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Abstract

We develop a logic of explicit time resource bounds for a language with function pointers and semantic
assertions. We apply our logic to examples containing nontrivial “higher-order” uses of function pointers
and we prove soundness with respect to a standard operational semantics. Our core technique is very
compact and may be applicable to other resource bounding problems, and is the first application of step-
indexed models in which the outermost quantifier is existential instead of universal. Our results are machine
checked in Coq.
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1 Introduction

We define a minimal Halting Assert Language with two distinctive features: function

pointers and semantic assertions. Semantic assertions are program commands that

assert the truth of a formula in logic at a program point. Although semantic

assertions have runtime behavior equivalent to skip, they are useful during static

analysis (e.g., [5]) and as a mechanism for ensuring that the intermediate states

of programs meet set invariants. Semantic assertions may seem benign, but their

inclusion in a language with function pointers leads to an unpleasant contravariant

circularity. Most domains containing a similar circularity in their semantic models

(e.g., concurrency with first-class locks, self-modifying code) are quite complex in

ways unrelated to the circularity. We consider HAL to be a test bed for semantic

techniques that may be applicable in richer settings in the future.

We design a program logic of explicit time resource bounds for HAL. Programs

verified in our logic are guaranteed to satisfy all invariants given in assert statements

and are verified against an explicit bound on the number of function calls they make

before safely halting. We hope this kind of logic will be applicable to real-time

systems, where one is interested in concrete bounds rather than simple termination.

We are unaware of any other logic of resource bounds for languages containing

either function pointers or the kind of contravariant circularity present in HAL.
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χ(τ) ≡ x := � load constant � into x

| x3 := (x1, x2) allocate a fresh pair

| x2 := x1.1 project first component

| x2 := x1.2 project second component

| χ1(τ) ; χ2(τ) sequence two commands

| ifnil x then χ1(τ) else χ2(τ) test if x = 0 and branch

| call x call function pointer x

| return return from function

| assert P semantic assertion, wherein P : τ

φ(τ) ≡ label ⇀ χ(τ) parametrized program

Fig. 1. Parameterized commands and programs

We can handle programs that exhibit nontrivial use of function pointers including

mutually recursive function groups and higher-order functions. Each recursive group

is verified as a whole and combined into proofs of whole-program termination, which

makes the logic compositional. Higher-order functions are verified independently of

the context in which they will be used and we are able to apply such functions to

themselves without trouble (e.g., map of map). Our semantic model demonstrates

how step indexing can be applied to logics of resource bounds in a compact manner.

Contributions. We design a language containing function pointers and seman-

tic assertions, develop an associated logic of time resource bounds, and apply the

logic to example programs. We develop a step-indexed model of the Hoare judgment

and prove the logic sound. Our results are checked in Coq.

Associated material. Interested readers can find more details, particularly

on the semantic models, in unreviewed previous versions of this work [7]. The Coq

development is at http : //msl.cs.princeton.edu/termination/.

2 An Introduction to HAL

We present HAL commands and programs in Figure 1. Our syntax is parameter-

ized over the type of assertions τ (i.e., the metatype of our parameterized syntax

is Type->Type instead of Type). Most commands are unexciting: load a constant,

allocate a fresh pair, project from a pair, sequence, and branch-if-0. Subcommands

for sequences and branches are parameterized over the same type variable τ . Our

call instruction is noteworthy because x is a variable instead of a constant—i.e.,

x is a function pointer. Functions do not take explicit arguments; instead, a pro-

grammer must establish an ad-hoc calling convention. The unusual command is the

semantic assertion assert; here P has the type of the argument τ . A parameterized

program φ(τ) is a partial function from code labels to parameterized commands.

We give the basic semantic definitions for HAL in Figure 2a. We use natural

numbers for program variables (for readability we use ri instead of i for concrete
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variable x ≡ N

label � ≡ N

value v ≡
label + (value× value)

store ρ ≡
variable ⇀ value

measure t ≡ store ⇀ N

predicate P ≈
(program× store) → T

command c ≡ χ(predicate)

stack s ≡ list command

program Ψ ≡
label ⇀ command

(a) Basic semantic definitions

�, ⊥ truth and falsehood

P ∧Q, P ∨Q conjunction and disjunction

P ⇒ Q, ¬P implication and negation

∀a : τ, ∃a : τ impredicative quantification

μX. P contravariant equirecursion

x ⇓ v variable x evaluates to value v

[x ← v]P P will hold if x is updated to v

closed(P ) P holds on all stores

P � Q entailment

〈|t|〉 measure t on the current store

funptr � t
[
P
] [

Q
]
terminating function pointer

(b) A variety of predicates

Fig. 2. Basic semantic definitions and assertions in our separation logic

program variables in our examples). We also use natural numbers for code labels
(addresses). We define values as trees having labels as leaves. A store (a.k.a. register
bank) is a partial function from variables to values. A measure is a partial function

from stores to natural numbers; we will require measures to decrease during function

calls. A predicate is (essentially) a function from pairs of program and store to truth

values T (Prop in Coq). A command is a specialization of a parameterized command

χ with predicate; a stack is a list of commands. A program is a partial function

from labels to commands—i.e., program = φ(predicate). Notice that the metatypes

predicate, command, and program contain a contravariant cycle. The real semantic

definition for predicate, which is similar in flavor but with the pleasing addition of

being sound, is the subject of §5.
We give a variety of predicates in Figure 2b. We have constants (�, ⊥) and the

standard logical connectives (∧, ∨, ⇒, ¬). Our quantification (∀, ∃) is impred-

icative—that is, the metavariable τ ranges over all of the types in our metalogic

