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Abstract

Septins are a highly conserved subfamily of GTPases

that play an important role in the process of cytokine-

sis. To increase our understanding of the expression

and localization of the different mammalian septins in

human brain tumors, we used antibodies against

septins 2, 3, 4, 5, 6, 7, 9, and 11 in immunofluor-

escence and Western blot analyses of astrocytomas

and medulloblastomas. We then characterized the

expression and subcellular distribution of the SEPT2

protein in aphidicolin-synchronized U373 MG astrocy-

toma cells by immunofluorescence and fluorescence-

activated cell sorter analysis. To determine the role of

SEPT2 in astrocytoma cytokinesis, we inducibly ex-

pressed a dominant-negative (DN) SEPT2 mutant in

U373 MG astrocytoma cells. We show variable levels

and expression patterns of the different septins in

brain tissue, brain tumor specimens, and human brain

tumor cell lines. SEPT2 was abundantly expressed in

all brain tumor samples and cell lines studied. SEPT3

was expressed in medulloblastoma specimens and

cell lines, but not in astrocytoma specimens or cell

lines. SEPT2 expression was cell cycle–related, with

maximal levels in G2-M. Immunocytochemical analysis

showed endogenous levels of the different septins

within the perinuclear and peripheral cytoplasmic

regions. In mitosis, SEPT2 was concentrated at the

cleavage furrow. By immunocytochemistry and flow

cytometry, we show that a DN SEPT2 mutant inhibits

the completion of cell division and results in the

accumulation of multinucleated cells. These results

suggest that septins are variably expressed in human

brain tumors. Stable expression of the DN SEPT2

mutant leads to a G2-M cell cycle block in astrocytoma

cells.
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Introduction

Septins are a highly conserved subfamily of GTPases that

play an important role in the process of cytokinesis. The

septins were first identified in the budding yeast, Saccha-

romyces cerevisiae, but have also been found in a variety of

other fungi and animals [1–4]. Mutations in any of four yeast

septin genes, Cdc3p, Cdc10p, Cdc11p, and Cdc12p, lead to

deficiencies in hetero-oligomeric filaments that lie adjacent to

the membrane at the mother-bud neck and give rise to abnor-

mally elongated buds unable to complete cytokinesis [5]. The

conserved requirement for septins in cell division was also

revealed by the discovery that the Pnut gene in Drosophila

melanogaster encoded a septin homologue. As in yeast, the

three septins of Drosophila, Pnut, Sep1, and Sep2, also form

7-nm hetero-oligomeric filaments in vitro and these septin

complexes accumulate at the cleavage furrow of mitotic cells

[6]. Mutations in the Pnut gene result in the formation of

multinucleated syncytia in imaginal discs during larval devel-

opment due to failure to complete cytokinesis [1,7]. Similarly,

mutations in the septins UNC-59 and UNC-61 of Caenorhabdi-

tis elegans result in some postembryonic defects in cell division

[8]. Taken together, these data indicate that the septins play an

important role in maintaining cytoskeletal structures necessary

for the control of cell division, and are required for cytokinesis in

flies [1,7], nematodes [8], and mammals [4].

To date, at least 10 mammalian septin homologues have

been described. As the nomenclature for mammalian septins

has recently been revised by Macara et al. [9], we shall refer to

them by their symbols as approved by the Human Genome

Organization Gene Nomenclature Committee. They are now

referred to as SEPT1 to SEPT10 [4,10–21]. Most of these

were identified through random sequencing strategies, sub-

tractive screens, or as candidate genes within disease loci. All

human septins have molecular masses in the range of 30 to

80 kDa and share considerable amino acid sequence identity.

All except SEPT2 and SEPT7 have a GTP-binding domain

near the N-terminus and a predicted coiled-coil motif near the

carboxyl terminus [4]. The identification of septin homologues
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and molecules that functionally interact with septins in higher

eukaryotes may provide clues to their functions in cytokine-

sis [1,4,6,22,23].

