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Abstract 

A large amount of energy is required in the production of steel where the preheating of blast in the hot blast stoves for 
iron-making is one of the most energy-intensive processes. To improve the energy efficiency it is necessary to 
investigate how to improve the hot blast stove operation. 
In this work a mathematic model for evaluating the performance of the hot blast stove was developed using a finite 
difference approximation to represent the heat transfer inside the stove during operation. The developed model was 
calibrated by using the process data from the stove V26 at SSAB Oxelösund, Sweden. As a case study, the developed 
model was used to simulate the effect of a new concept of OxyFuel technique to hot blast stoves. The investigation 
shows that, by using the OxyFuel technique, it is possible to maintain the blast temperature while removing the usage 
of coke oven gas. Additionally, the hot blast temperature increases while the flue gas temperature decreases, which 
allows for an increase of the blast temperature, leading to improved energy efficiency for the hot stove system. 
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1. Introduction 

About one third of the world primary energy consumption is from the manufacturing industries. The 
iron and steel industry (ISI) is the second largest energy user and accounts for 20 % of the energy usage 
by the manufacturing industries [1]. Due to heavy reliance on fossil fuels as both energy carrier and 
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reducing agent the ISI is the largest CO2 emitter with nearly one third of the total CO2 emissions in the 
industrial sector. This corresponds to about 4 – 5 % of the world total CO2 emission [1]. 

The blast furnace – basic oxygen furnace (BF-BOF) process accounts for nearly 70 % of the world 
crude steel production [1]. Hot blast stoves are very important auxiliary equipment to the BF process, 
providing hot blast to the process. The function of the hot blast stove is to provide high-temperature blast 
to the BF at a constant flow, which provides thermal energy and reducing gas to the BF process through 
the combustion of coke and injected fuels in the tuyere level. Hot blast stoves work as counter-current 
regenerative heat exchangers, and they are often heated up by the process gases generated from the 
steelworks, such as BF gas and coke oven gas (COG). For an integrated steel plant, 10 – 20% of total 
energy is used in hot blast stoves for the hot blast production [2]. 

Stoves are operated cyclically with two distinct periods, i.e. on-gas and on-blast, and usually three or 
four stoves are operated for a BF in either serial or parallel in order to provide a constant flow of blast. In 
Fig. 1 a schematic view of a hot blast stove system operating in serial mode is illustrated where the first 
two stoves are on-gas (combusting fuel gas) and the third stove is on-blast (providing blast to the BF). 

The stove can be divided into three sections; combustion chamber, dome, and chequerwork chamber. 
During the period of on-gas, the blast furnace gas (BFG) together with an enrichment gas is combusted 
and the hot flue gases flow through the combustion chamber, the dome, and then the chequerwork 
chamber. The chequerwork chamber is filled with refractory brick with channels to provide a large 
surface area for heat transfer as well as a large volume for energy storage. This chequerwork brick is 
heated and stores the thermal energy. 

After on-gas the stove is switched to on-blast where cold blast is heated by flowing from the bottom of 
the chequerwork, through the dome and a part of the combustion chamber. When the hot blast leaves the 
stove, it is mixed with a certain amount of cold blast to produce a constant flow with a stable temperature 
before it is injected into the BF as illustrated in Fig. 1. 

Fig. 1. Schematic view of a hot blast stove system 

The hot blast stoves in many steel plants have been running for many years, and the stove performance 
can differ significantly for stoves in the same system. To improve the performance of a stove system it is 
necessary to represent the performance and then investigate how changes to the operation would affect 
the performance of individual stoves. 

In this work, a model was developed theoretically to describe the stove performance. The developed 
model was derived from fundamental heat transfer correlations with the consideration of the effect of gas 
flow, temperature, composition on the convective and radiative heat transfer. The model was further used 
to evaluate the performance of the stove when applying a new combustion technique as a case study. 
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2. Method 

The developed model used a finite difference approximation of the heat balance to represent the heat 
transfer inside the hot blast stove. For the finite difference approximation the stove was divided into steps 
in time and flow direction, i.e. time steps and physical steps. 

Initial/boundary conditions for the model were initial solid temperature and inlet flue gas temperature. 
Assuming that all the fuel gas was fully combusted with adiabatic flame temperature at the bottom of the 
combustion chamber, the gas and solid temperatures for each node in the calculation grid can be 
calculated with known operating conditions for the stove. Each calculation node consists of several 
elements representing gas and solid, respectively, as shown in Fig. 2. 
 