(τ : Type in Coq), including predicate itself. We provide a contravariant-capable

equirecursive μ to describe recursive program invariants as long as the recursion is

contractive [9]. The assertion x ⇓ v means that the variable x evaluates to value v

in the current store. We write [x ← v]P to mean that the predicate P will be true if

the current store is updated so that variable x maps to value v; [x ← v] is therefore

a kind of modal operator—the modality of store update. We define another modal

operator, closed(P ), meaning P holds on all stores.

We write P � Q for predicate entailment. We also introduce a notational conve-

nience for reasoning about measures in the context of a predicate. Since a predicate
is more-or-less a function taking (among other things) a store ρ as an argument,

and since a measure t is a partial function from stores to N, it is simple to evaluate

t(ρ) and then compare the result against other naturals with the usual operators

=, <, etc. To indicate this kind of evaluation and comparison, we will write e.g.,
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“〈|t|〉 < n”—that is, evaluate t with the current store and require that the result be

less than n. When t(ρ) is not defined, terms containing 〈|t|〉 are equivalent to ⊥.

The assertion of particular interest is the terminating function pointer assertion

“funptr � t
[
P
] [

Q
]
”, wherein � is a function address, t is a termination measure, P is

a precondition, and Q is a postcondition. The precondition P and postcondition Q

are actually functions from some shared type A to predicate, i.e., P = λa : A. (. . .)

and Q = λa : A. (. . .). The type parameter A is actually part of the function pointer

assertion but has been elided for the presentation. When funptr � t
[
P
] [

Q
]
holds:

(i) The program has code c at address � (recall programs are functions from labels
to commands); this is why we need predicates to take programs as arguments.

(ii) When c is called from a context with an initial store ρ, if t(ρ) is defined, then

c makes at most t(ρ) function calls before returning to its caller.

(iii) If t(ρ) is defined, then for all a, if P(a) holds prior to executing c, then Q(a)

will hold when c returns. The parameter a is thus able to relate pre- and

postconditions to each other over the function call without auxiliary state.

3 Total Correctness for HAL

Our program logic is divided into two parts. Hoare rules verify commands in HAL; a

strength of our approach is that these are natural. Function rules use the verification

of a function’s body to prove that the function satisfies its specification.

Hoare Rules. Our Hoare judgment, written Γ, R �n {P} c {Q}, where P , Q,

and R are predicates (assertions), Γ is a closed predicate that only looks at programs,

n is a natural number and c is a command. We defer the formal model until §6, but
the informal meaning is straightforward. P , c, and Q are the standard precondition,

instruction, and postcondition triple common in Hoare logics. The return assertion

R is the postcondition of the current function; R must hold before the function can

return. We collect funptr assertions in Γ. Finally, starting from precondition P , n is

an upper bound on the number of function calls c will execute before it terminates.

Our logic is powerful enough that all of these parameters (including the time bound

n) can take logical variables instead of concretes; indeed, the second example from §4
demonstrates that we can verify higher-order polymorphic functions independently

of their call sites.

We present the Hoare rules for total correctness in Figure 3. The four rules

Hlabel, Hcons, Hfetch1, and Hfetch2 are the standard weakest precondition forms

for local variable updates for constants, fresh pairs, and first/second projections

respectively. For brevity we only show the Hlabel rule; see [7] for Hcons, Hfetch1,

and Hfetch2. Since these rules do not make any function calls n = 0.

The sequence rule Hseq looks standard; the key point is that the upper bounds

on the subcommands c1 and c2 are summed for the sequence. For the conditional

rule Hif, both c1 and c2 must share the same bound n, which is then used for the

whole. If the natural bounds differ, one harmonizes them via weakening.

The weakening/consequence rule Hweaken allows covariance in the preconditions
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Γ, R �0 {[x ← �]Q} x := � {Q} Hlabel

Γ, R �n {P} c1 {Q} Γ, R �n′ {Q} c2 {S}
Γ, R �n+n′ {P} c1 ; c2 {S} Hseq

Γ, R �n {P1} c1 {Q} Γ, R �n {P2} c2 {Q}
Γ, R �n {(x ⇓ 0 ∧ P1) ∨ ((¬ (x ⇓ 0)) ∧ P2)} ifnil x then c1 else c2 {Q} Hif

n ≤ n′ Γ′ ∧R � R′ Γ′ ∧ P ′ � P

Γ′ � Γ Γ′ ∧Q � Q′ Γ, R �n {P} c {Q}
Γ′, R′ �n′ {P ′} c {Q′} Hweaken

Γ ∧ P � Q

Γ, R �0 {P} assert Q {P} Hassert
Γ, R �0 {R} return {⊥} Hreturn

P ≡
x ⇓ � ∧ funptr � t

[
P�

] [
Q�

]
∧ 〈|t|〉 = n

P�(a) ∧ closed(Q�(a) ⇒ Q)

Γ, R �n+1 {P} call x {Q} Hcall

Fig. 3. Hoare rules

(P , P ′) and contravariance in the postconditions (Q, Q′) and return conditions

(R,R′). The function assertions (Γ, Γ′) are related covariantly and incorporated in

the other entailments in the most general way. We allow the bound on the number

of function calls (n,n′) to increase during weakening since the bound is not strict.