In our previous study, we showed that transient transfec-

tion of an antisense SEPT2 expression vector led to the

failure of cytokinesis in U373 astrocytoma cells [10]. To

further our understanding of the role of human septins in

human brain tumors, here we characterize the expression

and subcellular distribution of eight mammalian septins in a

series of human brain tumor specimens and cell lines. Using

a dominant-negative (DN) approach in stably transfected cell

lines, we have now examined the role of persistent SEPT2

inhibition in cytokinesis and cell division. Our results suggest

that the septins are variably expressed in different human

brain tumor cell lines and tumor specimens, and within

different subcellular compartments in the cell lines exam-

ined. Our observations also suggest a conserved require-

ment for SEPT2 in U373 astrocytoma cell division.

Materials and Methods

Cell Lines and Cell Culture Conditions

The permanent human glioma cell lines U138, U251,

SF-126, SF-188, and SF-539 were obtained from Dolores

Dougherty (The Brain Tumor Research Center, University of

California San Francisco, San Francisco, CA); U343 astro-

cytoma, U373 MG (malignant glioma), and U87 MG were a

generous gift of Bengt Westermark (Uppsala, Sweden). The

Daoy medulloblastoma cell line was obtained from the ATCC

(Manassis, VA). The PFSK supratentorial PNET cell line was

a gift from Dr. Dan Fults, University of Utah (Salt Lake City,

UT). All cell lines have been previously well characterized

[24–27]. Primary cultures of human fibroblasts were initiated

from human foreskin specimens. Permission to use these

materials was granted by the Research Ethics Board (REB)

at The Hospital for Sick Children (Toronto, Ontario, Canada).

All cell lines and cultures were grown in monolayer and

maintained in alpha minimal essential medium (a-MEM) or

Dulbecco’s modified essential medium (DMEM) supple-

mented with 10% fetal calf serum (FCS) and a 1% antibiot-

ic/antifungal mixture (Cellgro, Mediatech, Molecular

Research Laboratories, Herndon, VA) in a humidified atmo-

sphere of 5%CO2 in air at 37jC. Inducible expression of wild-
type and mutant-type SEPT2–green fluorescent protein

(GFP) fusion protein in the U373 MG cell line was accom-

plished using the tetracycline-repressor gene expression

system as previously described [28]. Briefly, stably trans-

fected U373 MG cells (U373 Tet cells) were maintained in

culture containing 300 mg/ml hygromycin and 500 mg/ml

geneticin (G418 sulfate; Gibco-BRL, Gaithersburg, MD).

Wild-type and DN mutant SEPT2–GFP fusion protein ex-

pression was induced by 48 hours of treatment with 4 mg/ml

tetracycline.

Antibodies and Regents

Antibodies to septins 2, 3, 4, 5, 6, 7, 9, and a novel septin

represented by clones FLJ10849 and AL110300 and here-

after called Septin 11, were generated by immunizing rabbits

with synthetic peptides generated against unique regions of

the N-termini of these proteins. These sequences were not

shared with any other polypeptides in the GenBank data-

base. Antibodies to Septins 2, 4, 5, and 9 have been

described elsewhere [29–33] and were provided by William

Trimble (Program in Cell Biology, The Hospital for Sick

Children). All antibodies used in this study are specific for

the corresponding septins with no cross-reactivity to other

septins or any other proteins. Western and immunocyto-

chemical signals are completely abrogated by preincubation

of the antibody with an excess of the corresponding pep-

tide. Details of the antibody generation will be published

elsewhere.

In order to detect the expression of GFP and its fusion

protein, an anti–a-GFP polyclonal antibody (Clontech, Palo

Alto, CA) was used at 1:250 for Western blot analysis. A goat

anti–rabbit IgG HRP conjugate (Bio-Rad, Hercules, CA) was

used as a secondary antibody in Western blot at 1:8000

dilution. Phalloidin–TRITC (Sigma, St. Louis, MO), which

binds only to polymeric actin, was used at a concentration of

50 mg/ml in phosphate-buffered saline (PBS) for immunocy-

tochemistry. Affinity-purified fluorescein isothiocyanate

(FITC)– labeled goat antibodies against rabbit IgG that had

been absorbed with rabbit serum were purchased from

Chemicon International (Temecula, CA) and were used at

1:75 for immunocytochemistry. Aphidicolin (Wako, Osaka,

Japan) was used for cell synchronization. Low concentra-

tions of aphidicolin (1.25 mg/ml) can inhibit the growth of

eukaryotic cells by selectively inhibiting DNA synthesis with-

out interfering with mitochondrial DNA synthesis, RNA, pro-

tein and nucleic acid precursors synthesis, or other major

metabolic pathways [34].

