 1 need to be de'ned separately; there are no
Shin–Zettl matrices of order 1. The general Lagrange symmetric (formally self-adjoint) 'rst-order
di$erential expression on the interval I = (a; b) is of the form

M1[f] := −1
i
�f′ +

(
−�′

2i
+ q

)
f for all f∈D(M); (1.5)

where

(i) �; q: (a; b) → R;
(ii) �∈ACloc(a; b) and �(x)¿ 0 for all x∈ (a; b);

(iii) q∈L1
loc(a; b)

(1.6)
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and

D(M1) := {f : (a; b) → C :f∈ACloc(a; b)}: (1.7)

Every classical ordinary linear di$erential expression Mn, as in (1.3) above, can be written as a
quasi-di$erential expression MA, as in (1.4), with the same order n¿ 2. The 'rst-order di$erential
expressions are essentially classical in form. Therefore, we can assume that when n¿ 2, Mn is a
quasi-di$erential expression speci'ed by an appropriate Shin–Zettl matrix A∈Zn(I). When n= 1 we
take M1 as a classical expression. In this investigation we deal only with the 'rst-order case.

Let us now consider the spectral di$erential equation associated with the pair {M1; w} where M1

is de'ned by (1.5) to (1.7) and w is a given weight function which de'nes the space L2((a; b);w),
as in (1.1) and (1.2). Thus we have

M1[y] = �wy on (a; b);

where the parameter � = � + i�∈C. The solutions of this linear equation of order 1 are considered
within the space L2((a; b);w) (see Proposition 2.1 in Section 2), and determine the de'ciency indices
of the symmetric operators considered below.

In this study we describe certain self-adjoint linear operators T on domains D(T ) ⊂ L2((a; b);w)
associated with M1 and speci'ed by a di$erential boundary condition connected with the Green’s
formula. Following the theory developed in [5,14, Chapter V] we de'ne two unbounded operators
T0 and T1 in L2((a; b);w) determined by the pair {M1; w}. Accordingly to de'nitions and properties
given in Section 3 of this paper, T0 on D(T0) and T1 on D(T1) are the minimal and maximal
operators, respectively, generated by the di$erential expression M1. Our goal is to show how the
general Stone/von Newman theory of symmetric linear operators in Hilbert space is reformulated
and adapted to the determination of all self-adjoint extensions T on domains D(T ) ⊃ D(T0), by
means of the generalised Glazman–Krein–Naimark (GKN) theory for di$erential operators as given
in [5, Section 4, Theorem 1]. In particular, we construct a bijective mapping between the set {T}
of all such self-adjoint operators and the set { } of certain non-null elements of the quotient space
D(T1)=D(T0). The domain D(T ) of any self-adjoint extension T of T0 can be obtained as a restriction
of the domain of the maximal operator T1 by choosing an element  ∈D(T1) such that  arises from
a non-null member of the quotient space D(T1)=D(T0), and satis'es a symmetric property connected
with the boundary condition of the self-adjoint problem. Thus the quotient space D(T1)=D(T0) e$ects
a classi'cation of self-adjoint extensions T of T0 on D(T ) containing operators speci'ed by the
boundary condition functions  .

Of course, this announced goal becomes more vital within the framework of the idea of showing
in this paper, how the solution of a 'rst-order self-adjoint boundary value problem consists of
considering the possibility of 'nding the nature of the spectrum of the operator T . But, the spectral
properties of T in the space L2((a; b);w) are not given in this paper; this is performed in [8]. The
scope of our theory is illustrated by an example of the boundary condition functions  .

The operator theory required is to be found in [1,14]; for the classical theory for self-adjoint
extensions of symmetric operators as based on Hilbert space constructions, see [1,2,12,14,18,19].

The contents of the paper: the general, 'rst-order, Lagrange symmetric, linear di$erential equation
is discussed in Section 2. Section 3 is devoted to de'nitions and some properties of self-adjoint
di$erential operators in the weighted Hilbert function space L2((a; b);w). In Section 4, while inves-
tigating the de'nition of the domain of self-adjoint operators connected with 'rst-order boundary
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value problems, we relate our analysis to the generalised GKN theory. In Section 5 we give infor-
mation about the nature of the solution of the boundary value problem, we make a few remarks on
the spectrum of our operators and we give some examples. Finally, Section 6 deals with an example
of our boundary condition functions.

2. Di�erential equations

The self-adjoint boundary value problems considered in this paper are generated by the 'rst-order
Lagrange symmetric (formally self-adjoint), linear di$erential equation

i�(x)y′(x) + 1
2 i�′(x)y(x) + q(x)y(x) = �w(x)y(x) for all x∈ (a; b); (2.1)

where for the open interval (a; b) the endpoints satisfy −∞6 a¡b6+∞, and �∈C is the spectral
parameter.