Although semantic assertions caused significant headaches in the semantic model

due to the contravariance outlined in §2, the Hassert rule is pleasingly direct. We

simply ensure that the precondition P (including the function assertions in Γ) entails

Q. We use n = 0 since the assert command does not make any function calls. The

Hreturn rule requires that the precondition match the return assertion. After a

function returns the remainder of the function is not executed, so we provide the

postcondition ⊥. Since return does not make any function calls n = 0.

The most important rule is Hcall, for verifying a function pointer call. The

precondition P has five conjuncts. First, the variable x must point to a code label

�. Second, � must be a function pointer to some code with termination measure t,

function precondition P�, and function postcondition Q�. Third, the termination

measure t must be defined on the current store and evaluate to some n. That is,

starting from the current store, the function � will make no more then n function

calls before returning. Fourth, the function precondition P� must hold when applied

to some a. Finally, the function postcondition Q�, when applied to the same a,

must imply the postcondition Q in all stores (i.e., in particular, in the store after

the function call is completed). The metavariable a is chosen to relate the function
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Ψ : � Vstart

Ψ : Γ

∀a, n.
( (

Γ ∧ funptr � t
[
λa′. P(a′) ∧ 〈|t|〉 < n

] [
Q
])
,

Q(a) �n {P(a) ∧ 〈|t|〉 = n} Ψ(�) {⊥}
)

Ψ : (Γ ∧ funptr � t
[
P
] [

Q
]
)

Vsimple

Ψ : Γ

Γ′(b, n) ≡ ∀(�, t,P,Q) ∈ Φ(b). funptr � t
[
λa. P(a) ∧ 〈|t|〉 < n

] [
Q
]

∀b. ∀(�, t,P,Q) ∈ Φ(b).
(
∀a, n.(

(Γ ∧ Γ′(b, n)), Q(a) �n {P(a) ∧ 〈|t|〉 = n} Ψ(�) {⊥}
) )

Ψ : (Γ ∧ ∀b. ∀(�, t,P,Q) ∈ Φ(b). funptr � t
[
P
] [

Q
]
)

Vfull

Fig. 4. Single and mutually recursive function verification

pre- and postconditions to each other over the call. Consider the pair:

P� ≡ λ(x, v). (r0 ⇓ 4) ∧
(
(x �= r0) ⇒ x ⇓ v

)
Q� ≡ λ(x, v). (r0 ⇓ 8) ∧

(
(x �= r0) ⇒ x ⇓ v

)
If we need to know that the invariant r15 ⇓ (16, (23, 42)) is preserved over the call

then we set a = (r15, (16, (23, 42))). The key point of the HCall rule is that if we

satisfy P then we can verify a function pointer call with a bound of n+ 1 calls.

Precondition generator. Our update rules are in weakest-precondition style

and our predicates include general quantification. Our Coq development defines a

precondition generator that computes P from R, n, c, and Q, which we use to cut

down on the tedium of mechanically verifying the example programs from §4.
Function Verification. The whole-function rules in Figure 4 form the heart of

our program logic. Although the symbol count is daunting, the core idea is natural.

Functions are normally verified one at a time, although mutually recursive func-

tion groups are verified as a set. One begins with Vstart, which says that program
Ψ has specification � (i.e., no functions in Ψ have been verified to terminate). The

Vsimple and Vfull rules verify the addition of terminating function specifications

into the context Γ. Vsimple is sufficient to handle simple recursive functions that

take non-polymorphic function pointers as arguments. Vfull handles mutually re-

cursive function groups and polymorphic function pointers; Vsimple is just a special

case of Vfull. After verifying the first function/group, one continues with another

Vsimple/Vfull until all of Ψ has been verified.

The Vsimple rule assumes that Ψ already has specification Γ; we wish to add the
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specification for the function at � using termination measure t, precondition P, and

postcondition Q. The key premise is the second: we must verify, using the H-rules,

that for any n and a, the function body Ψ(�) meets the specification

. . . , Q(a) �n {P(a) ∧ 〈|t|〉 = n} Ψ(�) {⊥}

That is, starting from a state that satisfies P(a) and in which the termination

measure t evaluates to n, the function will return in a state satisfying Q(a) after

having made no more than n function calls. We use ⊥ as the postcondition since

the function is not allowed to “fall off the bottom”. The key to doing recursive

functions is how we set up the function specifications: we verify Ψ(�) using the

previously-verified function specifications in Γ as well as a modified specification for

� itself:

funptr � t
[
λa′. P(a′) ∧ 〈|t|〉 < n

] [
Q
]

That is, the function body Ψ(�) can call to other functions specified in Γ as well as

recursive calls to itself as long as the termination measure decreases.