Western Blot

Human brain tumor samples were obtained at the time of

surgery from patients at The Hospital for Sick Children.

There were seven posterior fossa medulloblastoma speci-

mens derived from children ages 3 to 14; a pilocytic low-

grade astrocytoma from the parietal lobe of a 7-year-old

male; an anaplastic astrocytoma from the thalamus of a

12-year-old female; and a glioblastoma multiforme from the

frontal lobe of a 10-year-old male. Nonneoplastic frontal and

temporal lobe specimens were obtained in two children

during the course of epilepsy surgery to excise the epileptic

focus. Nonneoplastic cerebellum from an 8-year-old male

was obtained as marginal tissue surrounding an arteriove-

nous malformation during the resection of this lesion. Ap-

proval to use these specimens was given by the REB, The

Hospital for Sick Children. Specimens were snap-frozen in

liquid nitrogen. Proteins were extracted from tissue samples

using 0.5% NP-40 lysis buffer and the lysate was loaded for

immunoblotting analysis as described below.

Cytosolic soluble fractions and insoluble membrane frac-

tions were extracted according to the procedure previously

described [10]. Briefly, cells were lysed in extraction buffer

[120 mM NaC1, 0.5% Nonidet P-40 (NP-40), 50 mM

Tris–HC1 (pH 8.0)] for 30 minutes on ice. The extracts were
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cleared by centrifugation at 14,000 rpm for 15 minutes at

4jC. Extracted soluble cytosolic proteins of 20 mg were

separated by electrophoresis on 10% sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) and sub-

jected to electrotransfer to polyvinylidene difluoride mem-

branes (Immobilon P; Millipore, Bedford, MA) by semidry

electrotransfer (0.8 mA/cm2). Blots were rehydrated and

blocked with 5% skim milk in PBS–0.1% Tween-20 at room

temperature for 1 hour. Primary and secondary antibody

incubations were performed in blocking solution at room

temperature for 1 hour. Horseradish peroxidase (HRP)–

conjugated secondary antibodies (Bio-Rad) were used

at 1:8000 dilution and detected with the enhanced chemo-

luminescence (ECL) system (Amersham, Oakville, Ontario,

Canada). Quantitative analysis of protein levels on immuno-

blots was performed by densitometry.

Immunocytochemistry and Confocal Microscopy

U373 MG cells were grown on eight-well chamber slides

(Nunc, Naperville, IL) and then fixed in 4% paraformaldehyde

in phosphate buffer (pH 7.2) for 40 minutes. Fixed cells

were washed with PBS and permeabilized with 0.02% Triton

X-100 in PBS for 2 minutes and blocked with 0.5% bovine

serum albumin in PBS for 1 hour. The cells were incubated

with the respective anti–septin polyclonal antibody (1:1000)

for 1 hour at room temperature. FITC-conjugated secondary

anti–rabbit IgG antibody (Pierce, Rockford, IL) was then

used at 1:100 dilution. Phalloidin–TRITC for actin staining

was used at a concentration of 50 mg/ml in PBS for 30

minutes. 4V,6-Diamidine-2V-phenylindole dihydrochloride

(DAPI) was used at the concentration of 1 mg/ml in mounting

medium for nuclear staining. Cell imaging was performed

using a Leica epifluoresence microscope equipped with Cool

Snap camera and software or a Leica confocal laser scan-

ning microscope.

Cell Cycle Synchronization and Flow Cytometry Analysis

Cell synchronization was achieved using aphidicolin.

