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A CRITERION FOR KNOTS OF PERIOD 3 
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A new criterion for knots of period 3 is introduced. It is used to fill in some blank positions 

as well as to correct some errors in existing tables of periods. 

AMS (MOS) Subj. Class.: 57M25, 57817 

We introduce a criterion for periodicity of knots, designed specially to deal with 

the case of suspected period 3-the one most obstinate to treatment by other methods. 

(Some criteria involving the new polynomials were introduced by Murasugi [5], 

Przytycki [6] and the author [7], but none of them works for period 3. Also some 

older criteria, due to Murasugi do not work too well for period 3.) We will use the 

two-variable polynomial P as described in [4], that is defined by the fundamental 

relation 

lP(L+)+l-‘P(L_)+mP(L,)=O (1) 

and the assumption P(trivia1 knot) = 1. Following Lickorish and Millett we denote 

by PO the part of P gathering all the terms of degree zero in m. Throughout this 

paper we will compute PO and P with coefficients in Z, rather than in Z. To avoid 

complicating the notation, we will still denote the reduced polynomials by PO and P 

Theorem 1. Assume a knot K has period 3. Let P,(K) = 1 ak12k. Then for every k, 

a3k+l + a3k+2 = O. 

Application. This simple observation yields a very handy criterion for knots of 

period 3. By applying this criterion we can see immediately that 103, lo,,,, 1020, 

lo,,, 1059, 1G9, and 1h4 have no period 3. Those are 7 out of 15 cases declared 

doubtful in the tables in [I]. The two cases of suspected period 7 were excluded 

earlier by Murasugi [5] and the author [7]. There are some discrepancies betweeen 

our results and the data in [I]: our criterion rules out the possibility of knots lo,, 
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10z9, 10X4, lo*,, lOgi, 10g8, 10g9, and 1O135 being 3-periodic, while they are classified 

as such in [l]. 

The range of the introduced criterion may be expanded by applying it to appropri- 

ate cables of the considered knots. Computing the PO polynomial for 2-cables we 

can show that 106,, and 1O162 have no period 3-another two of the doubtful cases 

in the tables of Burde and Zieschang. The polynomials of the above mentioned 

knots are given in the Appendix. 

It should be mentioned that 103, 104, lOlo, 10r4, 102,,, 10z9, lox2 and 10J4 were 

in fact earlier excluded by Gordon, Litherland and Murasugi, because these knots 

are not 2-bridge knots; see [3]. 

The polynomial P, takes values in &[I*, Im2], which may be considered as a 

Z,[ 16, l-61 -module. It will be convenient to denote the set of polynomials satisfying 

the condition given in Theorem 1 by M. Then M is a Z,[16, I-6]-submodule of 

2,[j2, 1-‘]. The proof of Theorem 1 is divided into 3 parts. First we reduce the 

general case of an arbitrary periodic diagram to that of a closure of a periodic braid. 

Then this case is reduced to that of the standard closed braid presentation of the 

torus knot t(k, 3). Finally torus knots are dealt with separately. 

The first two reductions both utilize the following observations, which will be 

summarized as a proposition. 

Let D be a 3-periodic diagram with a positive (negative) crossing c, so that we 

can write D = D,,, (D = D-_-), the subscripts referring to the sign of c and its 

images under the considered rotation. Then 

Z3P( D,,,) + 1-3P( D___) + m3P( Do& = 0. (2) 

This is easily proved by applying formula (1) and observing that D-oo = Do-o = Do+ 

and D__o = D-+ = D__, (because D is periodic), for an illustration see Fig. 1. 

An obvious specialisation of (2) is the following 

13P,,( D,,,) + lp3Po( D-__) + m3P_,( Dooo) = 0, (3) 

where E3 is the sum of all terms of m-degree equal to -3 in P. However, by [4, 

Proposition 221 the exponent of the lowest power of m which appears in P(Dooo) 

is precisely 1 - m, where m is the number of components of Dooo. It follows that 

D-++ Do++ 

/\ /\ 

D 

~-i ss ~+, 9; 

___ D-e0 D_,_ D-00 Do-- Doso Doe_ Dooo 

Fig. 1. 
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the last term in (3) is nontrivial only when DOOO has four components. In this case 

three components of DOOo form an orbit of the considered rotation and the fourth 

component is itself invariant (it is obvious that D 000 is 3-periodic, one could however 

think that all four components may be themselves invariant; this cannot happen in 

fact, because in such case each of them would have to contain at least three of the 

arcs produced by smoothing the three crossings and there are altogether only six 

such arcs). Assume that DOOo has four components. Let Di denote the one that is 

invariant, 0, one of the remaining three and h the total linking number of DOOO. 

