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Abstract

Building upon the ideas of R. Arens and J. Eells (1956) [1] we introduce the concept of spaces of Banach-
space-valued molecules, whose duals can be naturally identified with spaces of operators between a metric
space and a Banach space. On these spaces we define analogues of the tensor norms of Chevet (1969) [3]
and Saphar (1970) [14], whose duals are spaces of Lipschitz p-summing operators. In particular, we iden-
tify the dual of the space of Lipschitz p-summing operators from a finite metric space to a Banach space —
answering a question of J. Farmer and W.B. Johnson (2009) [6] — and use it to give a new characterization
of the non-linear concept of Lipschitz p-summing operator between metric spaces in terms of linear oper-
ators between certain Banach spaces. More generally, we define analogues of the norms of J.T. Lapresté
(1976) [11], whose duals are analogues of A. Pietsch’s (p, r, s)-summing operators (A. Pietsch, 1980 [12]).
As a special case, we get a Lipschitz version of (q,p)-dominated operators.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

The origin of this work was the following question: given a normed space of Lipschitz maps
from a metric space X into a Banach space E (e.g. Lipschitz p-summing operators as in [6]) how
can one identify its dual?

A natural starting point would be to try to identify the dual of X#, the space of Lipschitz
functions from X to R that vanish at a specified point with the Lipschitz norm. Unfortunately,
duals of spaces of Lipschitz functions are known to be rather large and somewhat pathological
— e.g. in [2] it is shown that (�1)

# does not have finite cotype, and it is still unknown whether
([0,1] × [0,1])# has finite cotype — so ours would appear to be a futile task.

We may, however, flip the table and get back into a workable situation: the space X# is known
to be a dual Banach space (and is sometimes even called the Lipschitz dual of X), so we embark
on the slightly different (but related) quest of finding preduals of some spaces of Lipschitz maps
from a metric space X into a dual Banach space E∗.

The key element in our work is the concept of a Banach-space-valued molecule, a general-
ization of the concept used by R. Arens and J. Eells [1] to construct a predual of X#. Despite
the fact that the Arens–Eells space has been used repeatedly in the literature (e.g. [7,10]), and
Banach-space-valued versions of it have been considered (as in [8]), as far as this author knows
the idea of Banach-space-valued molecules had escaped attention so far.

The rest of the paper is organized as follows. In Section 2 we fix our notation and recall
the definition and some basic properties of Lipschitz p-summing operators. In Section 3 we
revisit the construction of the Arens–Eells space [1] and introduce the Banach-space-valued
version of their concept of molecules. Next, in Section 4, we define norms on the spaces of
molecules that are inspired by the tensor norms introduced by S. Chevet and P. Saphar [3,14] and
show how the resulting dual spaces are precisely the spaces of Lipschitz p-summing operators.
Furthermore, we use this duality to prove a characterization of Lipschitz p-summing operators
between metric spaces via induced mappings between spaces of molecules. Finally, in Section 5
we introduce more general norms for the spaces of molecules modeled after the tensor norms of
J.T. Lapresté [11], and study their duality, arriving at the concepts of Lipschitz (p, r, s)-summing
operators and Lipschitz (q,p)-dominated operators.

2. Notation and preliminaries

X, Y , Z will always denote metric spaces, whereas E, F , G will denote real Banach spaces.
We use the convention of having pointed metric spaces, i.e. with a designated special point always
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denoted by 0. As customary, BE denotes the closed unit ball of E and E∗ its linear dual, and
L(E,F ) is the space of bounded linear maps from E to F . We use the symbol ≡ to indicate that
two Banach spaces are isometrically isomorphic. Lip0(X,E) is the Banach space of Lipschitz
functions T :X → E such that T (0) = 0 with pointwise addition and the Lipschitz norm. As the
reader will recall from the introduction, we use the shorthand X# := Lip0(X,R). The letters p,
r , s will designate elements of [1,∞], and p′ denotes the exponent conjugate to p (i.e. the one
that satisfies 1/p + 1/p′ = 1).

Absolutely summing operators are by now widely recognized as one of the most important
developments in modern Banach space theory, as attested to by the astonishing number of results
and applications that can be found, for example, in [5]. Let us recall that for 1 � p < ∞, a linear
map T :E → F is p-summing if there exists a constant C � 0 such that regardless of the choice
of vectors v1, . . . , vn in E we have

[
n∑

j=1

‖T vj‖p

]1/p

� C sup
v∗∈BX∗

[
n∑

j=1

∣∣v∗(vj )
∣∣p]1/p

.

The infimum of such constants C is denoted by πp(T ) and called the p-summing norm of T .
Inspired by this useful concept, J. Farmer and W.B. Johnson introduced in [6] the following
definition: a Lipschitz map T :X → Y is called Lipschitz p-summing if there exists a constant
C � 0 such that regardless of the choice of points x1, . . . , xn, x

′
1, . . . , x

′
n in X and the choice of

positive reals λ1, . . . , λn we have the inequality

[
n∑

j=1

λjd
(
T xj , T x′

j

)p

]1/p

� C sup
f ∈B

X#

[
n∑

j=1

λj

∣∣f (xj ) − f
(
x′
j

)∣∣p]1/p

.

The infimum of such constants is denoted by πL
p (T ). This is a true generalization of the concept

of linear p-summing operator, since it is shown in [6, Theorem 2] that the Lipschitz p-summing
norm of a linear operator is the same as its p-summing norm. For the sequel, it will be useful to
note that the above definition is the same if we restrict to λj = 1 (see [6] for the proof).

In order to shorten the notation and avoid having to treat the case p = ∞ separately, we
introduce some more symbols and terminology. ‖ · ‖p denotes the norm on �p of a sequence of
real numbers. All sequences (of numbers and vectors) under consideration in this paper will be
finite, so there will be no issues of convergence. For a sequence of vectors (vj )j in a Banach
space E, its strong p-norm is the �p-norm of the sequence (‖vj‖)j and we denote its weak
p-norm (cf. [4, p. 91]) by

wp

(
(vj )j

) := sup
v∗∈BE∗

∥∥(
v∗(vj )

)
j

∥∥
p
.

Analogously, for sequences of the same length (λj )j of real numbers and (xj )j , (x′
j )j of points

in X, we denote their weak Lipschitz p-norm by

w
Lip
p

((
λj , xj , x

′
j

)
j

) := sup
f ∈B

X#

∥∥(
λj

[
f (xj ) − f

(
x′
j

)])
j

∥∥
p
.
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3. Banach-space-valued molecules on a metric space

We start by recalling the definition and basic properties of the space of Arens and Eells [1].
We follow the presentation in [15].

A molecule on a metric space X is a finitely supported function m :X → R such that∑
x∈X m(x) = 0. For x, x′ ∈ X we denote by mxx′ the molecule χ{x} − χ{x′}. The simplest

molecules, i.e. those of the form amxx′ with x, x′ ∈ X and a a real number are called atoms.
It is easy to show that every molecule can be expressed as a sum of atoms (for instance, by in-
duction on the cardinality of the support of the molecule). The Arens–Eells space of X, denoted
Æ(X), is the completion of the space of molecules with the norm

‖m‖Æ := inf

{
n∑

j=1

|aj |d
(
xj , x

′
j

)
: m =

n∑
j=1

ajmxj x′
j

}
. (3.1)

The fundamental properties of the Arens–Eells space are summarized in the following theo-
rem [1], [15, pp. 39–41].