Briefly, aphidicolin (1.25 mg/ml) was added to the growth

media 24 hours after plating 5 � 105 U373 MG cells in a

10-cm2 tissue culture plate. After 15 hours, the cells were

washed three times with growth media and were allowed to

progress through the cell cycle for 9 hours. This process was

repeated twice. Cells were harvested at 6-hour intervals

through one complete cell cycle. Cell synchronization was

confirmed by flow cytometry. For flow cytometric analysis,

cells were trypsinized, washed in PBS, and resuspended in

ice-cold 80% ethanol. The fixed cells were resuspended in

250 ml of propidium iodide (PI) solution (500 mg/ml PI in 3.8 M

sodium citrate at pH 7.0; Sigma), and 250 ml of RNase A (10

mg/ml prepared in 10 mM Tris–HCl at pH 7.5; Sigma) was

added to each sample and incubated in the dark at 37jC for

30 minutes. The stained cells were filtered through the lids of

Falcon polystyrene round-bottom tubes with cell strainer

caps. DNA content was analyzed on a Becton Dickinson

FACScan (Becton Dickinson, San Jose, CA). Percent cell

cycle phase was determined using Cell Fit software (Becton

Dickinson). Data were collected from at least 10,000 cells.

Construction of SEPT2–GFP Fusion Gene Expression

Plasmid

The full-length cDNAencoding humanSEPT2 in pGEX-2T

(718 bp) was used as previously described (wild-type

SEPT2) [10]. The DN SEPT2 mutant was obtained by

converting serine, the 51st amino acid of human SEPT2, to

asparagine (S51N SEPT2 mutant). In order to obtain the

SEPT2–GFP fusion gene (1.1 kb), we inserted the wild-type

and mutant SEPT2 fragments into the SmaI and HindIII sites

of the pEGFP-N1 vector (BD Clontech, Palo Alto, CA). The

SEPT2–GFP fusion gene was cloned into the inducible

pTRE2hyg expression vector (BD Clontech). Proper orien-

tation was determined by restriction digest. Protein expres-

sion was determined by Western blot using the SEPT2

antibody. The S51NSEPT2–GFP fusion gene in the pTRE2-

hyg vector was then used to investigate the role of SEPT2 on

U373 MG astrocytoma cells.

Transfection of SEPT2–GFP Fusion Gene into

U373-rtTA Cells

U373 MG cells were initially transfected with the pUHD

172-1 neoplasmid encoding the reverse transactivator (rtTA)

coding sequence downstream of the hCMV promoter/en-

hancer and neomycin resistance gene transfection reagent

[35,36]. All cell line transfections were performed using

Fugene 6 transfection reagent according to the manufactur-

er’s instructions (Roche Diagnostics, Basel, Switzerland).

Stable transfectants were selected and the expression of

the rtTA was determined using the VP16 antibody (Clontech)

in aWestern blot analysis. A high VP16-expressing cell clone

was selected and used to transfect the inducible SEPT2–

GFP or S51N–GFPmutant. The inducibility of the SEPT2 or

S51N protein expression was determined by Western blot

analysis after treatment of the cells with 4 mg/ml tetracycline

for 48 hours. The effects of wild-type and mutant SEPT2

fusion protein expression on the distribution of actin fila-

ments and cell morphology were determined by immunoflu-

orescence microscopy as described above.

To confirm the inhibitory function of S51N mutant SEPT2

on cytokinesis, DNA content was measured by fluorescence-

activated cell sorter (FACS) analysis in parental U373 MG

cells, transfected uninduced (Tet-off) cell clones, and trans-

fected tetracycline-induced cell clones for both wild-type and

S51N mutant SEPT2-expressing cells. The FACS analysis

gate was set to select GFP-positive cells with a green

fluorescence signal for Tet-on state cells. Tet-on cells are

harvested 7 days after treatment with tetracycline. The DNA

histograms from each assay contained data from over

10,000 cells.

Results

Septins Are Variably Expressed in Human Brain Tumor Cell

Lines and Specimens

Septin expression was detected predominantly in the

cytosolic fraction. There were no visible differences between

cytosolic septin expressions among the different cell lines,
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with the exception of SEPT3. Interestingly, SEPT3 was

highly expressed in cell lines and tumor samples of neuronal

origin such as medulloblastoma and supratentorial PNET

origin such as PFSK, but was not expressed in astrocytoma

cell lines (Figure 1). The anti–SEPT2 antibody identified an

immunoreactive band in all astrocytoma and medulloblasto-

ma cell lines examined.