 

Fig. 2. Layout of a calculation node 

The number of elements for each node depends on the placement in the stove. Each solid element 
consists of at least one surface element representing the solid volume adjacent to the gas flow channel and 
one element for the outer wall next to the ambient air. By knowing inlet and initial gas and solid 
temperatures, the temperatures can be calculated for each position in the stove during operation from the 
finite difference approximation of the heat balance, i.e.: 

 
 (1) 

 (2) 

 
where the subscripts of g and s represent gas and solid, respectively,   is the gas flow, cp is the specific 
heat capacity, T is the temperature, ρ is the density, V is the volume, and Δt is the time-step size. 

The thermophysical properties of the solid material are temperature-dependent, and in this work they 
were derived from the data obtained from the manufacturer. It was assumed that all channels for the flow 
in the stove can be approximated as circular tubes, and the heat transfer and flow were assumed to be 
equal in all channels inside the chequerwork. With these assumptions, the model can be simplified as a 
single channel. 

During the calculation of each node, the heat loss was determined combining the conduction through 
the stove walls with the natural convection and radiation from the outer wall to the ambient air. 
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2.1. Gas model 

Convective heat transfer is represented by Newton’s law of cooling, where the convective heat transfer 
coefficient, h, can be obtained from the Nusselt number. Depending on the range of the Reynolds number, 
different correlations can be used to estimate the Nusselt number. For the fully developed laminar flow, 
ReD < 2300, the Nusselt number is 3.66 [3].  For ReD > 3000, Gnielinski developed a correlation [3] with 
an error less than 10%: 

 

 (3) 

 
For the case of Reynolds number where the flow is not laminar and the Gnielinski correlation is 

invalid, the correlation developed by Hausen for the laminar extreme and fully turbulent extreme can be 
used [4] which is valid for the range of 2100 < ReD < 10 000: 

 

 (4) 

 
The thermophysical properties of a gas were calculated considering the impacts of pressure, 

temperature and gas composition. For calculation of the gas properties all species in the gas mixture has 
been treated as ideal gases. The method developed by Mason and Saxena and the method developed by 
Wilke has been used to find the thermal conductivity and dynamic viscosity of the gas mixture [5].  

Baehr and Stephan [6] described the radiative heat transfer from a gas to a grey, opaque and diffuse 
surface with: 

  

 (5) 

 
The emissivity and absorptivity depend on the partial pressure, temperature and the gas geometry of 

the radiative species which are mostly CO2 and H2O. With low concentrations of CO2 and H2O the 
radiative heat transfer between gas and solid can be neglected [3]. 

The emissivity is often determined by using tabulated data. However, in this work, the method 
developed by Modak [7] was used to calculate the emissivity to save computational time. 

2.2. Model structure 

An operating scenario can be simulated with the developed model by performing calculations for one 
full cycle of on-gas and on-blast. The model provides an initial guess of the temperature of each solid 
element in the beginning of on-gas. After a full cycle the model will compare the initial and final 
temperatures of each solid element and perform iterative calculations until the difference between initial 
and final temperatures is less than a set convergence criterion. Similar calculations are performed by the 
model to calculate the amount of hot blast going through the stove and cold blast to the mixing chamber 
to deliver the target blast temperature. 
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2.3. Model calibration and validation 

The model was calibrated and validated using the process data of stove V26 at SSAB’s site in 
Oxelösund, Sweden. Inputs to the model were based on the measurements carried out for one cycle and 
the model was validated using the temperature measurements on hot blast, flue gas, and dome. Dome 
temperature was not calculated in the model, however measured dome temperature can be compared with 
the modelled gas temperature at the top of the chequerwork and with the solid temperature of the top 
layer in the chequerwork. 

The model was validated by using the process data of stove V26 at SSAB Oxelösund. In Fig. 3 the 
modelled and measured temperatures are presented for the calibration. 