Theorem 3.1.

(i) ‖ · ‖Æ is a norm on the vector space of molecules on X.
(ii) The dual of Æ(X) is (canonically) isometrically isomorphic to X#. Moreover, on bounded

subsets of X# the weak∗ topology coincides with the topology of pointwise convergence.
(iii) The map ι :x 	→ mx0 is an isometric embedding of X into Æ(X). Moreover, for any Banach

space E and any Lipschitz map T :X → E with T (0) = 0 there is a unique linear map
T̂ : Æ(X) → E such that T̂ ◦ ι = T . Furthermore, ‖T̂ ‖ = Lip(T ).

Because of the universal property (iii), the space Æ(X) is sometimes called the free Lipschitz
space of X (see [7,10]). From that point of view, it is natural to think of the space Æ(X) as the
closure in (X#)∗ of the linear span of the point evaluations δx :f 	→ f (x), for x ∈ X and f ∈ X#.
Such an approach was used by J. Johnson [8] to show that Lip0(X,E∗) is always a dual space,
without any reference to molecules. Our Theorem 4.3 recovers Johnson’s result as a particular
case of duality for Lipschitz p-summing operators.

In the spirit of Arens and Eells’ original formulation [1], define an E-valued molecule on X

to be a finitely supported function m :X → E such that
∑

x∈X m(x) = 0. The vector space of all
E-valued molecules on X is denoted by M(X,E). An E-valued atom is a function of the form
vmxx′ with v ∈ E, x, x′ ∈ X. Atoms are the building blocks of the space of molecules in the same
sense that elementary tensors are the building blocks of the tensor product: every molecule is a
sum of atoms. This is proved by induction on the cardinality of the support of the molecule as
follows. It is clear if the support has cardinality 0 or 2 (1 is clearly impossible), so now suppose
the result holds for molecules with support of size at most n, and let m :X → E be a molecule
with support {x0, x1, . . . , xn} ⊂ X. Note that m̃ = m − ∑n

j=1
1
n
m(x0)mx0xj

is a molecule with
support of size at most n (since m̃(x0) = 0), so m̃ is a sum of atoms and therefore clearly so is m.

Define a pairing 〈·,·〉 of Lip0(X,E∗) and M(X,E) by

〈T ,m〉 =
∑〈

T (x),m(x)
〉
, m ∈ M(X,E), T ∈ Lip0

(
X,E∗).
x∈X
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Note that this sum makes sense because m is finitely supported, and clearly 〈·,·〉 is bilinear. For
an atom m = vmx′y′ and T ∈ Lip0(X,E∗),

〈T ,m〉 =
∑
x∈X

〈
T (x), vmx′y′(x)

〉 = 〈
T

(
x′), vmx′y′

(
x′)〉 + 〈

T
(
y′), vmx′y′

(
y′)〉

= 〈
T

(
x′) − T

(
y′), v〉

.

Therefore, for a general molecule m = ∑
j vjmxj x′

j
,

〈T ,m〉 =
∑
j

〈
T xj − T x′

j , vj

〉
. (3.2)

4. The Chevet–Saphar norms

When the tensor product E ⊗F of two Banach spaces is endowed with a tensor norm, its dual
space can be interpreted as linear operators from E to F ∗. Under (some of) the Chevet–Saphar
tensor norms, introduced independently by S. Chevet [3] and P. Saphar [14] as generalizations
of earlier work of Saphar [13], the operators from E to F ∗ obtained in this way are precisely
p-summing operators. The main result of this section (Theorem 4.3) is the analogous result in
the setting of Lipschitz p-summing operators between a metric space and a Banach space, with
the space of molecules playing the role of the tensor product in the linear theory.

4.1. Definition and elementary properties

For a molecule m ∈ M(X,E) we define its p-Chevet–Saphar norm by

csp(m) = inf

{∥∥(
λj‖vj‖

)
j

∥∥
p
w

Lip
p′

((
λ−1

j , xj , x
′
j

)
j

)
: m =

∑
j

vjmxj x′
j
, λj > 0

}
. (4.1)

The reader familiar with the theory of Chevet–Saphar norms on tensor products of Banach
spaces will recall that there are two versions of those norms for a given index p; a left one and a
right one. Such variants are also possible in the present context, but we stick with only one for
now and postpone the study of the other one until Section 5, when we tackle the more general
Lapresté norms. Let us start by showing that our use of the word “norm” is justified.

Theorem 4.1. csp is a norm on M(X,E).

Proof. It is clear that for any molecule m ∈ M(X,E) and any scalar λ, csp(m) � 0 and
csp(λm) = |λ|csp(m). Let m1,m2 ∈ M(X,E) and ε > 0. By definition of the csp-norm we
can find a representation m1 = ∑

j vjmxj x′
j

and a sequence of positive reals (λj )j such that

∥∥(
λj‖vj‖

)
j

∥∥
p
w

Lip
p′

((
λ−1

j , xj , x
′
j

)
j

)
� csp(m1) + ε.

By replacing (λj )j by an appropriate multiple of it, we may in fact assume that

∥∥(
λj‖vj‖

) ∥∥ �
(
csp(m1) + ε

)1/p
, w

Lip
′
((

λ−1, xj , x
′ ) )

�
(
csp(m1) + ε

)1/p′
. (4.2)
j p p j j j
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Similarly, there exist a representation m2 = ∑
i wimyiy

′
i
, and positive reals (κi)i such that

∥∥(
κi‖wi‖

)
i

∥∥
p

�
(
csp(m2) + ε

)1/p
, w

Lip
p′

((
κ−1
i , yi, y

′
i

)
i

)
�

(
csp(m2) + ε

)1/p′
. (4.3)

We now “glue” together these representations of m1 and m2 to get a representation of m1 + m2:
let (uk)k be the sequence obtained from concatenating (vj )j and (wi)i ; similarly obtain (zk, z

′
k)k

from concatenating (xj , x
′
j )j and (yi, y

′
i ); and construct (ηk)k from (λj )j and (κi)i . Then the

strong p-norm of (ηkuk)k is just the p-sum of the strong p-norms of (λj vj )j and (κiwi)i , so
from (4.2) and (4.3) we have

∥∥(
ηk‖uk‖

)
k

∥∥
p

�
(
csp(m1) + csp(m2) + 2ε

)1/p
. (4.4)

Similarly, the weak Lipschitz p′-norm of (η−1
k , zk, z

′
k)k is bounded above by the p′-sum of the

weak Lipschitz p′-norms of (λ−1
j , xj , x

′
j )j and (κ−1

i , yi , y
′
i ), so once more from (4.2) and (4.3)

we obtain

wp′
((

η−1
k , zk, z

′
k

)
k

)
�

(
csp(m1) + csp(m2) + 2ε

)1/p′
. (4.5)

But clearly m1 +m2 = ∑
k ukmzkz

′
k
, so the product of (4.4) and (4.5) together with the definition

of csp give csp(m1 + m2) � csp(m1) + csp(m2) + 2ε. By letting ε tend to zero we have the
triangle inequality for csp .