The molecular masses of the septins examined ranged

from 35 to 65 kDa, which is in agreement with their predicted

sizes (Figure 2). There were at least four isoforms of SEPT9

in astrocytoma and medulloblastoma cell lines. The molec-

ular masses of SEPT9 isoforms ranged from 40 to 65 kDa.

In solid brain tumor specimens, SEPT2 protein was

detected in various brain tumors including low-grade astro-

cytomas, anaplastic astrocytomas, glioblastomas, and me-

dulloblastomas (Figure 3). Nonneoplastic brain tissues also

demonstrated SEPT2 expression. However, the expression

of SEPT2 in the frontal and temporal lobes and the cerebel-

lum was less than that observed in the primary astrocytic

tumors by densitometry. In addition, the expression of

SEPT2 in glioblastoma was greater than that in low-grade

astrocytoma. SEPT3 was expressed in all medulloblastoma

samples, and in nonneoplastic brain tissue. It was not

expressed in the astrocytic tumors except for one glioblas-

toma multiforme (Figure 3). Western blot analysis in addi-

tional 11 glioblastoma multiforme samples, however, could

not reveal SEPT3 expression (data not shown).

Subcellular Localization of Septins

Double immunofluorescence analysis for all septins

revealed a rather variable subcellular expression of the

respective septins. Although SEPT2 was immunoreactive

with short, linear or granular structures adjacent to actin

filaments within the cytoplasm and very prominent at the

plasma membrane in U373 cells (Figure 4A), SEPT3,

SEPT4, and SEPT6 were predominantly expressed in a

perinuclear fashion (Figure 4, B–D, respectively). SEPT7

showed strong cytoplasmic staining excluding the nuclear

region (Figure 4E ). SEPT3, SEPT4, SEPT6, and SEPT7

demonstrated a mutually exclusive immunolocalization with

actin. The expression of SEPT9 (data not shown) and

SEPT11 (Figure 4F ) was perinuclear and cytoplasmic with

some degree of overlap with actin. The immunofluorescence

staining for SEPT5 was weak around the nucleus (data not

shown).

SEPT2 was variably expressed during cell synchroniza-

tion with aphidicolin in SF-188 glioma cells (Figure 5A). In

interphase cells, endogenous SEPT2 was immunolocalized

to granular and short filamentous structures that overlap with

actin filaments. The perinuclear region was densely immu-

noreactive to SEPT2 (Figure 5A, upper ). In mitosis, SEPT2-

containing fibers were in close apposition to the actin-based

contractile ring and around the cleavage furrow between two

daughter cells (Figure 5A, lower ).

Septin Expression Is Maximal at G2-M Phase of

Synchronized U373 MG Astrocytoma Cells

By flow cytometry, aphidicolin arrested over 75% of U373

MG astrocytoma cells in the G2-M phase of the cell cycle,

with each cell containing two kinetoplasts. Most cells

arrested by aphidicolin were able to enter G1 phase 18 hours

after removal of aphidicolin (Figure 5B). The effects of cell

synchronization on SEPT2 expression at various time points

throughout the cell cycle are shown in Figure 6A. SEPT2

expression was maximal at G2-M phase in synchronized

U373 MG cells. By Western blot analysis, SEPT2 expression

Figure 1. Expression of human septins in human brain tumor cell lines and primary human fibroblasts. There were no visible differences between the expression of

septins among the different cell lines, except SEPT3. SEPT3 was not expressed in astrocytoma cell lines and primary human fibroblasts (F0068), but was

expressed by all medulloblastoma and supratentorial PNET cell lines. At least four isoforms of SEPT9 were observed in most of the cell lines.
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decreased 18 to 36 hours after removal of aphidicolin as cells

progressed through the cell cycle. At 42 to 48 hours after the

removal of aphidicolin, the expression of SEPT2 returned to

basal (steady state) levels similar to untreated control cells.

Expression of a DN SEPT2 Mutant Inhibits Cytokinesis

Western blot analysis of transfected U373 MG astrocyto-

ma cells induced for 48 hours with tetracycline revealed a 72-

kDA fusion protein with the anti–SEPT2 antibody (Figure 6B,

left panel ). When the membrane was reprobed with an anti–

GFP antibody, the same 72-kDa protein was identified

(Figure 6B, right panel ). The ratio of ectopic mutant to

normal SEPT2 was measured by densitometry of the above

Western blots, where it was found that the ratio for mutant to

normal expression ranged from 0.1 to 0.39, depending on the

degree of induction by tetracycline.