 

 

Fig. 3. Modelled and measured temperatures for the flue gas, grid, dome and hot blast 

The results illustrated in Fig. 3 show an overall agreement between modelled and measured values. 
The model overestimates the flue gas temperature and the temperature changes are more rapid for the grid 
temperature. It should be mentioned that the model results of the flue gas temperature refer to the 
temperature of the gas in the bottom of the chequerwork, while in practice, the measurement of the flue 
gas temperature was located outside of the stove. Meanwhile, the grid temperature was measured on the 
cast iron support columns for the chequerwork while the model results represent the temperature of the 
lowest layer in the chequerwork. This would explain the differences between the measured and modelled 
temperatures.  
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As shown in Fig. 3, the measured dome temperature agrees well with the modelled gas temperature 
during firing and with the modelled solid temperature during blast. In measurements, a pyrometer was 
used to measure the dome temperature from radiation. During firing the radiation from the hot gases was 
measured, and during blast the radiation from the solid material in the dome was measured. 

Results depicted in Fig. 3 show a deviation between the measured and modelled hot blast 
temperatures. In the beginning of the cycle, the discrepancy is large, which is most likely due to errors in 
the measurement. At the end of the blast period, a good agreement between the measured and modelled 
hot blast temperatures was observed. 

3. A case study of model application 

To illustrate how the model can be used to study the effect of the new operating technique, a case with 
stove oxygen enrichment with flue gas recirculation (SOE-FGR), was studied in this section. 

3.1. Description of stove oxygen enrichment with flue gas recirculation 

Stove oxygen enrichment with flue gas recirculation developed by Linde gases, replaces the 
combustion air during the firing period with recirculated flue gas and pure oxygen [8].Using this 
technique it is possible to either remove the enrichment gas or increase the blast temperature. 

SOE-FGR uses pure oxygen to combust the fuel gas, and the flue gas is recirculated to decrease the 
flame temperature. In addition to controlling the flame temperature the sensible heat in the flue gases can 
be used and the CO2-concentration is then increased [8]. Since this type of operation is outside of the 
current operating practices, it is important to use a dynamic model to investigate the impact on the 
performance on the hot blast stove before further practical implementation. 

Fig. 4 illustrates a common stove operation with SOE-FGR where COG has been removed. 
 

 

Fig. 4. Stove operating scenarios. Left: Common stove operation. Right: SOE-FGR 

In this investigation all inputs into the model were kept constant except for a change in the total flue 
gas flow rate and composition. The amount of O2 added to the recirculated flue gases were adjusted to 
keep the same flame temperature as in the reference case. 

3.2. Modelling results and discussion 

The scenario for SOE-FGR was studied using the model and the results were compared with those in 
the reference case. The model results of the hot blast and flue gas temperatures are presented for the 
reference and SOE-FGR cases, respectively, in Fig. 5. 
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Fig. 5. Hot blast and flue gas temperature for reference and SOE-FGR case 

The model result of the hot blast temperature shows a slightly higher hot blast temperature for the 
entire blast cycle. Specially, the minimum of the hot blast temperatures for the reference and SOE-FGR 
cases are 1104.8 and 1107.8 °C, respectively. The increased hot blast temperature in the SOE-FGR case 
could be used to increase the blast temperature to the BF. Meanwhile, the case of SOE-FGR only shows a 
small impact on the flue gas temperature. The maximum flue gas temperature is decreased from 415.9 to 
414.8 °C and the initial temperature is decreased from 235.3 to 233.4 °C.  

The hot blast temperature calculated is not a smooth curve. Partly, this is due to the expression for the 
thermal conductivity developed from manufacturer data not being a smooth curve. Additionally, the 
Reynolds number reaches a flow regime where a new correlation for the Nusselt number is used.  

4. Conclusions 

A dynamic model for the hot blast stove operation was developed based on the finite difference 
approximation on the heat transfer equations. In the developed model, the thermophysical properties for 
both gas and solid were calculated with respect to time and position in the stove.  

The developed model was calibrated by representing stove V26 at SSAB, Oxelösund, and it shows that 
the model can be used to represent a stove in operation. 

The model can be used to investigate the impacts of new operating scenarios. In this work the use of 
SOE-FGR was investigated as a case study. The investigation shows that the utilization of SOE-FGR is of 
benefit for the stove operation, i.e. (1) it is possible to remove COG in the hot blast stove; (2) the hot blast 
temperature increases while the flue gas temperature decreases. With an increase in the hot blast 
temperature it is possible to increase the blast temperature which would improve the efficiency of the 
entire BF process; (3) In addition, the high CO2 content in the flue gas will be an advantage if carbon 
capture and storage (CCS) is applied to mitigate the climate change. 
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