Let T ∈ Lip0(X,E∗) be a map that admits a representation as a finite sum of the form
∑

k v∗
k fk

with (v∗
k )k ⊂ E∗, (fk)k ⊂ X# (i.e. such that the linearization T̂ : Æ(X) → E∗ has finite rank). For

such a T , set

θp(T ) = inf
{∥∥(∥∥v∗

k

∥∥)
k

∥∥
p

∥∥(
Lip(fk)

)
k

∥∥
p′

}
where the infimum is taken over all representations as above. Now, given m = ∑

j vjmxj x′
j

∈
M(X,E), and (λj )j a sequence of positive real numbers, we have from the pairing formula
(3.2) and Hölder’s inequality

∣∣〈T ,m〉∣∣ =
∣∣∣∣∑

j,k

v∗
k (vj )

[
fk(xj ) − fk

(
x′
j

)]∣∣∣∣ �
∑
j,k

∣∣λjv
∗
k (vj )λ

−1
j

[
fk(xj ) − fk

(
x′
j

)]∣∣
�

∥∥(
λjv

∗
k (vj )

)
j,k

∥∥
p

∥∥(
λ−1

j

[
fk(xj ) − fk

(
x′
j

)])
j,k

∥∥
p′ . (4.6)

For finite p, the definition of the �p-norm gives

∥∥(
λjv

∗
k (vj )

)
j,k

∥∥p

p
=

∑
k

∑
j

|λj |p
∣∣v∗

k (vj )
∣∣p �

∑
k

∥∥v∗
k

∥∥p
∑
j

|λj |p‖vj‖p,

so after taking the p-th root we get

∥∥(
λjv

∗(vj )
) ∥∥ �

∥∥(
λj‖vj‖

) ∥∥ ∥∥(∥∥v∗∥∥) ∥∥ (4.7)
k j,k p j p k k p
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and the same inequality is also trivially valid for p = ∞. On the other hand, by an analogous
argument,

∥∥(
λ−1

j

[
fk(xj ) − fk

(
x′
j

)])
j,k

∥∥
p′ �

∥∥(
Lip(fk)

)
k

∥∥
p′w

Lip
p′

((
λ−1

j , xj , x
′
j

)
j

)
. (4.8)

Together, Eqs. (4.6), (4.7) and (4.8) imply

∣∣〈T ,m〉∣∣ �
∥∥(

λj‖vj‖
)
j

∥∥
p
w

Lip
p′

((
λ−1

j , xj , x
′
j

)
j

)∥∥(∥∥v∗
k

∥∥)
k

∥∥
p

∥∥(
Lip(fk)

)
k

∥∥
p′ ,

so after taking the infimum over all representations, |〈T ,m〉| � csp(m)θp(T ). In particular, this
applies to maps T of the form v∗f with v∗ ∈ E∗ and f ∈ X#, so if m is such that csp(m) = 0
then we have, using the pairing formula (3.2),

0 = 〈
v∗f,m

〉 = ∑
j

v∗(vj )
[
f (xj ) − f

(
x′
j

)]
for all v∗ ∈ E∗, f ∈ X#.

By the duality between Æ(X) and X# (see Theorem 3.1), this means that the real-valued molecule
v∗ ◦ m is equal to 0 for all v∗ ∈ E∗ and consequently m = 0. �

We will denote by C S p(X,E) the normed space (M(X,E), csp). Notice that when X is a
finite set the space C S p(X,E) is complete, since it is isomorphic to E|X|−1. On the other hand,
when the set X is infinite the elements of the completion of C S p(X,E) correspond to infinite
representations as sums of atoms that are analogous to the ones considered in (4.1), but we need
not concern ourselves with such technicalities for our present purposes.

The next proposition shows that in the extreme cases p = 1 and p = ∞, csp can be calculated
using a simpler formula. In particular, we obtain that the cs1-norm is just the straightforward
generalization of the Arens–Eells norm to the Banach-valued case (cf. (3.1)).

Proposition 4.2. For a molecule m ∈ M(X,E),

cs1(m) = inf

{∑
j

‖vj‖d
(
xj , x

′
j

)
: m =

∑
j

vjmxj x′
j

}
(4.9)

and

cs∞(m) = inf

{
sup

f ∈B
X#

∑
j

‖vj‖
∣∣f (xj ) − f

(
x′
j

)∣∣: m =
∑
j

vjmxj x′
j

}
. (4.10)

Proof. Start by noting that given positive numbers λj and points xj , x′
j in X,

w
Lip
∞

((
λj , xj , x

′
j

)
j

) = sup
f ∈B

X#

∥∥(
λj

[
f (xj ) − f

(
x′
j

)])
j

∥∥∞ = max
j

λjd
(
xj , x

′
j

)
, (4.11)

because for each j , |f (xj ) − f (x′
j )| is at most d(xj , x

′
j ) whenever f ∈ BX# and this upper

bound is in fact achieved: given any two points x, x′ ∈ X, the function f :X → R given by
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f (·) = d(·, x′)−d(x′,0) is in Lip0(X,R), has Lipschitz constant 1 and satisfies |f (x)−f (x′)| =
d(x, x′). Now, given a molecule m = ∑

j vjmxj x′
j

and positive reals (λj )j , (4.11) gives

∥∥(
λj‖vj‖

)
j

∥∥
1w

Lip
∞

((
λ−1

j , xj , x
′
j

)) =
(∑

j

λj‖vj‖
)(

max
j

λ−1
j d

(
xj , x

′
j

))

�
∑
j

λ−1
j d

(
xj , x

′
j

)
λj‖vj‖ =

n∑
j=1

‖vj‖d
(
xj , x

′
j

)
.

Taking the infimum over all representations of m we get the inequality � in (4.9). On the other
hand, note that we may assume without loss of generality that xj �= x′

j for all j and thus (4.11)
with the particular choice λj = d(xj , x

′
j ) > 0 gives

cs1(m) �
∥∥(

d
(
xj , x

′
j

)‖vj‖
)
j

∥∥
1w

Lip∞
(
d
(
xj , x

′
j

)−1
, xj , x

′
j

)
j

=
(∑

j

d
(
xj , x

′
j

)‖vj‖
)

max
j

d(xj , x
′
j )

d(xj , x
′
j )

=
∑
j

d
(
xj , x

′
j

)‖vj‖

and after taking the infimum over all representations of m we obtain � in (4.9).
Now, given a molecule m = ∑

j vjmxj x′
j

and positive numbers λj ,

∥∥(
λj‖vj‖

)
j

∥∥∞w
Lip
1

((
λ−1

j , xj , x
′
j

)) =
(

max
j

λj‖vj‖
)

sup
f ∈B

X#

∑
j

λ−1
j

∣∣f (xj ) − f
(
x′
j

)∣∣
� sup

f ∈B
X#

∑
j

λj‖vj‖λ−1
j

∣∣f (xj ) − f
(
x′
j

)∣∣
= sup

f ∈B
X#

∑
j

‖vj‖
∣∣f (xj ) − f

(
x′
j

)∣∣,

so taking the infimum over all representations gives � in (4.10). On the other hand, note that we
can also assume without loss of generality that vj �= 0 for all j , so

cs∞(m) �
∥∥(‖vj‖−1‖vj‖

)
j

∥∥∞w
Lip
1

((‖vj‖, xj , x
′
j

)) = 1 · sup
f ∈B

X#

∑
j

‖vj‖
∣∣f (xj ) − f

(
x′
j

)∣∣

and taking the infimum yet again rewards us with � in (4.10). �
4.2. An example

We now use Proposition 4.2 to calculate explicitly the space C S 1 in the case when X is a
graph-theoretic tree. First note that (4.9) can be interpreted as saying that in general the space
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C S 1(X,E) is a quotient of a weighted (with weight given by the distance d) �1-sum of copies
of E; in fact the quotient map Q : (

⊕
x,x′∈X E)�1,d → M(X,E) is given by

Q
(
(vxx′)x,x′∈X

) =
∑

x,x′∈X

vxx′mxx′ .