The Vfull rule generalizes the Vsimple rule in two orthogonal ways. First, Vfull

can verify a mutually recursive set of functions. Second, Vfull can verify function

specifications where the specifications take parameters. The universally-quantified

variable b in the Vfull rule represents the specification parameters; b ranges over an

arbitrary type chosen by the verifier. The variable Φ appearing in the Vfull rule

represents a finite set of function specifications, i.e., a set of tuples with a label, a

termination measure and a pre- and postcondition. The specifications in Φ represent

the set of mutually recursive functions we are going to verify. The quantification

over Φ(b) in the premise of the rule means that we will have to construct a Hoare

derivation for each function body represented in Φ. Correspondingly, the quantifi-

cation in the conclusion means that subsequent verifications may rely on each of

the specifications in Φ. In other words, the Vfull rule establishes the specifications

of a set of mutually recursive functions simultaneously.

Note that Φ takes an argument; thus the function specifications can depend on

the parameter b. 1 In the premise of the Vfull rule, the value b is bound once and

the same b is used to construct both the recursive assumptions and the verification

obligations. In other words, the value of the parameter, b, is a constant throughout

the recursion. Contrast this with the value a which connects pre- and postcondi-

tions, which is allowed to vary at each recursive call. An interesting case occurs

when b is allowed to range over function specifications. In this case, the specifica-

tions in Φ take on a higher-order flavor. We shall use this power in the following

section.

4 Examples of Verified Programming in HAL

Our logic has three distinctive features: time bounds on recursive function pointers,

time bounds on polymorphic function pointers, and semantic assertions. Here we

1 Even the type of a which connects the pre- and postconditions can depend on the value of b.
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listnat(0, 0)

listnat(n, v) →
listnat(n+ 1, (0, v))

Number Encoding

0 0

1 (0, 0)

2 (0, (0, 0))

3 (0, (0, (0, 0)))

(a) Encoding naturals

1 assert (∃n m. addP(n,m)) ;

2 ifnil r1 then return;

3 else

4 r3 := r1.1 ;

5 r1 := r1.2 ;

6 r2 := (r3, r2) ;

7 r0 := 1 ; // address of cadd

8 call r0 ;

9 return ;

(b) Code cadd, loaded at label 1

addP(n,m) ≡ ∃v1 v2. r1 ⇓ v1 ∧ r2 ⇓ v2 ∧ listnat(n, v1) ∧ listnat(m, v2)

addQ(n,m) ≡ ∃v2. r2 ⇓ v2 ∧ listnat(n+m, v2)

addt(ρ) ≡ the unique n s.t. ∃v1. ρ(r1) = v1 ∧ listnat(n, v1)

(c) Pre- and postcondition; termination measure

∀n1, m1, n.(
funptr 1 addt

[
λn2 m2. addP(n2,m2) ∧ 〈|addt|〉 < n

] [
addQ

]
,

addQ(n1,m1) �n {addP(n1,m1) ∧ 〈|addt|〉 = n} 〈code from fig. 5b〉 {⊥}
)

(d) Verification obligation for unary addition (using Vsimple)

Fig. 5. Example 1: unary addition.

cover two examples, the first demonstrating recursive function pointers, and the

second demonstrating polymorphic function pointers and the use of a semantic

assertion whose truth cannot be checked at run-time. In our Coq development we

have examples that combine both simultaneously; also see [7].

Example 1: unary addition. Here we examine a simple recursive function

which “adds” two lists representing natural numbers in unary notation (lists ter-

minated by the 0 label). Figure 5a defines the listnat predicate that relates natural

numbers to their unary encoding. The code itself is given in Figure 5b. The idea is

that starting from two unary-encoded naturals in registers r1 and r2, we strip cons

cells from r1 and add them to r2 until there are no cells left in r1, and then return.

Line 1 simply asserts the precondition of the function. Line 2 tests if the value in

register r1 is nil; if so, we return. Otherwise, we perform one unit of work, which

involves shifting one cons cell from r1 to r2. Note lines 7 and 8, where we load the

constant label 1 into r0 and jump to it; this sequence is typical of “static” function

calls. Since the code itself is loaded at label 1, this is a recursive call.
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We give the specification in figure 5c. Note that the pre- and postconditions of

the addition function are parameterized by the pair of numbers to be added. Recall

that we allow termination measures to be partial functions; we use that power here

because addt is only defined when the value in r1 encodes some natural number.

The addition function is a simple self-recursive function, so we can verify it using

the Vsimple rule. The proof obligation that is generated by Vsimple (after some

minor simplifications) is shown in Figure 5d, and it is straightforward to use the

H-rules of our logic to fulfill this verification obligation proof.

Example 2: apply. While the code for the “apply” function is dead simple,

the specification is rather subtle. The “apply” function makes essential use of

function pointers and thus has a higher-order specification. The basic idea is that

one packages a function label with some arguments using a cons cell in r0. Apply

unpacks the cons cell and calls the contained function using the enclosed arguments.

We toss in an interesting higher-order assert just before the call for fun.

In order to give a reasonable specification for this function and other higher-

order operations, we identify a calling convention. We call functions that adhere

to our calling convention “standard”. Register r0 is used for passing function ar-

guments and results. Registers r1–r4 are callee-saves registers (whose values must

be preserved over the call) and all other registers are caller-saves. In addition,

we require the precondition, postcondition, and termination measure, for standard

functions, to be defined only on the argument/return value (the value in r0). We

say a function satisfies stdfun(�, t, P,Q) (where t, P and Q are defined over a single

value rather than an entire store) if � is a standard function in the sense just defined.

