
They found evidence that the
Beringian wolves were
morphologically different from
modern North American wolves
and from Pleistocene wolves from
more southern regions. Moreover,
the differences in morphology
suggest that the Pleistocene
Beringian wolves were adapted
to hunting and scavenging
members of the now extinct
megafauna, a conclusion
supported by isotope analysis.
Finally, these wolves not only
represented a different ecomorph,
they were also genetically distinct.
Not a single sequence of their
mitochondrial DNA haplotypes
exactly matched sequences found
in modern and historical wolves
identified to date. However, some
of the sequences perfectly
matched, albeit only for short
stretches, sequences obtained
from Eurasian Pleistocene wolves
[15], from as far west as the Czech
Republic. Thus, Pleistocene
wolves across Northern Eurasia
and America may actually have
represented a continuous and
almost panmictic population that
was genetically and probably also
ecologically distinct from the
wolves living in this area today.
Despite their high mobility, these
wolves did not escape the
megafaunal extinctions at the end
of the Pleistocene, even though the
causes of their extinction are
unclear. The specialised
Pleistocene wolves, thus, did not
contribute to the genetic diversity
of modern wolves. Rather,
modern wolf populations across
the Holarctic are likely be the
descendants of wolves from
populations that came from more
southern refuges as suggested
previously for the North American
wolves [14]. If this is true for
a highly mobile and ecologically
adaptable species like the gray
wolf [16], it is also likely to be true
for other surviving species.

The results obtained by
Leonard et al. [5] clearly call for
an extension of interdisciplinary
studies, both on Eurasian wolves
and other surviving holarctic
species. As shown for bisons,
most of the genetic diversity of
megafaunal animals may have
been lost at the end of the
Pleistocene, even in surviving

species [4]. Moreover, most of
this diversity seems to have
accumulated during the 100,000
years between the last two glacial
maxima 130,000 and 30,000 years
ago, respectively. Both the
genetic diversity and the ecological
adaptations of populations may
therefore be much more ephemeral
than previously believed. While
the results by Leonard et al. [5]
do not immediately help in
deciphering the causes of Late
Pleistocene extinctions, they show
that the ecological and population
changes occurring at that time
were rather complex and cannot
simply be explained by the
survival of some species and
extinction of others.
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Neurite Outgrowth: A Flick of the
Wrist

A new study has shown that, near the tip of a growing axon,
dephosphorylation of the microtubule-associated protein Doublecortin
is controlled by protein phosphatase 1 and its regulator spinophilin. This
results in spatially regulated microtubule bundling within the axon and
more efficient axon outgrowth.
Leif Dehmelt and Shelley Halpain

Wiring up the nervous system
requires that neurons migrate,
extend axons and make axonal-
guidance decisions with relatively
high spatial and temporal fidelity.
When such ‘geographic’ events go
awry — even within a subset of
neurons — the development of
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Figure 1. Growth cones.

(A) Two main subregions of a growth cone, the peripheral domain and the central domain, can be distinguished. The peripheral do-
main is characterized by F-actin-rich filopodia, separated by a looser meshwork of F-actin. The central domain contains organelles
and splayed microtubules. The intersection between these domains is sometimes called the transition zone, which harbors contrac-
tile actomyosin structures called actin arcs [15]. Bielas et al. [1] introduce an additional region, the axonal wrist: an area in which the
splayed microtubule array found in the central domain coalesces into a densely bundled microtubule array. (B) The adapter protein
Spinophilin is enriched in the axonal wrist, where it is thought to recruit the protein phosphatase 1 (PP1), which in turn dephosphor-
ylates position serine 297 on Doublecortin (Dcx). Dephosphorylation at this site enhances the interaction between doublecortin and
microtubules, leading to enhanced microtubule stability. Microtubule bundle formation likely involves several additional key players.
Contractile forces (small black arrows) originate from cortical actomyosin and point towards a contractile node near the axonal wrist
[10]. Together with additional dynein-mediated forces acting on the microtubule array [11] (large transparent arrow), microtubules
could be forced into a straight, bundled configuration. MAPs such as Doublecortin might either stabilize such linkages, or mediate
the linkage of actomyosin contractility to the microtubule array.
neural maps and circuitry can
become severely impaired. The
coordinated regulation of the
neuronal cytoskeleton is key to
these morphological events. Many
neuron-specific regulators of the
cytoskeleton have been identified,
and their activity is often controlled
through protein phosphorylation.
But the significance of such
regulation for neuromorphogenesis
remains poorly understood. A new
paper by Bielas et al. [1]
compellingly unites studies of
knockout mice with cell biological
and molecular experiments to
reveal a regulatory pathway that is
important in axon outgrowth.