When X is a graph-theoretic tree, we will show that C S 1(X,E) is again a weighted �1-sum of
copies of E. Let T = (V , E ,w) be a graph-theoretic weighted tree with vertex set V , edge set
E and weight function w : E → R

+, considered as a pointed metric space. Edges in E will be
written as ordered pairs (u, v) with u closer to 0 than v.

Consider u, v ∈ V . Let {u = w0,w1, . . . ,wn = v} be the unique minimal-length path joining u
and v. Since

d(u, v) =
n∑

i=1

d(wi ,wi−1),

a look at Eq. (4.9) reveals that in order to calculate the cs1-norm of a molecule it suffices to
consider only representations involving atoms mvu with (u, v) ∈ E . By the triangle inequality
in E, for the purpose of calculating the cs1-norm of a molecule m in its representation we can
consolidate all terms corresponding to the same atom muv, so in conclusion we can consider only
representations of the form

m =
∑

(u,v)∈E
vvumvu with vvu ∈ E. (4.12)

But for a given molecule there is only one such representation (recall we have fixed an orientation
for every edge), a fact easily proved by induction on the size of the tree, so the cs1-norm of a
molecule m is the weighted (with weight w) �1-norm of the associated vector (vvu)(u,v)∈E given
by the unique representation from (4.12). Therefore, the C S 1 space of a graph-theoretic weighted
tree T = (V , E ,w) is the weighted �1-sum of copies of E indexed by E and with weight w.

4.3. Duality

We show now that the duals of the Chevet–Saphar spaces of molecules can be canonically
identified as spaces of Lipschitz p-summing operators.

Theorem 4.3. The spaces C S p(X,E)∗ and ΠL
p′(X,E∗) are isometrically isomorphic via the

canonical pairing. Moreover, on the unit ball of ΠL
p′(X,E∗) the weak∗ topology coincides with

the topology of pointwise σ(E∗,E)-convergence.

Proof. First, let T ∈ ΠL
p′(X,E∗). Consider a molecule m = ∑

j vjmxj x′
j
∈ M(X,E) and pos-

itive numbers λj . The pairing formula (3.2), Hölder’s inequality and the definition of Lipschitz
p′-summing naturally come together to give us

∣∣〈T ,m〉∣∣ =
∣∣∣∣∑〈

T xj − T x′
j , vj

〉∣∣∣∣ �
∑∣∣〈T xj − T x′

j , vj

〉∣∣ �
∑∥∥T xj − T x′

j

∥∥‖vj‖

j j j
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�
∥∥(

λj‖vj‖
)
j

∥∥
p

∥∥(
λ−1

j

∥∥T xj − T x′
j

∥∥)
j

∥∥
p′

�
∥∥(

λj‖vj‖
)
j

∥∥
p
πL

p′(T )w
Lip
p′

((
λ−1

j , xj , x
′
j

)
j

)
.

Taking the infimum over all representations of m and positive λj we conclude that

∣∣〈T ,m〉∣∣ � πL
p′(T )csp(m).

Conversely, let ϕ ∈ C S p(X,E)∗ with ‖ϕ‖ = C. Then we have |ϕ(m)| � Ccsp(m) for any m ∈
M(X,E). Note that ϕ can be identified with a mapping T :X 	→ E∗ via the formula 〈T x, v〉 =
ϕ(vmx0). Indeed, for x ∈ X and v ∈ E,

∣∣〈T x, v〉∣∣ = ∣∣〈ϕ,vmx0〉
∣∣ � Ccsp(vmx0) � C‖v‖ sup

f ∈B
X#

∣∣f (x) − f (0)
∣∣ = C‖v‖d(x,0)

so T x ∈ E∗. Now, fix points xj , x′
j in X and positive numbers λj , j = 1, . . . , n. Let ε > 0. For

each j pick vj ∈ E such that 〈T xj − T x′
j , vj 〉 = ‖T xj − T x′

j‖ and ‖vj‖ � 1 + ε. Then, for any
sequence (αj )j of real numbers,

∣∣∣∣∑
j

αjλj

〈
T xj − T x′

j , vj

〉∣∣∣∣
=

∣∣∣∣
〈
T ,

∑
j

αjλj vjmxj x′
j

〉∣∣∣∣ � C · csp
(∑

j

αjλj vjmxj x′
j

)

� C
∥∥(|αj |‖vj‖

)
j

∥∥
p
w

Lip
p′

(
λj , xj , x

′
j

)
� C(1 + ε)

∥∥(|αj |
)
j

∥∥
p
w

Lip
p′

(
λj , xj , x

′
j

)
.

Taking the supremum over all sequences with ‖(|αj |)j‖p � 1,

∥∥(
λj

〈
T xj − T x′

j , vj

〉)
j

∥∥
p′ � C(1 + ε)w

Lip
p′

(
λj , xj , x

′
j

)
.

Letting ε go to 0,

∥∥(
λj

∥∥T xj − T x′
j

∥∥)
j

∥∥
p′ � Cw

Lip
p′

(
λj , xj , x

′
j

)
,

i.e. T is Lipschitz p′-summing with πL
p′(T ) � C.

For the second part, suppose (Tα)α ⊂ ΠL
p′(X,E∗) converges weak∗ to T ∈ ΠL

p′(X,E∗). Then,
for any x ∈ X and any v ∈ E, 〈Tα, vmx0〉 → 〈T ,vmx0〉, i.e. 〈Tα(x), v〉 → 〈T (x), v〉. This means
that (Tα) converges to T in the topology of pointwise σ(E∗,E)-convergence. Therefore, the
identity on ΠL

p′(X,E∗) is a continuous bijection from the weak∗ topology to the topology of
pointwise σ(E∗,E)-convergence. On the unit ball, the former is compact and the latter is Haus-
dorff, so they must coincide. �

In order to answer Question 3 from [6], i.e. identify the dual of the space of Lipschitz p-
summing operators from a finite metric space to a Banach space, we will need to “reverse” the
duality given by Theorem 4.3. Unsurprisingly, the principle of local reflexivity will play a crucial
role.
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Lemma 4.4. When X is a finite metric space, ΠL
p (X,E)∗∗ and ΠL

p (X,E∗∗) are (canonically)
isometrically isomorphic.