In the specification for apply (Figure 6) t, P and Q are the parameters of the

specification; they describe the function that will be called. We need the Vfull rule

to verify the apply function, with b ranging over tuples (t, P,Q). This way we can

specify and prove correct the apply function in complete isolation, without requiring

any static assumptions about the functions it will be passed. The time bound n

in the verification comes from the bound on the input function. In some

later verification, we can instantiate the specification with any function specification

already verified. In particular, apply can be applied to itself! This would not be a

recursive call, in the traditional sense, but rather a dynamic higher-order call.

Termination remains assured due to the way the specifications get “stacked”

on top of each other. This stacking of function specifications creates a tree-like

structure wherein the leaves must be first-order functions (whose specifications do

not depend on the specifications of other functions). The whole thing hangs together

because there is no way to create a cycle in the tree of function specifications, and

thus no way to introduce new, potentially nonterminating, recursion patterns. See

the formal development for an example of such “stacked” function applications.

The development also contains an implementation of and verification for the

recursive higher-order function map, whose termination argument is the sum of the

input function’s termination argument applied to each element of the list plus the

length of the list (for the recursive calls of map itself); for more details see [7].
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csregs(v1, v2, v3, v4) ≡ (r1 ⇓ v1) ∧ (r2 ⇓ v2) ∧ (r3 ⇓ v3) ∧ (r4 ⇓ v4)

stdfun(�, t�, P�, Q�) ≡ funptr �
(
λρ. t�(ρ(r0))

)
[
λ(v1, v2, v3, v4, a). (r0⇓v0) ∧ P�(a)(v0) ∧ csregs(v1, v2, v3, v4)

]
[
λ(v1, v2, v3, v4, a). (r0⇓v0) ∧ Q�(a)(v0) ∧ csregs(v1, v2, v3, v4)

]
applyP(t, P,Q)(a)(v) ≡ ∃� v2. v=(�, v2) ∧ stdfun(�, t, P,Q) ∧ P (a)(v2)

applyQ(Q)(a)(v) ≡ Q(a)(v)

applyt(t)(v) ≡ t(v) + 1

(a) “standard” functions; precondition, postcondition, termination measure for apply

R ≡ ∃v′0. r0 ⇓ v′0 ∧ Q(a)(v′0) ∧ csregs(v1, v2, v3, v4)

�0 {r0⇓(�, v)∧P (a)(v)∧t(v)+1=n∧stdfun(�, t, P,Q)∧csregs(v1, v2, v3, v4)}
1 r5 := r0.0 ;

�0 {r0 ⇓ (�, v) ∧ r5 ⇓ � ∧ P (a)(v) ∧ t(v) + 1 = n ∧ stdfun(�, t, P,Q)}
2 r0 := r0.1 ;

�0 {(r0 ⇓ v) ∧ (r5 ⇓ �) ∧ P (a)(v) ∧ (t(v) + 1 = n) ∧ stdfun(�, t, P,Q)}
3 assert

(
∃�′, t′, P ′, Q′. (r5 ⇓ �′) ∧ stdfun(�′, t′, P ′, Q′)

)
;

�0 {(r0 ⇓ v) ∧ (r5 ⇓ �) ∧ P (a)(v) ∧ (t(v) + 1 = n) ∧ stdfun(�, t, P,Q)}
4 call r5 ;

�n {r0 ⇓ v′ ∧Q(a)(v′)}
5 return ;

�n {⊥}
(b) code capp for apply with abbreviated Hoare triples, loaded at label 1

∀(t, P,Q) (v1, v2, v3, v4, a) n.
(
�, R �n {Papply} 〈code from fig. 6b〉 {⊥}

)
Papply ≡ ∃�, v0. r0⇓(�, v0) ∧ stdfun(�, t, P,Q) ∧ P (a)(v0)

∧ csregs(v1, v2, v3, v4) ∧ t(v0) + 1 = n

(c) Verification obligation for apply (using Vfull, after simplification)

Fig. 6. Example 2: apply

5 Resolving the Circularity in predicates

In this section we resolve the circularity in predicate from Figure 2a. In §6 we build

a model for the program logic itself and prove that programs verified in our logic

terminate within the correct time bound.

Using Indirection Theory to Stratify Through Syntax. The pseudomodel
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of predicates in Figure 2a fits into the patternK ≈ F ((K×O) → T ). In this pattern,

F is a covariant functor, O is some kind of “flat data”, and K is an object one wishes

to model. A cardinality argument shows that there are no solutions in set theory, so

we instead build an approximate model using indirection theory [10]. In our case,