The coeMcients �; q; w satisfy the following conditions:

(i) �; q; w : (a; b) → R;
(ii) �∈ACloc(a; b) and �(x)¿ 0 for all x∈ (a; b);

(iii) q; w∈L1
loc(a; b);

(iv) w(x)¿ 0 for almost all x∈ (a; b):

(2.2)

The endpoint a is de'ned as regular if a∈R with �∈ACloc[a; b) and q; w∈L1
loc[a; b); similarly

for the endpoint b; otherwise endpoints a; b are de'ned as singular. The di$erential equation (2.1)
is said to be regular if both endpoints a and b are regular.

Under conditions (2.2) the di$erential equation (2.1) has the following initial value properties; let
c∈ (a; b) and #∈C, then there exist a unique mapping y : (a; b) × C→ C such that

(i) y(·; �)∈ACloc(a; b) for all �∈C;
(ii) y(x; ·)∈H for all x∈ (a; b);

(iii) y(c; �) = # for all �∈C;
(iv) y(·; �) satis'es (2:1) for almost all x∈ (a; b); and all �∈C:

(2.3)

This result can be proved along the lines of the classical existence theorem in [14, Chapter V,
Section 16.1, Theorem 1]. However direct formal integration shows that the required solution y is
given explicitly by

y(x; �) = #

√
�(c)
�(x)

exp
(∫ x

c

(�w(t) − q(t))
i�(t)

dt
)

for all x∈ (a; b) and for all �∈C: (2.4)

From this explicit form of the solution y, and the conditions (2.2) imposed on the coeMcients
�; q; w; it follows that all the required properties (2.3) are satis'ed. Note that, in general, the endpoints
a and b are singular points for the equation and the solution y(·; �) in that these endpoints are either
in'nite, or if 'nite then the properties (2.3) do not hold at a and/or b, without additional conditions to
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(2.2) on the coeMcients �; q; w: However, if the endpoint a is regular then the initial value properties
(2.3) hold at a+; similarly for b−.

From the explicit form (2.4) of the solutions of the Eq. (2.1) we obtain

Proposition 2.1. With the solution y(·; �) of the di7erential Eq. (2.1) given by the explicit form
(2.4) take # 	= 0 and c∈ (a; b), and write �=�+i�; then for all �∈C the solution y(·; �)∈L2((a; b);w)
if and only if∫ b

c

w(t)
�(t)

dt ¡ + ∞: (2.5)

Proof. For the proof of this Proposition see [8].

3. Some properties of di�erential operators

We turn now to di$erential operators de'ned in the Hilbert function space L2((a; b);w). De'ne
the di$erential expression M :D(M) ⊂ ACloc(a; b) → L1

loc(a; b) by

D(M) := {f : (a; b) → C :f∈ACloc(a; b)}
and

M [f](x) := i�(x)f′(x) + 1
2 i�′(x)f(x) + q(x)f(x) for all x∈ (a; b): (3.1)

With coeMcient conditions as in (2.2) M is a Lagrange symmetric quasi-di$erential expression in
the sense referred in [14]; see also [5].

We note that for any solution y(·; �) of the di$erential equation (2.1) we have y(·; �)∈D(M)
and, for all �∈C,

M [y(·; �)] = �wy(·; �) on (a; b): (3.2)

The di$erential expression M is Lagrange symmetric and has the following Green’s formula, for
all compact intervals [%;  ] ⊂ (a; b),∫  

%
{ JgM [f] − fM [g]} = [f; g](x)| % for all f; g∈D(M); (3.3)

where the symplectic form [·; ·](·) : (a; b) × D(M) × D(M) → C is de'ned by

[f; g](x) := i�(x)f(x) Jg(x) for all x∈ (a; b): (3.4)

For details of these results see the Everitt–Markus paper [5, Section 3, (3.4)–(3.7)].
The maximal di$erential operator T1 :D(T1) ⊂ L2((a; b);w) → L2((a; b);w) generated by the

di$erential expression M in the space L2((a; b);w), is de'ned by

D(T1) := {f∈D(M) :f;w−1M [f]∈L2((a; b);w)}
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and

T1f := w−1M [f] for all f∈D(T1):

We note that, from Green’s formula (3.3) we have the result that the limits

[f; g](a+) := lim
x→a+

[f; g](x) [f; g](b−) := lim
x→b−

[f; g](x) (3.5)

both exist in C and are 'nite for all f; g∈D(T1).
The minimal di$erential operator T0 :D(T0) ⊂ L2((a; b);w) → L2((a; b);w), generated by the

di$erential expression M in the space L2((a; b);w), is de'ned by

D(T0) := {f∈D(T1) : [f; g](b−) − [f; g](a+) = 0 for all g∈D(T1)}
and

T0f := w−1M [f] for all f∈D(T0):