Proof. As vector spaces, both spaces can be identified with the space of functions from X

to E∗∗ that vanish at 0, so it will suffice to show equality of their unit balls. By Goldstein’s
theorem, BΠL

p (X,E)∗∗ is the weak∗-closure of BΠL
p (X,E). Since X is finite, the weak∗ topology

on ΠL
p (X,E)∗∗ is the topology of pointwise σ(E∗∗,E∗)-convergence. Since the Lipschitz p-

summing norm does not change if the codomain is enlarged, BΠL
p (X,E) embeds isometrically into

BΠL
p (X,E∗∗). By Theorem 4.3 the weak∗ topology in ΠL

p (X,E∗∗) (as the dual of C S p′(X,E∗)) is

also the topology of pointwise σ(E∗∗,E∗)-convergence. Therefore, BΠL
p (X,E)∗∗ ⊆ BΠL

p (X,E∗∗).

Now fix T ∈ Lip0(X,E∗∗). Let F be a finite-dimensional subspace of E∗∗ containing the span
of the image of T such that F ∩ E �= {0}, and let A be the directed set of all finite-dimensional
subspaces of E∗. Given ε ∈ (0,1), by the principle of local reflexivity (say, in the form given in
[5, p. 178]) for every A ∈ A there exists an injective linear map uA :F → E such that: (a) uAv =
v for all v ∈ F ∩ E; (b) ‖uA‖ · ‖u−1

A ‖ � 1 + ε; and (c) 〈uAv∗∗, v∗〉 = 〈v∗∗, v∗〉 for all v∗∗ ∈ F

and v∗ ∈ A. Note that since F ∩E is not trivial, condition (a) guarantees that ‖u−1
A ‖ � 1 and thus

‖uA‖ � 1+ε from condition (b). If we set TA := uA ◦T :X → E, then πL
p (TA) � ‖uA‖πL

p (T ) �
(1 + ε)πL

p (T ) and for every v∗ ∈ E∗, since v∗ is eventually in A ∈ A condition (c) implies that

lim
A∈A

〈
TAx, v∗〉 = lim

A∈A

〈
uAT x, v∗〉 = 〈

T x, v∗〉,
i.e. the net (TA)A∈A converges to T in the topology of pointwise σ(E∗∗,E∗)-convergence.
Since T ∈ Lip0(X,E∗∗) was arbitrary, this implies that BΠL

p (X,E∗∗) is contained in the clo-

sure of (1 + ε)BΠL
p (X,E) with respect to the topology of pointwise σ(E∗∗,E∗)-convergence,

that is, BΠL
p (X,E∗∗) ⊆ (1 + ε)BΠL

p (X,E)∗∗ . Letting ε go to 0 we conclude that BΠL
p (X,E∗∗) ⊆

BΠL
p (X,E)∗∗ . �

Corollary 4.5. When X is a finite metric space, ΠL
p (X,E)∗ ≡ C S p′(X,E∗).

Proof. From Theorem 4.3 we have C S p′(X,E∗)∗ ≡ ΠL
p (X,E∗∗) and Lemma 4.4 gives us

ΠL
p (X,E)∗∗ ≡ ΠL

p (X,E∗∗), so C S p′(X,E∗)∗ ≡ ΠL
p (X,E)∗∗. Moreover, the isometry implied

in this last inequality is weak∗-to-weak∗ continuous (reasoning as in the proof of Theorem 4.3,
weak∗-convergence in C S p′(X,E∗)∗ implies pointwise σ(E∗∗,E∗)-convergence, that is, weak∗-
convergence in ΠL

p (X,E)∗∗), so it is the adjoint of an isometry between C S p′(X,E∗) and
ΠL

p (X,E)∗. �
4.4. An application: a characterization of Lipschitz p-summing operators between metric
spaces

Even though we have been considering only Lipschitz p-summing operators from a metric
space into a Banach space, the Chevet–Saphar spaces of molecules can be used to get a new
characterization of Lipschitz p-summing operators between metric spaces. Moreover, this char-
acterization has the (potential) advantage of being expressed only in terms of linear operators.
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A Lipschitz map T :X → Y naturally induces a linear map TE : M(X,E) → M(Y,E) given
by

TE

(
n∑

j=1

vjmxj x′
j

)
=

n∑
j=1

vjmT xj T x′
j
.

First, let us note that TE : M(X,E) → M(Y,E) is well-defined, i.e. it does not depend on the
given representation of a molecule. For that, suppose that a molecule m :X → E has two repre-
sentations

∑
j vjmxj x′

j
and

∑
i wimyiy

′
i
. Then for all v∗ ∈ E∗ the real-valued molecule v∗ ◦m has

representations
∑

j v∗(vj )mxj x′
j

and
∑

i v
∗(wi)myiy

′
i
. Hence, by duality between Æ(X) and X#

(see Theorem 3.1), for all f ∈ X# we have that

∑
j

v∗(vj )
[
f (xj ) − f

(
x′
j

)] =
∑

i

v∗(wi)
[
f (yi) − f

(
y′
i

)]
.

In particular, for any g ∈ Y # we have g ◦ T ∈ X# and thus

∑
j

v∗(vj )
[
g(T xj ) − g

(
T x′

j

)] =
∑

i

v∗(wi)
[
g(T yi) − g

(
Ty′

i

)]
,

which means that
∑

j vjmT xj x′
j

= ∑
i wimTyiT y′

i
(applying the same arguments in reverse or-

der).

Theorem 4.6. Let T :X → Y be a Lipschitz map. The following are equivalent:

(a) T is Lipschitz p-summing.
(b) For every Banach space E (or only E = Y #), the operator

TE : C S p′(X,E) → C S 1(Y,E)

is continuous.

In this case,

πL
p (T ) = ∥∥TY # : C S p′

(
X,Y #) → C S 1

(
Y,Y #)∥∥ �

∥∥TE : C S p′(X,E) → C S 1(Y,E)
∥∥.

Proof. Suppose that T :X → Y is Lipschitz p-summing. Let ϕ ∈ (C S 1(Y,E))∗ with ‖ϕ‖ � 1.
Since (C S 1(Y,E))∗ ≡ Lip0(Y,E∗), we can identify ϕ with a function Lϕ ∈ Lip0(Y,E∗) with
Lip(Lϕ) = ‖ϕ‖ � 1. Let m = ∑

vjmxj x′
j
∈ M(X,E). Then TE(m) = ∑

vjmT xj T x′
j
, so

〈
ϕ,TE(m)

〉 = ∑
j

〈
Lϕ(T xj ) − Lϕ

(
T x′

j

)
, vj

〉 = 〈Lϕ ◦ T ,m〉,

and thus
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∣∣〈ϕ,TE(m)
〉∣∣ = ∣∣〈Lϕ ◦ T ,m〉∣∣ � πL

p (Lϕ ◦ T )csp′(m) � Lip(Lϕ)πL
p (T )csp′(m)

� πL
p (T )csp′(m).

Taking the supremum over all such ϕ,

cs1
(
TE(m)

)
� πL

p (T )csp′(m),

so TE : C S p′(X,E) → C S 1(Y,E) is continuous and ‖TE‖ � πL
p (T ).