Successfully transfected cells could be readily identified

by virtue of the GFP tag by direct inspection with the

fluorescent microscope. As expected, the wild-type

SEPT2–GFP fusion protein was identified in short filamen-

tous structures and in a perinuclear distribution in a pattern

very similar to endogenous SEPT2 (data not shown). There

were no major differences in immunolocalization patterns of

actin and cellular morphology between parental U373 MG

cells and cells transfected with the wild-type SEPT2–GFP

fusion protein. By way of contrast, the mutant SEPT2–GFP

fusion protein appeared as large aggregates predominantly

in the perinuclear cytoplasm, or localized sporadically

throughout the cytoplasm but distinct from actin filaments,

which became prominent at the peripheral cytoplasm. In

dividing cells, expression of the mutant SEPT2 protein led

to the formation of numerous bizarre, multinucleated cells

(Figure 7A). By Western blot analysis, the expression of the

wild-type or mutant SEPT2–GFP fusion proteins did not

interfere with the expression levels of actin (data not shown).

FACS analysis of DNA content was compared in the

parental cell line, uninduced state, and induced state from

U373 MG wild-type cells and U373 MG-S51N cells

(Figure 7B). There was no difference in DNA content among

the parental cell line, the uninduced U373-S51N cells, and

Figure 2. Molecular mass determinations of the septins in human brain tumors. The molecular masses of the various septins range from 40 to 55 kDa. SEPT3 was

evaluated in a medulloblastoma cell line.

Figure 3. Expression of SEPT2 and SEPT3 in brain tissues and brain tumor samples. SEPT2 is variably expressed in SDS-soluble fractions of normal brain tissues

(frontal lobe, temporal lobe, and cerebellum), three astrocytomas of different histopathological grade, and seven medulloblastoma samples. SEPT2 expression in

astrocytomas is greater than that in normal brain tissues. SEPT2 expression in glioblastoma is greater than that in low-grade astrocytoma. SEPT3 is also

expressed in all samples except low-grade and malignant astrocytomas.
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Figure 4. Subcellular localization of different septins in U373 astrocytoma cells. (A) U373 cells stained for SEPT2 show a perinuclear as well as membrane-bound

immunoreactivity colocalizing with the actin cytoskeleton. By way of contrast, immunoflourescence staining for SEPT3 (B), SEPT4 (C), and SEPT6 (D) was largely

confined to the perinuclear regions without significant overlap with actin staining. Immunoreactivity to SEPT7 (E) was detected only in the cytoplasm and was

mutually exclusive to the distribution of actin. Immunostains for SEPT11 (F) showed some colocalization with actin but remained predominantly nuclear or

perinuclear in distribution. Immunofluorescence microscopy of (A), (D), and (F), � 250; (B), (C), and (E), � 150 (green = immunoreactivity for the respective

septins stained with antiseptin antibody FITC; red = actin stained by Phalloidine–TRITC; yellow = colocalization of actin and the respective septin).

Septin Expression in Human Brain Tumours Kim et al. 173
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the uninduced and induced U373 MG wild-type cells. In

contrast, tetracycline induction of U373-S51N cells led to a

significant increase in >2 N phase cells.

Discussion

In this study, we have examined the expression of eight

mammalian septins (SEPT2, SEPT3, SEPT4, SEPT5,

SEPT6, SEPT7, SEPT9, and SEPT11) in normal brain

tissues, a variety of astrocytoma and medulloblastoma cell

lines, and several solid brain tumor specimens. We have

confirmed the predicted molecular masses of the various

septins, which range from 35 to 65 kDa. By confocal double

immunofluorescence microscopy, SEPT2, SEPT9, and

SEPT11 were immunolocalized along with the actin micro-

filamentous system. Using aphidicolin to arrest cells in G2-M

phase, we show that SEPT2 is a cell cycle–regulated protein

essential for the process of cytokinesis in human astrocyto-

ma cells and localizes to the actin-based contractile ring

Figure 5. (A) Subcellular localization of endogenous SEPT2 in synchronized SF-188 MG cells. In interphase cells (upper), most of the endogenous SEPT2 were