The operators T0 and T1 have the properties, where T ∗ denotes the Hilbert space adjoint of the
operator T ,

(i) T0 ⊆ T1: (ii) T0 is closed and symmetric in L2((a; b);w):

(iii) T1 is closed in L2((a; b);w): (iv) T ∗
0 = T1 and T ∗

1 = T0:

For reference to these results see [5, Section 3].
If there are any self-adjoint operators T in L2((a; b);w) generated by the expression M then all

such operators have to satisfy the inclusion relation

T0 ⊆ T = T ∗ ⊆ T1 = T ∗
0 :

From the general theory of unbounded operators in Hilbert space, see [14, Chapter IV], such
self-adjoint operators exist if and only if the de'ciency indices (d−; d+) of T0 are equal, see [14,
Chapter IV, Section 14.8, Theorem 8]. The de'ciency indices of T0 are de'ned by

d± = dim{f∈D(T ∗
0 ) :T ∗

0 f = ±if} = dim{f∈D(T1) :T1f = ±if}
= dim{y∈D(M) :M [y] = ±iwy on (a; b) and y(·;±i)∈L2((a; b);w)}: (3.6)

From this last representation (3.6), since the di$erential equation (3.2) is of the 'rst order, it fol-
lows that 06d±6 1. Thus for self-adjoint extensions of T0 to exist there are only two possibilities:

(i) d− = d+ = 0; (ii) d− = d+ = 1: (3.7)

Proposition 3.1. Let the de;ciency indices (d−; d+) of the minimal operator T0 be equal; then we
have (since 06d±6 1)

(i) d− = d+ = 0 if and only if for some c∈ (a; b); w=� 	∈ L1(a; c] and w=� 	∈ L1[c; b);

(ii) d− = d+ = 1 if and only if w=�∈L1(a; b):

Proof. These results follow from Proposition 2.1.
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4. The generalized GKN theory

In this section we investigate the two cases of Proposition 3.1; in particular the second case
gives the possibility to deal with the problem of de'ning self-adjoint extensions of closed symmetric
operators in Hilbert space. Accordingly, we have

Remark 4.1. 1. In case (i) of (3.7), if we de'ne the operator T by T := T ∗
0 = T0, then T satis'es

T ∗ = T and T is the (unique) self-adjoint operator in L2((a; b);w) generated by the di$erential
expression M of (3.1). The self-adjoint boundary value problem, in this case, consists only of the
di$erential equation (2.1); no boundary conditions at the endpoints a and b are required to determine
the domain D(T ).

2. In case (ii) of (3.7), the general Stone/von Neumann theory of self-adjoint extensions of closed
symmetric operators in Hilbert space, see [14, Chapter V, Sections 14.7 and 14.8], proves that there
is a continuum of self-adjoint extensions {T} of the minimal operator T0, with T0 ⊂ T ⊂ T1.
These extensions can be determined by use of the generalised GKN theory for di$erential operators
as given in [5, Section 4, Theorem 1]. The domain of any self-adjoint extension T of T0 can be
obtained as a restriction of the domain of the maximal operator T1, see [5, Section 4, (4.2) and
(4.3)]. These restrictions are obtained by choosing an element  ∈D(T1) such that  arises from a
non-null member of the quotient space D(T1)=D(T0) with the symmetric property, recalling (3.5),

[ ;  ](b−) − [ ;  ](a+) = 0: (4.1)

With this boundary condition function  ∈D(T1) the domain D(T ) is now determined by

D(T ) := {f∈D(T1) : [f;  ](b−) − [f;  ](a+) = 0} (4.2)

and the self-adjoint operator de'ned by

Tf := w−1M [f] for all f∈D(T ): (4.3)

All such self-adjoint extensions T are de'ned using this method; indeed there is a one-to one map-
ping between the set {T} and the set { } of all non-null elements of the quotient space D(T1)=D(T0)
satisfying the symmetric condition (4.1).

5. Remarks on the spectrum of the operators

The following two remarks concern the spectral properties of self-adjoint extensions T of the
minimal operator T0.

Remark 5.1. Case (i) of Proposition 3.1. From Proposition 2.1, this case is satis'ed if and only if
w=� 	∈ L1(a; c] and w=� 	∈ L1[c; b) and this condition on the coeMcients implies that the di$erential
equation (2.1) has the property that for all nontrivial solutions y(·; �) 	∈ L2((a; b);w), for all �∈C.