F is the parameterized program φ from Figure 1 and O is just store. Indirection

theory “ties the knot” and defines K such that:

sq program Ψ̌ ≡ K ≡ [3, knot hered.v]

state σ ≡ sq program× store

predicate P ≡ {P : state → T | hereditary(P )}

The construction of the knot K is similar to the one given in [10, §8] but we have

enhanced it so that all predicates inside the knot are hereditary, a technical property

detailed later. A squashed program sq program is simply a knot; a state is a pair

of a sq program and a store. A predicate is a hereditary function from states to

truth values T . We write σ |= P instead of P (σ) when we wish to emphasize

that we are thinking of P as an assertion as opposed to a function. The squashed

and unsquashed programs are related by two functions squash : (N × program) →
sq program and unsquash : sq program → (N× program). The power of indirection

theory is that two simple axioms relate squash and unsquash:

squash(unsquash(Ψ̌)) = Ψ̌

unsquash(squash(n,Ψ)) = (n, prog approxn(Ψ))
(1)

That is, squash ◦ unsquash is the identity function, and unsquash ◦ squash is a kind

of approximation function. The prog approxn(Ψ) function transforms Ψ by locating

all of the assert(P ) statements and replacing them with assert(approxn(P )). The

core of the approximation is handled by the approxn(P ) function:

|Ψ̌| ≡ (unsquash(Ψ̌)).1

approxn(P ) ≡ λ(Ψ̌, ρ).

{
P (Ψ̌, ρ) |Ψ̌| < n

⊥ |Ψ̌| ≥ n

(2)

First we define the level of a squashed program Ψ̌, written |Ψ̌|, as the first projection
of Ψ̌’s unsquashing. When a predicate is approximated to level n, its behavior on

programs of level strictly less than n is unchanged; on all other input it now returns

the constant ⊥. The approx function is exactly where step-indexed models get both

their power (a sound construction) and weakness (information loss).

Consequences of Approximation. What is the cost of losing information

during approximation? Ten years after step-indexed models were introduced, the

answer is still unclear. Experience has led to an ad-hoc understanding among prac-

titioners of certain microcosts—small modifications to the “intuitive” definitions
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to accommodate the approximation. Previous work has focused on managing and

minimizing these microcosts, e.g., via a Gödel-Löb logic of approximation [14].

The fundamental microcost occurs because approxn throws away all behavior on

squashed programs of greater than or equal to level n. Let P be a predicate contained
in (the unsquashing of) a program Ψ̌ of level n. A consequence of (1) is that P has

been approximated to level n—i.e., P = approxn(P ). What happens if we apply P

to a state containing Ψ̌ itself? A review of (2) proves that the result must be ⊥. A

predicate cannot say anything meaningful about the squashed program

whence it came. Instead, we will do the next best thing: make Ψ̌ a little simpler.

We say that Ψ̌ (or σ) is approximated to Ψ̌′ (or σ′), written Ψ̌ � Ψ̌′, when:

Ψ̌ � Ψ̌′ ≡ let (n,Ψ) = unsquash(Ψ̌) in
(
(n > 1) ∧ (Ψ̌′ = squash(n− 1,Ψ))

)
(Ψ̌, ρ) � (Ψ̌′, ρ′) ≡ (ρ = ρ′) ∧ (Ψ̌ � Ψ̌′)

That is, we unsquash Ψ̌ and then re-squash it to one level lower. Of course, we can

only do this when we are not at level 0 to begin with! Since |Ψ̌′| = n − 1 < n, P

will be able to judge states containing Ψ̌′. Every time we pull a predicate out of a

squashed program Ψ̌, we will approximate Ψ̌ to Ψ̌′ before we use P .

Repeated approximation leads to a second microcost. Suppose Ψ̌ |= P and

Ψ̌ � Ψ̌′. We say P is hereditary—stable (or monotonic) as Ψ̌ is approximated—so

that Ψ̌′ |= P ; that is, hereditary(P ) ≡ ∀Ψ̌. (Ψ̌ |= P ) → (Ψ̌ �∗ Ψ̌′) → (Ψ̌′ |= P ),

where we write �∗ and �+ to mean the reflexive and irreflexive transitive closures,

respectively, of �. Unfortunately, not all functions from state to T are hereditary,

such as Pbad(Ψ̌, ρ) ≡ |Ψ̌| > 5. The Pbad function will be true only while the level of

the program is greater than 5; due to approximation, this function will eventually

produce only the constant ⊥. We only consider predicates that are hereditary, and

every predicate defined in this paper (except for Pbad!) has been proved so.

A central question is how these kinds of microcosts become macrocosts—that is,

what are the fundamental limitations of step indexing techniques? For some time,

it was thought that step-indexed models could not produce the kinds of existential

witnesses needed for termination proofs; however, the present work proves otherwise.

The practical limitations of step-indexed models remain unknown.