Now, suppose that TY # : C S p′(X,Y #) → C S 1(Y,Y #) is continuous and has norm C. Let
jY :Y → (Y #)∗ be the canonical isometric embedding. From the definition of Lipschitz p-
summing, it suffices to show that jY ◦ T is Lipschitz p-summing. Let m ∈ M(X,Y #). Write
m = ∑

j gjmxj x′
j

with gj ∈ Y #. Then

〈jY ◦ T ,m〉 =
∑
j

〈
jY ◦ T (xj ) − jY ◦ (

T x′
j

)
, gj

〉 = ∑
j

[
gj (T xj ) − gj

(
T x′

j

)]

=
∑
y∈Y

〈
jY (y),

∑
j

gjmT xj T x′
j
(y)

〉
= 〈

jY , TY #(m)
〉
,

so

∣∣〈jY ◦ T ,m〉∣∣ = ∣∣〈jY , TY #(m)
〉∣∣ � Lip(jY )cs1

(
TY #(m)

)
� 1 · Ccsp′(m).

Therefore, from the duality between the p′-Chevet–Saphar norm and the Lipschitz p-summing
norm, after taking the supremum over all m with csp′(m) � 1 we get

πL
p (T ) � C

and the proof is over because, now that we know that T is Lipschitz p-summing, from the first
part we get πL

p (T ) � C. �
5. Lapresté norms and Lipschitz (p, r, s)-summing operators

In [11], J.T. Lapresté defined a generalization of the Chevet–Saphar tensor norms. In this
section we study the corresponding definition for spaces of molecules.

5.1. Definition and elementary properties

For a molecule m ∈ M(X,E), let

μp,r,s(m)

= inf

{∥∥(λj )j
∥∥

p
w

Lip
r

((
κ−1
j λ−1

j , xj , x
′
j

)
j

)
ws

(
(κj vj )j

)
: m =

∑
vjmxj x′

j
, λj , κj > 0

}
.

j
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Recall that for 0 < β � 1, a non-negative positively homogeneous functional μ defined on a
vector space U is called a β-seminorm if μ(u1 + u2)

β � μ(u1)
β + μ(u2)

β for all u1, u2 ∈ U . If
in addition μ vanishes only at 0, it is called a β-norm.

Theorem 5.1. Suppose 1/β := 1/p + 1/r + 1/s � 1. Then μp,r,s is a β-norm on M(X,E).

Proof. It is clear that for any molecule m ∈ M(X,E) and any scalar λ, μp,r,s(m) � 0 and
μp,r,s(λm) = |λ|μp,r,s(m).

Let m1,m2 ∈ M(X,E) and ε > 0. Choose a representation m1 = ∑
j vjmxj x′

j
and positive

reals λj , κj such that

∥∥(λj )j
∥∥

p
w

Lip
r

((
κ−1
j λ−1

j , xj , x
′
j

)
j

)
ws

(
(κj vj )j

)
� μp,r,s(m1) + ε.

Multiplying (λj )j and (κj )j by appropriate positive constants we may in fact assume that

∥∥(λj )j
∥∥

p
�

(
μp,r,s(m1)

β + ε
)1/p

,

ws

(
(κj vj )j

)
�

(
μp,r,s(m1)

β + ε
)1/s

,

w
Lip
r

((
κ−1
j λ−1

j , xj , x
′
j

)
j

)
�

(
μp,r,s(m1)

β + ε
)1/r

.

Similarly, choose a representation m2 = ∑
i wimyiy

′
i

and positive reals ηi , γi such that

∥∥(ηi)i
∥∥

p
�

(
μp,r,s(m2)

β + ε
)1/p

,

ws

(
(γiwi)i

)
�

(
μp,r,s(m2)

β + ε
)1/s

,

w
Lip
r

((
γ −1
i η−1

i , yi, y
′
i

)
i

)
�

(
μp,r,s(m2)

β + ε
)1/r

.

As in the proof of Theorem 4.1, concatenate these representations and accompanying positive
reals to get a representation of m1 + m2 and sequences of positive reals that witness the fact that

μp,r,s(m1 + m2) �
(
μp,r,s(m1)

β + μp,r,s(m2)
β + 2ε

)1/β

and hence, letting ε ↓ 0

μp,r,s(m1 + m2)
β � μp,r,s(m1)

β + μp,r,s(m2)
β .

For a function T ∈ Lip0(X,E∗) that admits a representation as a finite sum of the form T =∑
k λ̃kv

∗
kfk with λ̃k ∈ R, v∗

k ∈ E∗ and fk ∈ X# (i.e. such that the linearization T̂ : Æ(X) → E∗
has finite rank) set

θp,r,s(T ) = inf
{∥∥(λ̃k)k

∥∥
p

∥∥(∥∥v∗
k

∥∥)
k

∥∥
r

∥∥(
Lip(fk)

)
k

∥∥
s

}
where the infimum is taken over all representations of T as above. For any such T and m =∑

vjmx x′ , λj , κj > 0 using the fact that 0 < β � 1 and Hölder’s inequality
j j j
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∣∣〈T ,m〉∣∣ =
∣∣∣∣∑

j,k

λ̃kv
∗
k (vj )

[
fk(xj ) − fk

(
x′
j

)]∣∣∣∣
�

∑
j,k

∣∣λ̃kλj κj v
∗
k (vj )λ

−1
j κ−1

j

[
fk(xj ) − fk

(
x′
j

)]∣∣

�
(∑

j,k

∣∣λ̃kλj κj v
∗
k (vj )λ

−1
j κ−1

j

[
fk(xj ) − fk

(
x′
j

)]∣∣β)1/β

�
∥∥(λ̃kλj )j,k

∥∥
p

∥∥(
λ−1

j κ−1
j

[
fk(xj ) − fk

(
x′
j

)])
j,k

∥∥
r

∥∥(
κjv

∗
k (vj )

)
j,k

∥∥
s
.

Note that

∥∥(λ̃kλj )j,k
∥∥

p
�

∥∥(λ̃k)k
∥∥

p

∥∥(λj )j
∥∥

p
,∥∥(

λ−1
j κ−1

j

[
fk(xj ) − fk

(
x′
j

)])
j,k

∥∥
r
�

∥∥(
Lip(fk)

)
k

∥∥
r
w

Lip
r

((
λ−1

j , κ−1
j , xj , x

′
j

)
j

)
,∥∥(

κjv
∗
k (vj )

)
j,k

∥∥
s
�

∥∥(∥∥v∗
k

∥∥)
k

∥∥
s
ws

(
(κj vj )j

)
,

so by taking the infimum over all representations of both m and T , and all positive numbers λj ,
κj we obtain

∣∣〈T ,m〉∣∣ � μp,r,s(m)θp,r,s(T ).

Therefore, if μp,r,s(m) = 0 we have 〈v∗f,m〉 = 0 for all v∗ ∈ E∗, f ∈ X#. By duality between
Æ(X) and X#, that means the real-valued molecule v∗ ◦ m is equal to 0 for all v∗ ∈ E∗, so we
conclude that m = 0 and thus μp,r,s is a β-norm rather than just a β-seminorm. �

The β-normed space (M(X,E),μp,r,s) will be denoted by Mp,r,s .