found in short, linear structures localized close to actin filaments. However, SEPT2 immunoreactivity also existed amorphously in a perinuclear distribution. In

mitosis (lower), the SEPT2-containing filaments were in close apposition to the actin-based contractile ring, and amorphous SEPT2 proteins were strongly

concentrated around the cleavage furrow between two daughter cells (green = SEPT2; red = actin; yellow = colocalization of actin and SEPT2). Confocal

immunofluorescence microscopy, all � 250. (B) Cell synchronization of U373 cells using aphidicolin. Flow cytometry showed that aphidicolin caused over 75% of

the cells to arrest in G2-M. Most of the cells arrested in G2-M phase by aphidicolin were then able to enter G1 phase 18 hours after removal of aphidicolin.
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during cytokinesis. Expression of a DN mutant SEPT2 gene

inhibits cytokinesis and results in multinucleated cells. Taken

together, these observations suggest a conserved require-

ment for SEPT2 in U373 astrocytoma cell division.

Despite considerable expression of septins in human

tissues, the precise function of the septin gene family

remains unclear. The most consistent function of septins is

an orthologous function in cytokinesis [1,4,6,37,38]. Inves-

tigations in yeast suggest that septins are putative cytoskel-

etal structures that play a role in cell division and are

localized exclusively to the bud neck throughout the entire

cell cycle, from bud emergence to cytokinesis. To date, only

one mammalian septin, SEPT2, has been shown to play a

role in cytokinesis [4].

Xue et al. [19] reported that SEPT3 is a brain-specific

septin that may be regulated by type I cGMP-dependent

protein kinase (PKG) in neurons. SEPT3 mRNA (5.0 kb) is

highly expressed in the brain and undetectable in 12 other

tissues [19]. These results suggest that the SEPT3 is pri-

marily a neuronal protein. In our study, we showed SEPT3

expression in human brain tissues from frontal and temporal

lobes and cerebellum, and in medulloblastoma specimens

and cell lines. However, we were unable to show any

significant expression of SEPT3 in astrocytoma cell lines or

specimens by Western blot analysis. Only 1 of 12 glioblas-

toma specimens examined expressed SEPT3. As for the

other septins, SEPT3, SEPT4, and SEPT6 showed a strong

perinuclear localization, whereas SEPT7 was exclusively

found in the cytoplasm sparing the nuclear region. SEPT9

and SEPT11 were diffusely distributed and demonstrated, to

some degree, colocalization with actin-based structures.

Precisely what these different patterns of septin immunoloc-

alization mean in astrocytoma cells awaits further study.

We have previously shown a relative increase in SEPT2

transcript levels from late G1 to G2-M phases and an

increase in SEPT2 protein levels from S to G2-M phases in

lovastatin- and nocodazole-synchronized U373 MG cells

[10]. In the present study, we used aphidicolin to synchronize

U373 MG cells in G2-M. By performing immunofluorescence

analysis of SEPT2 and actin in synchronized U373 MG cells,

we show that SEPT2 is found in granular and short filamen-

tous structures in interphase cells and colocalizes with actin

filaments. In contrast to actin, however, SEPT2 is also found

amorphously in a perinuclear distribution at this time. In

Figure 6. (A) SEPT2 expression in synchronized U373 MG astrocytoma cells. SEPT2 expression is maximal at the G2-M phase of synchronized U373 MG cells

(6–12 hours after removal of aphidicolin). By western blot analysis, SEPT2 expression diminishes in the time period 24 to 36 hours after removal of aphidicolin.

SEPT2 expression then returned to basal (steady state) levels 42 to 48 hours after removal of aphidicolin. (B) Inducible expression of wild-type and mutant SEPT2

in U373 MG cells. The inducibility of the wild-type or S51N mutant SEPT2–GFP fusion protein was determined by Western blot analysis using anti –SEPT2

antibodies (left) and anti –a-GFP antibody (right). Both antibodies detected the expected 72-kDa fusion protein 48 hours after induction with 1 to 20 �g/ml

tetracycline.
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mitosis, SEPT2 immunoreactivity is found in close apposition

to the actin-based contractile ring. These data and the

Western blot time course study in U373 MG cells released

from aphidicolin support the notion that SEPT2 may be

expressed in a cell cycle–dependent fashion.