Models for predicates. We define the logical connectives for predicates (�, ⊥,

∧, ∨, ⇒, ¬, ∀, ∃, μ), and entailment (P � Q) by a standard intuitionistic lift over

the �∗ relation as in [9]. We define the modality of approximation (
P ), used in

the metatheory but not by the end-user, as the boxy operator over �+:

(Ψ̌, ρ) |= 
P ≡ ∀Ψ̌′. (Ψ̌ �+ Ψ̌′) → Ψ̌′ |= P

The model for the terminating function pointer assertion funptr is complex and is
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(Ψ̌, ρ) |= P

(Ψ̌, ρ, (assert P ; c) :: s) �→(Ψ̌, ρ, c :: s)
Sassert

ρ(x) = � unsquash(Ψ̌) = (n,Ψ) Ψ(�) = c′ Ψ̌ � Ψ̌′

(Ψ̌, ρ, (call x ; c) :: s) �→(Ψ̌′, ρ, (c′ ; assert ⊥) :: c :: s)
Scall

Fig. 7. Key rules in operational semantics

developed in §6; the other domain-specific predicates listed in Figure 2b are simply:

(Ψ̌, ρ) |= x ⇓ v ≡ ρ(x) = v

(Ψ̌, ρ) |= [x ← v]P ≡ (Ψ̌, [x ← v]ρ) |= P

(Ψ̌, ρ) |= closed P ≡ ∀ρ′. (Ψ̌, ρ′) |= P

(Ψ̌, ρ) |= 〈|t|〉 < n ≡ t(ρ) < n (etc. e.g., for 〈|t|〉 = n)

For further discussion on the models for predicates see [7].

6 A Step-indexed Model for Total Correctness

Soundness for our logic means that when a function in a verified program is run in

a state satisfying its precondition, it will halt in a state satisfying its postcondition.

Our soundness proof follows Appel and Blazy: build a semantic model for assertions;

define the meaning of judgments; prove the inference rules of the logic as lemmas;

and show that the judgment semantics implies the desired theorem.

Operational semantics. Most of the operational semantics of our language,

involving simple data or control-flow, is straightforward. Here, we only highlight

the more interesting portions of the operational semantics; for details see [7].

We define a small-step relation (Ψ̌, ρ, s) �→(Ψ̌′, ρ′, s′), in which ρ and s stand

for local variables and stacks and Ψ̌ is the squashed program; it is modified as the

program runs in a very controlled way. Here is the rule for loading a label:

(Ψ̌, ρ, (x := � ; c) :: s) �→(Ψ̌, [x ← �]ρ, c :: s)
Slabel

This rule, like most of the instructions in HAL, passes the program Ψ̌ through

without any change. Figure 7 lists the two rules of particular interest. The first is

the Sassert rule, which shows how semantic assertions are checked as the program

runs. The second is Scall, which shows what happens at function calls. This is the

only rule wherein the program is modified: each assertion in the program text is

approximated one level down. We must do this approximation so that assertions

in the text of the function body will be able to judge the program. If we did not

approximate the program at this point, any assertions in the function body would

fail, foiling our desired soundness result. Thus, the level of the program Ψ̌ is an

upper bound on the number of calls the program can make before getting stuck.
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configHaltsn(Ψ̌, ρ, s) ≡ ∃Ψ̌′, ρ′. (|Ψ̌| − |Ψ̌′| ≤ n) ∧ (Ψ̌, ρ, s) �→∗ (Ψ̌′, ρ′, nil)

(Ψ̌, ρ) |= haltsn s ≡ |Ψ̌| ≥ n → configHaltsn(Ψ̌, ρ, s)

guardsn P s ≡ P ⇒ haltsn s

Ψ̌ |= funptr � t
[
P
] [

Q
]

≡ ∃c. let (nΨ,Ψ) = unsquash(Ψ̌) in Ψ(�) = c ∧
∀ s, Ψ̌′, n′, a. (Ψ̌ �+ Ψ̌′) →
(∀ ρ. (Ψ̌′, ρ) |= guardsn′ Q(a) s) →
(∀ ρ n. t(ρ) = n → (Ψ̌′, ρ) |= guardsn+n′ P(a) ((c ; assert ⊥) :: s))

Γ, R �n {P} c {Q} ≡ ∀ Ψ̌, n′, k, s. Ψ̌ |= Γ →
(∀ ρ. (Ψ̌, ρ) |= guardsn′ R s) →
(∀ ρ. (Ψ̌, ρ) |= guardsn′ Q (k :: s)) →
(∀ ρ. (Ψ̌, ρ) |= guardsn+n′ P ((c ; k) :: s))

Ψ̌′ |= approxedof(Ψ̌) ≡ Ψ̌ �∗ Ψ̌′

Ψ : Γ ≡ ∀n.
(
(approxedof(squash (n,Ψ)) ∧ 
Γ) � Γ

)
Fig. 8. Terminating function pointers; Hoare tuples; whole-program verification

Judgment Definitions. Appel and Blazy build their semantic Hoare triple

using the more basic notion of guarding. They say that a predicate “guards” a

program stack if, whenever a memory state satisfies the predicate, that stack is

safe to run (i.e., will not go wrong). We follow a similar pattern, but use a guards

predicate which enforces termination rather than safety. We say that a predicate P

guards a stack s at level n if, whenever the memory state satisfies P and provided

that the program level is at least n, running the stack will eventually terminate (cf.

Figure 8). Notice that there is a clever trick being played here with the definition

of haltsn. Halting is not normally a predicate which can be hereditary. As one ages

a program, it is able to run for fewer steps and thus might not terminate before it

exhausts its level. We work around this issue by saying that a program must only

terminate if it has at least level n. As one ages a program, it will eventually cause

haltsn to be true vacuously (when its level falls below n).

We use guards in the terminating function pointer assertion.Here, � is a program

label, t is a measure, and P and Q are functions from some type A to assertions.