Using again [4, Proposition 221 we obtain the following. 

Proposition 2. If DOOO has two components, then 

13P,( D,,,) + l_‘P,( D___) = 0. 

If Do,, has four components, then 

(4) 

13Po(D+++)+ I-‘Po(D___)+(-l’)-*(-(I+ I~1))3P~(Di)(Po(D~))3=0. (5) 

We will now reduce the proof of Theorem 1 to the case of periodic braids. That 

is we assume that the theorem holds for periodic braids and we will prove that it 

holds for arbitrary periodic diagrams, by induction on the number of crossings. We 

assume that the theorem holds for diagrams having less crossings than D = D,,, 

(or D___). In particular if Dooo has four components then the theorem holds for Di. 

We now consider the two cases of Proposition 2. 

Case 1. If DDoO has two components, then formula (4) implies immediately that 

P,(D+++) E M if and only if P,(D___) E M. 

Case 2. If DooO has four components, then 

(-12))” = f16k E 23[16,1-6], 

(-(z+r-I))‘=-13-1-3, 

(Po(D,))~ E 5[1”. l-?, 

P,(Di) E M. 

It follows that the DooO contribution to D,,, (or D___) computed from (5) is of 

the form wPO( Di), where w E Z,[ i6, je6], whence again P,,( D,,,) E M if and only if 

PO( D___) E M. 

To complete the reduction to the case of periodic braids it remains to prove the 

following. 

Lemma 3. Every periodic diagram D may be transformed into a periodic closed braid 

by a series of operations D___+ D,,,, D,,, + D___ and equivariant isotopies in 

such a way that the number of crossings of the diagrams obtained in the process never 

surpasses the number of crossings of the initial diagram D. 
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Proof. Let us consider a fundamental domain U of the considered $T rotation (that 

is a HIT angle). We may assume that D meets the sides of the considered angle 

transversally. Assume that there is an arc A in D with its two ends X and Y lying 

on one side of the angle U, which does not meet the other side of U, see Fig. 2. (A 

is allowed to self-intersect.) We will say that such an arc is a one-side arc. 

Assume that there is no other one-side arc with the ends lying both between X 
and Y; this amounts to choosing an appropriate arc from many one-side arcs that 

may exist. By reversing some of the crossings involving A, A may be transformed 

into an arc lying above everything else in U. By reversing some of the self-crossings 

of A it may be additionally arranged that A be a descending arc, see Fig. 3. 

If analogous changes are simultaneously introduced in the other two domains, 

then the whole operation may be written as a series of operations D___ + D,,, and 

D +++ + D___. Now, an equivariant isotopy transforms the modified diagram into 

one in which the original arc A is replaced with a new arc, without self-intersections 

now, with the same ends X and Y but passing very closely to the side of U, and 

lying above everything else. It may also be easily arranged that the modified arc be 

involved in no more crossings than the original one (here we use the special choice 

of A from among other one-side arcs: A must have been involved in at least as 

many crossings as the number of points belonging to D and lying between X and 

Y, the modified arc may be arranged to have exactly that number of crossing points). 

We can now push our arc a little further, thus removing it altogether from U into 

the next domain, see Fig. 4. 

Again, the number of crossings is not increased and the operation may be extended 

to an equivariant isotopy. Since the number of intersections of D with the side of 

Fig. 2. 

Fig. 3. 
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Fig. 4. 

U was decreased, it follows that by repeating this procedure we can reduce the 

general case to one when every arc entering U from one side must leave it by the 

other side. It is easily observed that in this situation passing from one domain into 

the next one is possible only in one direction, see Fig. 5 (remember that we assumed 

D to represent a knot, not a multi-component link). 