Let the spectrum of the self-adjoint operator T be denoted by '(T ); then it follows that '(T )
contains no eigenvalues since, for real �∈R, the di$erential equation has no solution in L2((a; b);w);
thus the boundary value problem in this case has no eigenvalues; in fact it follows from results in
[14, Chapters IV and V] that the spectrum of T is purely continuous and occupies the whole real
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line, i.e., '(T ) = C'(T ) = R. We note that this case can give no examples of interest for sampling
and interpolation theories.

An example of this case considered in the space L2(−∞;+∞) is

iy′(x) = �y(x) for all x∈ (−∞;+∞):

Remark 5.2. Case (ii) of Proposition 3.1. This case covers all regular cases of the di$erential
equation (2.1), and all singular cases of the equation when the de'ciency indices satisfy (ii) of
(3.7), i.e., when the condition (2.5) is satis'ed. The self-adjoint boundary value problem consists of
considering the possibility of 'nding nontrivial solutions y(·; �) of the di$erential equation

M [y(·; �)] = �wy(·; �) on (a; b) (5.1)

with the property y(·; �)∈L2((a; b);w), that satisfy the boundary condition

[y(·; �);  ](b−) − [y(·; �);  ](a+) = 0: (5.2)

The solution of this problem depends upon the nature of the spectrum '(T ) of the self-adjoint
operator T determined by the choice of the boundary condition element  .

If �∈C can be found such that both (5.1) and (5.2) are satis'ed then � is an eigenvalue of
the boundary value problem and the solution y(·; �) is the corresponding eigenfunction. The point
� is then an eigenvalue of the self-adjoint operator T and hence �∈R. We note that this case can
provide examples of interest for sampling and interpolation theories; for more information on this
matter we refer to [8].

In this case (ii) of Proposition 3.1 it is shown in [8, Theorem 5.1] that the spectrum '(T ) of any
self-adjoint extension T , of T0, is discrete, simple and has equally spaced eigenvalues on the real
line of the complex spectral plane.

As an example of this general result we have the following boundary value problem which leads
to the famous Whittaker–Shanon sampling and interpolation theorem; see [8, Theorem 7.1].

For '¿ 0 consider the boundary value problem

iy′(x) = �y(x) (x∈ [ − '; ']); (5.3)

y(−') = y('): (5.4)

For Eq. (5.3) the general solution has a basis {exp(−ix�) : x∈ [ − '; '] and �∈C}; all solutions
are in L2(I ;w) ≡ L2(−'; ') and thus from a combination of Propositions 2.1 and 3.1 we have
d+ = d− = 1. The bilinear form for (5.3) is given by [f; g](x) = if(x) Jg(x) (x∈ [ − '; ']) and the
symmetric boundary condition (5.4) which generates a self-adjoint operator T in L2(−'; ') can be
rewritten in the form [y; 1] = [y; 1](+') − [y; 1](−') = 0 where 1 represents the unit function on R
and is the boundary condition function  , i.e.,  (x) = 1 for all x∈ [−'; ']. The self-adjoint operator
T for this example, is determined by (on using (4.2) and(4.3))

D(T ) := {f : [ − '; '] → C :f∈AC[ − '; ']; f′ ∈L2(−'; '); [f; 1](+') − [f; 1](−') = 0};
Tf := if′ for all f∈D(T ):

A direct calculation from the classical formulation ((5.3) and (5.4)) of the problem, shows

'(T ) = {�n = n(=' : n∈Z};
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this spectrum is discrete, simple and satis'es limn→±∞ �n = ±∞. The corresponding eigenfunctions
are given by  n(x) = exp(−ixn(=') (x∈ [ − '; '], n∈Z).

This example is considered again in [8].

6. A general example of a boundary condition function

As an example of a boundary condition function  , let �∈R; then from the general form of
solutions of Eq. (2.1) as given by (2.4) de'ne, for some �∈R,

 (x) :=
1√
�(x)

exp
(∫ x

c

�w − q
i�

)
for all x∈ (a; b): (6.1)

Then  ∈D(T1) and from (3.4)

[ ;  ](x) = i�(x)
1√
�(x)

exp
(∫ x

c

�w − q
i�

)
1√
�(x)

exp
(∫ x

c

�w − q
−i�

)
= i for all x∈ (a; b):

Thus

lim
x→b−

[ ;  ](x) = i = lim
x→a+

[ ;  ](x)

and the symmetric condition (4.1) holds; also it follows that  	∈ D(T0) so that  arises from a
non-null member of the quotient space D(T1)=D(T0), as required; it is shown in [8] that all symmetric
boundary condition functions can be determined in the form (6.1). In particular for the boundary
value problem (5.3) and (5.4) we have that  (x) = 1 for all x∈ [ − '; '].
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