This definition is in a continuation-oriented style. Whenever we have a stack s

which terminates in n steps when Q(x) is satisfied, then we know that running the

function body of � will terminate in n + n′ steps whenever P(x) is satisfied, and

where n′ is determined by the measure. Thus, funptr captures the specification of

a terminating function. Note the premise Ψ̌�+ Ψ̌′; this is one of the microcosts

discussed in §5. Ψ̌′ must be strictly more approximate than Ψ̌ because stepping over
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a call instruction ages the program. By design, the funptr predicate and the Hoare

judgment are similar: assume the postcondition(s) guard the program continuation

point(s) and demonstrate that the precondition guards the extended continuation.

The final definition is program verification Ψ : Γ. That is, we can prove Γ pro-

vided that we assume the program under consideration is some squashed version of

Ψ and 
Γ (i.e., approximately Γ). The assumption 
Γ plays the role of an induction

hypothesis and is what allows us to verify recursive functions. The approxedof(Ψ̌)

predicate means that the current program is approximated from Ψ̌.

H- and V-rules. Now that we have finished our semantic definitions, we are

prepared to prove the rules of the Hoare logic as lemmas. The proofs are straight-

forward for all of the rules aside from Hcall, which itself is not arduous [7].

The real magic happens in the proof of the function verification rule, Vfull.

Vfull converts Hoare derivations for function bodies into the corresponding funptr
assertions on programs containing those function bodies. Φ is a list containing

the precondition, postcondition and termination measure for a group of mutually

recursive functions; for each function in Φ, one proves a particular Hoare derivation.

Γ contains the assumptions one is allowed to make and it includes functions already

verified and those from Φ, which allows recursive calls. However, the preconditions

in Φ are altered to add a conjunct which strengthens the preconditions by requiring

the termination measure to decrease. The return postcondition is the postcondition

of the function. The precondition is the ordinary function precondition together

with the assumption that the termination measure for the initial state is n; this

is what connects the strengthened preconditions of the recursive assumptions with

the initial state. The linear postcondition is ⊥; this requires the function body to

explicitly return. Finally, the Hoare derivation must bound the number of function

calls by n; this connects the termination measures of the function specifications to

their semantic meanings. By providing such a Hoare derivation for each function in

Φ, one can conclude that each function referenced in Φ respects its contract, and

the corresponding funptr facts can be conjoined with Γ in the conclusion of the rule.

The proof is by induction on the value of the termination measure; see [7].

Total correctness. The final soundness proof connects our definitions to a more

traditional notion of total correctness. Suppose Ψ : Γ, and Γ � funptr � t
[
P
] [

Q
]
.

Then for all stores ρ such that t(ρ) = n, and (squash(n,Ψ), ρ) satisfies P(a) (for

some a), executing the function body Ψ(�) will terminate in a state satisfying Q(a).

Our core semantic ideas (§6) are compact, requiring only 1,315 lines of Coq.

7 Limitations and Related Work

Limitations. Our program logic is somehow simultaneously too weak and too

strong. It is too weak in that the upper bound need not be tight, and we make no

claims on the lower bound. Our logic is too strong in that the burden of constructing

an explicit termination measure may be onerous for someone only concerned with

termination. It would be better if one could provide a well-founded relation for each

function, hiding the explicit bounds and termination measures under existentials.
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We can relate the precondition to the upper bound so that we can verify, e.g.,

that a program runs in polynomial bound (e.g., examine the termination measure

addt from §4). However, the mechanism to do so is cumbersome; it might be better

to allow the user to state termination arguments in the ordinals.

Applications of step-indexing and its alternatives. Step-indexing has

been used to prove type safety [2], soundness of program logics [8], and program

equivalence [1]. Indirection theory [10] provides clean axioms for step-indexed mod-

els. Domain theory is the classic tool for building semantic models. Birkedal et al.

constructs indirection theory in ultrametric spaces [6].

Predicates in syntax. Semantic assertions are often used in program analysis

settings such as BoogiePL [5]. Semantic assertions are one example of a larger class

of bookkeeping instructions that embed formulas into program syntax, such as the

makelock instruction used in concurrent C minor [8].

Program logics with function pointers. Schwinghammer et al.’s recent

work on “nested” Hoare triples [15] combines features of separation logic with the

ability to reason about “stored code,” which is similar to function pointers. It is

a logic of partial correctness. The work of Honda et al. seems nearest to our own

in terms of logical power [13]. They provide a logic of total correctness for call-

by-value PCF. The soundness proof goes by a reduction to the π-calculus equipped

with a process logic in the rely/guarantee style [11]. Honda et al. do not consider

embedded semantic assertions or explicit time bounds, but do consider the issue of

completeness [12]. Aspinall et al. have developed a sound and complete program

logic for Grail, a Java subset, which reasons about both correctness and resources

[4]. Their system includes a form of virtual method invocation, but it is not clear

if their formalism allows higher-order behaviors.

8 Conclusion

We have presented a simple language with embedded semantic assertions and func-

tion pointers, together with a logic of the total correctness of time resource bounds.

Our logic is able to reason about terminating function pointers in a very general

way, including polymorphic mutually-recursive function groups. We have proved

our logic sound with respect to an operational semantics using step-indexing, thus

demonstrating that step-indexed models are useful for modeling resource logics.
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