A similar procedure transforms such a diagram into a periodic braid. 

We are now reduced to showing that P( y3) E M, where y3 is a braid whose closure 

represents a knot. We may as well assume that the permutation induced by y is the 

cycle (n,n-l,..., 1) (if not we can replace y with LYY’Y-‘, where the latter braid 

induces the required permutation). This will be reduced to showing that 

M(&&. . . i3,_,)3) E M. 

This second reduction is quite similar to the first, the main difference being that 

we apply the induction on the number of strings rather than on the number of 

crossings: 

Theorem 1 is of course true for one-string periodic braids, and to make the 

inductive step let us first observe that Di has less strings than D (Di being the 

invariant component of the four component DOOO) which reduces the inductive step 

to showing that y3 may be transformed into (6,62 * * . cS,_,)~ by a series of operations 

D--p + D+++, D+++ + D___ and equivariant isotopies, this time without increasing 

the number of strings at any stage. To do this it is enough to rearrange the 

Fig. 5 
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under/over-crossing information of the diagram represented by y so that the first 

string would lie above all the other, the second above all but the first and so on. 

The modified braid is then isotopic (as a braid, that is without moving the ends) to 

S,& * * * 6,_1. Since the whole operation was performed without changing the 

situation on the side of our fundamental domain, it may be performed simultaneously 

in all three domains. 

We are now reduced to proving that PO((6,S, . . . S,_,)3) E A4 (for n not divisible 

by 3; otherwise the considered braid would represent a link of more than one 

component). This last stage of the argument is the only one in which the assumption 

that the considered period is equal to 3 is really used. The first two reductions still 

work for any odd prime p if M is replaced by a Z,[ 12p, l-2P]-submodule of Z,[ l*, l-‘1 

generated by the modp polynomials of p-torus knots. It seems possible that these 

submodules may show enough regularity to provide working criteria for other odd 

primes. 

To prove that P4(~Yr8~ . . . S,_,)3) = Po( t(n, 3)) E M we will use a direct computa- 

tional argument. In his paper [2] Jones gives an explicit formula for X,(,,,,(q, A), 

where X is a certain version of the polynomial P, obtained from P by the substitution 

I= i(fiG)-’ and m = -i(&- l/G). Jones’ formula reads as follows: 

A m-l 

x(q~A)=(1_q3)(1_q2) ((I-Aq3)(1-Aq2)-q”+‘(l+q)(l-Aq2)(1-A) 

‘4 ‘““(l-A)(q-A)). 

We now want to return to our choice of variables. Since we are interested only in 

P,, it is enough to evaluate X in q = 1 (we know that X is well defined and continuous 

in q = 1) and then substitute 1= iA-1’2. The evaluation is probably best done by 

applying the de 1’Hospital’s rule twice. An easy computation shows that the PO 

polynomial with coefficients in 2 is given by the following formula: 

*Po(t(% 3)) = 
(n+l)(n+2) p-*+(n-l)(~+l) P”+b-N~-l) lZflC2 

6 
3 6 

For the reduced polynomial P,,E M follows immediately. This completes the 

proof. 0 

AQQendiX 

Po( 103) = 1-4+ 1* - 16, Po(lo,o) = -1-4- l-2-l +F, 

Po(1020)=-1+12+16+18, P,( 1032) = -1-2 - 1 - 12, 

P,(1059)=-1-2+1-12-16, Po( lo,,, = l2 + 14+ l6 - 18, 

Po(10164) = 1-*+ 12, 



P. Traczyk / A criterion for knots of period 3 281 

Let I!?,, lol62 denote the 2-cables around 106, and lo162 represented by the braids: 

23124-15~13-14-1(2-‘3-‘1-‘2-1)2(6756)34-15~13-14-‘(6756)3lll 

and 

(2-13~11~12-‘)267564-‘5-‘3-14~1(6756)22312(4534)267564-15~13~14~1lll. 

Then 

Po(~61)=-18-112+z16+1’8+120+z~*, 

Po(lJ,,,) = -IS - I’O - z12 - 116 - I’* + 1**. 
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