The microtubule cytoskeleton
plays a key role in the formation of
both axons and dendrites
(collectively termed ‘neurites’).
Early in the genesis of neuronal
morphology, microtubules become
reorganized from the radial arrays,
which are characteristic of most
non-neuronal cells, into parallel
arrays that mediate the formation
and maintenance of neurites. Such
bundles of microtubules are
closely packed within the neurite
shaft, but they typically splay out
into a looser, more disorganized
pattern within the hand-shaped
growth cone that tips the nascent
neurite [2] (Figure 1). Microtubules
within the neurite shaft are also
fairly stable, whereas those within
the growth cone are much more
dynamic, polymerizing and
depolymerizing with higher
frequency. If the growth cone is
likened to a hand, then the neurite
shaft corresponds to the arm, and
the region between them to the
wrist. It is at this ‘wrist’ that the
transition between bundled and
non-bundled (and between stable
and unstable) microtubules is
found.

Neurons express specialized
microtubule-associated proteins
(MAPs) that promote microtubule
reorganization and regulate
microtubule stability. One such
MAP is the X-linked gene product
Doublecortin, so named because
mutations in its microtubule
binding domain cause neuronal
migration defects in humans. In
females carrying these mutations,
some migrating cortical neurons
come to rest anomalously between
cell layers, resulting in a ‘double
cortex’; in males, the mutations
result in lissencephaly (‘smooth
brain’). Neuronal migration defects
are less severe in doublecortin
knockout mice; however, new
evidence indicates that axon
outgrowth is impaired in knockout
mice [1] as well as in humans with
doublecortin mutations [3].

Doublecortin stabilizes
microtubules by binding between
protofilaments and counteracting
their natural tendency to bend
outward [4], thereby preventing
microtubule ‘catastrophes’ — a
term used to describe the
conversion of a growing
microtubule into a shrinking
microtubule. The interaction
between Doublecortin and
microtubules is regulated by
protein kinases, including JNK,
PKA, MARK and Cdk5 [5–7].
Interestingly, knock-out animals
lacking Cdk5 show similar
lamination defects to mice lacking
Doublecortin, suggesting that the
two proteins might act in the same
pathway in vivo. Studies also
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suggest that Cdk5 is the dominant
kinase for phosphorylating
Doublecortin at residue serine 297
in vivo. Although this site is located
outside the microtubule-binding
domains of Doublecortin,
phosphorylation reduces its ability
to bind and stabilize microtubules
and thus inhibits these main
functions of doublecortin [7].

Bielas et al. [1] now propose
a molecular mechanism for how
the phosphorylation of Ser 297
is spatially controlled within
subregions of the growth cone. The
experimental data indicate that the
adapter protein spinophilin [8] (also
known as neurabin II [9]) targets
protein phosphatase 1 (PP1) to the
axonal wrist, where PP1 then
dephosphorylates Doublecortin at
the serine 297 site (Figure 2). The
authors used a phosphoepitope-
specific antibody to confirm that
phosphorylation at serine 297 is
low within this axonal domain.
Neurons cultured from
doublecortin knockout mice are
impaired in neurite outgrowth, and
show greater separation of
microtubules within the axon shaft.
Likewise, neurons from spinophilin
knockout mice, or neurons
depleted in PP1 catalytic subunit
by in utero RNA interference,
showed a similar impairment of
microtubule bundle formation.
Furthermore, exogenous
spinophilin was able to rescue the
bundling defect in spinophilin
knockout neurons, but not when its
doublecortin binding site was
mutated.