5.2. Duality

Just as in the linear case, the dual of the (p, r, s)-Lapresté norm is the (p′, r, s)-summing norm
(see [12, p. 228] for the definition of a (p, r, s)-summing operator). An operator T :X → E is
called Lipschitz (p, r, s)-summing if there is a constant C such that for all xj , x

′
j ∈ X, vj ∈ E∗,

and λj , κj > 0 we have

∥∥(
λj

〈
vj , T xj − T x′

j

〉)
j

∥∥
p

� Cw
Lip
r

((
λjκ

−1
j , xj , x

′
j

)
j

)
ws

(
(κj vj )j

)
. (5.1)

The smallest such constant C will be denoted by πL
p,r,s(T ), and ΠL

p,r,s(X,E) will denote the set
of all such operators. A few remarks about this definition are in order. First, when E = F ∗ it
suffices to consider only vj ∈ F . Also, the case (p,p,∞) corresponds to Lipschitz p-summing
operators from X to E as in [6], whereas the case (q,p,∞) corresponds to the Lipschitz (q,p)-
summing operators from X to E as in [9]. Moreover, by the same arguments as in [6], we may
take λj = 1 for all j in (5.1). Finally, it is easy to check that (ΠL

p,r,s(X,E),πL
p,r,s) is a normed

space.
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Theorem 5.2. The spaces Mp,r,s(X,E)∗ and ΠL
p′,r,s(X,E∗) are isometrically isomorphic via

the canonical pairing. Moreover, on the unit ball of ΠL
p′,r,s(X,E∗) the weak∗ topology coincides

with the topology of pointwise σ(E∗,E)-convergence.

Proof. First, let T ∈ ΠL
p′,r,s(X,E∗). Then, for any m = ∑

j vjmxj x′
j
∈ M(X,E) and λj , κj > 0,

by the pairing formula (3.2) and Hölder’s inequality

∣∣〈T ,m〉∣∣ =
∣∣∣∣∑

j

〈
T xj − T x′

j , vj

〉∣∣∣∣ �
∑
j

∣∣〈T xj − T x′
j , vj

〉∣∣
�

∥∥(λj )j
∥∥

p

∥∥(
λ−1

j

〈
T xj − T x′

j , vj

〉)
j

∥∥
p′

�
∥∥(λj )j

∥∥
p
πL

p′,r,s(T )w
Lip
r

((
λ−1

j κ−1
j , xj , x

′
j

)
j

)
ws

(
(κj vj )j

)
.

Taking the infimum over all representations of m and λj , κj > 0 we conclude that |〈T ,m〉| �
πL

p′,r,s(T )μp,r,s(m). Conversely, let ϕ ∈ Mp,r,s(X,E)∗ with ‖ϕ‖ = C, so we have |ϕ(m)| �
Cμp,r,s(m) for any m ∈ M(X,E). Note that ϕ can be identified with a mapping T :X 	→ E∗ via
the formula 〈T x, v〉 = ϕ(vmx0). Indeed, for x ∈ X and v ∈ E,

∣∣〈T x, v〉∣∣ = ∣∣〈ϕ,vmx0〉
∣∣ � Cμp,r,s(vmx0)

� C sup
v∗∈BE∗

∣∣v∗(v)
∣∣ sup
f ∈B

X#

∣∣f (x) − f (0)
∣∣ = C‖v‖d(x,0),

so T x ∈ E∗. Now, suppose xj , x
′
j ∈ X, λj , κj > 0. For any sequence (αj )j of real numbers with

‖(αj )j‖p � 1,

∣∣∣∣∑
j

αjλj

〈
T xj − T x′

j , vj

〉∣∣∣∣ =
∣∣∣∣
〈
T ,

∑
j

αjλj vjmxj x′
j

〉∣∣∣∣
� Cμp,r,s

(∑
j

αjλj vjmxj x′
j

)

� C
∥∥(αj )j

∥∥
p
w

Lip
r

((
κ−1
j λj , xj , x

′
j

)
j

)
ws

(
(κj vj )j

)
� Cw

Lip
r

((
κ−1
j λj , xj , x

′
j

)
j

)
ws

(
(κj vj )j

)
.

Taking the supremum over all such α,

∥∥(
λj

〈
T xj − T x′

j , vj

〉)
j

∥∥
p′ � Cw

Lip
r

((
κ−1
j λj , xj , x

′
j

)
j

)
ws

(
(κj vj )j

)
,

i.e. T is Lipschitz (p′, r, s)-summing with πL
p′,r,s(T ) � C. For the statement about the weak∗

topology, we use the exact same argument as in the proof of Theorem 4.3. �
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5.3. A special case

Just as in the linear case, when 1/p + 1/r + 1/s = 1 the dual of Mp,r,s(X,E) has another
interesting characterization in terms of summing operators. We will make use of the following
elementary identity.

Lemma 5.3. Suppose 1 � p, r, s < ∞ and 1 = 1/p + 1/r + 1/s. Then for a, b, c � 0,

abc = inf
λ,κ>0

{
λp

p
ap + κs

s
bs + λ−rκ−r

r
cr

}
.

Proof. It is an easy calculus exercise to show that

a(bc) = inf
λ>0

{
λp

p
ap + λ−p′

p′ (bc)p
′
}
.

Applying the same idea again to the product bc we get the result. �
The following theorem identifies the dual of Mp,r,s(X,E) in this special case.

Theorem 5.4 (Domination/factorization). Suppose 1/p+1/r+1/s = 1 and let T ∈ Lip0(X,E∗),
C > 0. The following are equivalent:

(a) |〈T ,m〉| � Cμp,r,s(m) for all m ∈ M(X,E).
(b) There exist regular Borel probability measures μ and ν on the weak∗-compact unit balls

BX# , BE∗ (considering X# = Æ(X)∗) such that for all x, x′ ∈ X and v ∈ E,

∣∣〈T x − T x′, v
〉∣∣ � C

[ ∫
B

X#

∣∣f (x) − f
(
x′)∣∣r dμ(f )

]1/r[ ∫
BE∗

∣∣v∗(v)
∣∣s dν

(
v∗)]1/s

.

(c) There exist a Banach space Z, a Lipschitz r-summing operator R :X → Z∗ and a linear
s-summing operator S :E → Z such that πL

r (R) · πs(S) � C and

〈T x, v〉 = 〈Rx,Sv〉 for all x ∈ X, v ∈ E;

that is, T = S∗ ◦ R.

Note that condition (c) can be considered as a Lipschitz version of (linear) (r, s)-dominated
operators, i.e. those that can be factored as a composition of an r-summing operator and the
adjoint of an s-summing operator (see, e.g. [4, p. 241]).

Proof of Theorem 5.4. We will assume p, r, s < ∞ for the sake of simplicity; the other cases
have similar proofs (for instance, the case s = ∞ follows from the domination theorem for Lip-
schitz p-summing operators [6, Theorem 1] and Theorem 5.2).