Together these results
demonstrate a requirement for
Doublecortin–Spinophilin
interaction in microtubule bundling
in the axonal wrist. Such results
provide a cellular substrate for
Bielas et al.’s [1] finding that
doublecortin and spinophilin
cooperate in vivo to enable
formation of the corpus callosum
and anterior commissure, two brain
tracts that require long-distance
axonal growth. It remains to be
discovered how spinophilin
achieves its localized enrichment
within the axonal wrist, but it is
reasonable to speculate that this
could involve its known actin
binding activity [9].

How does doublecortin promote
microtubule bundling? In vitro
Dcx

Dcx

Microtubule

(Microtubule binding inhibited)

Microtubule stabilization
and bundling

DephosphorylationPhosphorylation

PP1

Spinophilin

P

Cdk5

P
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Figure 2. Doublecortin and microtubules.

The interaction between Doublecortin and microtubules is modulated by phosphoryla-
tion at residue serine 297. The dominant protein kinase that phosphorylates this site is
Cdk5 [7]. Bielas et al. [1] have now shown that Spinophilin mediates protein phospha-
tase 1 (PP1) dependent dephosphorylation of Doublecortin. Thus, the Spinophilin–PP1
complex can reactivate doublecortin and thereby enhance microtubule stabilization
and bundling.
studies suggest that at high
concentrations Doublecortin by
itself is sufficient to bundle
microtubules [4]. However,
microtubule spacing within such
bundles (w10 nm) is shorter than
the microtubule spacing normally
seen within the axon shaft
(20–30 nm). Further work is needed
to ascertain whether doublecortin
itself mediates direct microtubule
crosslinking in vivo.

Other mechanisms might work
together with Doublecortin to
bundle microtubules within the
axonal wrist. Zhang et al. [10] have
proposed that growth cone
microtubules are compressed
towards a contractile node located
near the axonal wrist by virtue of
actomyosin contractility
(Figure 1B). Bielas et al. [1] suggest
that the Doublecortin–Spinophilin
complex can crosslink the
microtubule and actin
cytoskeletons in vitro. It would be
interesting to investigate whether
this interaction plays a role in
linking actomyosin contractility to
microtubule bundle formation
within the axonal wrist, or if other
microtubule–actin crosslinkers
play a dominant role. Motor protein
MAPs, such as dynein, can help
microtubules generate an outward
force during neurite extension [11].
The coordinated actions of
outward forces and inward
contraction on stabilized
microtubules might be sufficient to
squeeze microtubules into parallel
arrays independent of physical
crosslinks. Interestingly,
Doublecortin and Lis1, another
gene product linked to
lissencephaly, form functional
complexes with dynein to regulate
nuclear migration [12]. Perhaps
a similar complex functions in
neurite outgrowth.

Although the timing of axon
outgrowth in vivo is delayed in
doublecortin single knockout
animals, long-distance axon tracts
do eventually reach their targets
[1]. So other microtubule regulators
must cooperate with Doublecortin
during microtubule bundle
formation. Prime candidates for
such factors are MAPs of the
MAP2/tau or MAP1B families, as
well as other members of the
doublecortin family, such as
Doublecortin-like kinase [13]. Mice
that singly lack either MAP2 or
MAP1B show no gross
developmental defects; however,
double knock-out animals lacking
both proteins display severe
phenotypes, suggesting functional
redundancy, even between these
structurally unrelated MAPs [14].
Certain impairments in MAP1B/
MAP2 double knockout mice, such
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as lamination defects, seem
strikingly related to the
doublecortin phenotype.
Furthermore, knock-out animals
lacking either MAP2 or MAP1B
show slight impairments in
microtubule bundling in growth
cones — an effect that is
exaggerated in MAP1B/MAP2
double knockout mice [14]. Thus, it
would be of interest to investigate
whether Doublecortin cooperates
with MAP1B and MAP2 in
microtubule bundle formation.

The study by Bielas et al. [1]
draws attention to a little
appreciated cytoskeletal
mechanism in growth cones:
microtubule bundling. It will be
important and challenging to
unravel the precise roles and
redundancies of key players in this
phenomenon.
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