(a) ⇒ (b) Consider a molecule m = ∑
j vjmxj x′

j
, xj , x

′
j ∈ X, vj ∈ E. By definition of μp,r,s ,

for any λj , κj > 0
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∣∣∣∣∑
j

〈
T xj − T x′

j , vj

〉∣∣∣∣
� C

(∑
j

λ
p
j

)1/p

sup
f ∈B#

X

(∑
j

λ−r
j κ−r

j

∣∣f (xj ) − f
(
x′
j

)∣∣r)1/r

sup
v∗∈BE∗

(∑
j

κs
j

∣∣v∗(vj )
∣∣s)1/s

.

Applying Lemma 5.3 gives for any γ, δ > 0,

∣∣∣∣∑
j

〈T xj − Tyj , vj 〉
∣∣∣∣

� C sup
f ∈B

X# , v∗∈BE∗

∑
j

[
γ p

p
λ

p
j + δs

s
κs
j

∣∣v∗(vj )
∣∣s + γ −r δ−r

r
λ−r

j κ−r
j

∣∣f (xj ) − f
(
x′
j

)∣∣r].

This means, after renaming variables, that for all λj , κj > 0

∣∣∣∣∑
j

〈
T xj − T x′

j , vj

〉∣∣∣∣
� C sup

f ∈B
X# , v∗∈BE∗

∑
j

[
λ

p
j

p
+ κs

j

s

∣∣v∗(vj )
∣∣s + λ−r

j κ−r
j

r

∣∣f (xj ) − f
(
x′
j

)∣∣r]. (5.2)

We now use the same idea as in the proof of the Pietsch Domination Theorem to find the measures
μ and ν. Working on the space C(BX# × BE∗), consider the set L consisting of functions of the
form

gA

(
f, v∗) =

∣∣∣∣ ∑
(x,x′,v,λ,κ)∈A

〈
T x − T x′, v

〉∣∣∣∣
− C

∑
(x,x′,v,λ,κ)∈A

[
λp

p
+ κs

s

∣∣v∗(v)
∣∣s + λ−rκ−r

r

∣∣f (x) − f
(
x′)∣∣r],

where A is a finite subset of X × X × E × R
+ × R

+. Then L is a convex set and every function
in L takes at least one non-positive value by (5.2). In particular, L is disjoint from the open
positive cone P of C(BX# × BE∗), and hence there exists a regular (finite) Borel measure μ0 on
BX# × BE∗ that separates L and P . Arguing as usual, we may assume that μ0 is a probability
measure and 〈fA,μ0〉 � 0 for every fA ∈ L. Taking a singleton A = {(x, x′, v, λ, κ)} we get

∣∣〈T x − T x′, v
〉∣∣ � C

∫
B

X# ×BE∗

[
λp

p
+ κs

s

∣∣v∗(v)
∣∣s + λ−rκ−r

r

∣∣f (x) − f
(
x′)∣∣r]dμ0

(
f, v∗)

= C

[
λp

p
+ κs

s

∫
B ×B ∗

∣∣v∗(v)
∣∣s dμ0

(
f, v∗)
X# E
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+ λ−rκ−r

r

∫
B

X# ×BE∗

∣∣f (x) − f
(
x′)∣∣r dμ0

(
f, v∗)].

Another application of Lemma 5.3 gives

∣∣〈T x − T x′, v
〉∣∣ � C

[ ∫
BE∗

∣∣v∗(v)
∣∣s dν

(
v∗)]1/s[ ∫

B
X#

∣∣f (x) − f
(
x′)∣∣r dμ(f )

]1/r

where μ and ν are the marginals of μ0.
(b) ⇒ (c) Let jX :X → Lr(μ) and jE :E → Ls(ν) be given by

(jXx)(f ) = f (x), (jEv)
(
v∗) = v∗(v) for all x ∈ X, v ∈ E, f ∈ BX#, v∗ ∈ BE∗ .

Note that jX is Lipschitz r-summing (resp. jE is linear s-summing) since it factors through
the canonical injection C(BX#) → Lr(μ) (resp. through C(BE∗) → Ls(ν)) and moreover
πL

r (jX) � 1 (resp. πs(jE) � 1).
Let X̃ := jX(X) ⊂ Lr(μ) and Z := jE(E) ⊂ Ls(ν). Define U : X̃ → Z∗ by

〈
UjX(x), jE(v)

〉 = 〈T x, v〉 for all x ∈ X, v ∈ E.

First note that this indeed defines an element of Z∗, since by condition (b) we have for all x ∈ X

and v ∈ E

∣∣〈UjX(x), jE(v)
〉∣∣ = ∣∣〈T x, v〉∣∣ � C

∥∥jX(x)
∥∥

Lr(μ)

∥∥jE(v)
∥∥

Ls(ν)
= C

∥∥jX(x)
∥∥

Lr(μ)

∥∥jE(v)
∥∥

Z

and then we extend to all of Z by continuity. Moreover, U is Lipschitz with Lip(U) � C: for any
x, x′ ∈ X, by definition of U and condition (b)

∥∥UjX(x) − UjX

(
x′)∥∥

Z∗ = sup
‖jE(v)‖Ls (ν)�1

∣∣〈UjX(x) − UjX

(
x′), jE(v)

〉∣∣
= sup

‖jE(v)‖Ls (ν)�1

∣∣〈T x − T x′, v
〉∣∣

� sup
‖jE(v)‖Ls (μ)�1

C
∥∥jX(x) − jX

(
x′)∥∥

Lr(μ)

∥∥jE(v)
∥∥

Ls(μ)

= C
∥∥jX(x) − jX(y)

∥∥
Lr(μ)

.

Therefore, we have (c) with S = jE :E → Z and R = UjX :X → Z∗, since clearly 〈T x, v〉 =
〈Rx,Sv〉, and

πL
r (R)πs(S) = πL

r (UjX)πs(S) � Lip(U)πL
r (jX)πs(jE) � C · 1 · 1 = C.

(c) ⇒ (a) Suppose there exist operators R and S as in (c). Then for any molecule m =∑
vjmx x′ and any λj , κj > 0 the pairing formula (3.2) and Hölder’s inequality give
j j j
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∣∣〈T ,m〉∣∣ =
∣∣∣∣∑

j

〈
Svj ,Rxj − Rx′

j

〉∣∣∣∣ �
∑
j

∣∣〈Svj ,Rxj − Rx′
j

〉∣∣
�

∑
j

‖Svj‖ · ∥∥Rxj − Rx′
j

∥∥ =
∑
j

λj κj‖Svj‖ · λ−1
j κ−1

j

∥∥Rxj − Rx′
j

∥∥

�
(∑

j

λ
p
j

)1/p(∑
j

κs
j‖Svj‖s

)1/s(∑
j

λ−r
j κ−r

j

∥∥Rxj − Rx′
j

∥∥r
)1/r

.

Since R is Lipschitz r-summing and S is s-summing, the last expression is at most

πL
r (R)πs(S)

(∑
j

λ
p
j

)1/p

sup
v∗∈BE∗

(∑
j

κs
j

∣∣v∗(vj )
∣∣s)1/s

× sup
f ∈B#

X

(∑
j

λ−r
j κ−r

j

∣∣f (xj ) − f
(
x′
j

)∣∣r)1/r

.

Taking the infimum over all representations of m and all λj , κj > 0, we conclude that |〈T ,m〉| �
Cμp,r,s(m). �
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