Using a technique complementary to antisense SEPT2

expression [10], we transfected U373 MG astrocytoma cells

with a DN mutant of SEPT2. This mutant was created by

converting amino acid 51 (serine) to asparagine [39]. In

contrast to our previous report [10], the DN approach used

here leads to the selection of stable cell clones that can be

induced to express mutant SEPT2 by virtue of the Tet-on

system. By immunocytochemistry, we show that mutant

SEPT2 expression leads to distinct cytological changes

characterized by incomplete cytokinesis, formation of long

cytoplasmic connections between dividing cells, and numer-

ous multinucleated cells. By FACS analysis, expression of

the mutant SEPT2 fusion protein led to a significant increase

in the number of multinucleated cells when compared to

controls. Our inability to block cytokinesis completely in all

glioma cells may relate to the differences in expression levels

between the endogenous SEPT2 protein and the ectopic

Figure 7. (A) Immunocytochemistry of mutant SEPT2 expressing U373 MG cells. S51N mutant SEPT2 cells undergo a distinct morphological change

characterized by incompletion of cytokinesis, formation of long cytoplasmic connections between dividing cells (upper), and multinucleated cells (lower)

(green = fusion protein by virtue of the GFP tag under confocal microscopy; red = actin stained by Phalloidine–TRITC; yellow = merge). Confocal

microscopy, � 250. (B) DNA histograms after induction of DN SEPT2 mutant. DNA content is compared in the parental cell line, Tet-off state, and Tet-on state

from U373 MG wild-type cells and U373 MG-S51N cells. There is no difference in DNA content among the parental cell line, the uninduced U373-S51N cells, and

the uninduced and induced U373 wild-type cells. In contrast, in the Tet-on state, there is a significant increase in 4 N and >4 N phase cells in U373-S51N cells.
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mutant protein. The higher levels of the endogenous SEPT2

protein may have prevented the mutant protein from

squelching all of the normal protein functions. We recognize

the limitations of the expression of ectopic proteins in artificial

cell systems such as this. However, these results are similar

to those reported in S. cerevisiae and Drosophila when

septins in these species are mutated.

The relationship between SEPT2 and actin is important

for properly conducted and timed cytokinesis. Actin-based

contractile rings have been implicated in the cell division of

multiple eukaryotic organisms [40–42]. By immunocyto-

chemistry, we showed the colocalization of SEPT2 and actin

bundles in interphase cells, with strong consolidation around

actin-based contracting ring in mitotic cells of glioma cells.

These findings are similar to those reported previously in

other mammalian cells [4,10]. Lippincott and Li [43,44] used

time-lapsed microscopy to show that the septin structure

does not constrict during cytokinesis, unlike the actomyosin

ring. This goes along with our findings for all other septins,

which were not seen in relation to the contractile ring. Further

studies are necessary to determine whether the actin-based

contractile ring serves as a scaffold for septin assembly, or

whether a preformed septin scaffold recruits actin-based

contractile rings as in budding yeast [45].

In addition to their roles in cytokinesis, septins may

subserve other cellular functions. All mammalian septins

contain the same coiled-coil domain structure; however, they

exhibit even greater variations in the length and primary

structure of their N- and C-termini. The functions of the

septins may relate to the organization of specialized domains

within the cells. The availability of a septin domain suggests

that individual septins could participate in protein–protein

interactions [2]. Previous studies of SEPT2 and SEPT4 have

shown them to be present near the plasma membrane in a

filamentous form colocalizing with the actin cytoskeleton

[4,29]. We found SEPT4 only in a perinuclear distribution.

Recently, Surka et al. [32] reported that SEPT9 colocalized

with SEPT2, actin-based filaments, and microtubules in

interphase cells. Themolecular similarity between the septins

suggests a certain redundancy in their functions; however,

previous studies have shown restricted expression of at least

some septins. For example, SEPT5 is expressed primarily in

the brain. SEPT3, as stated above, is found in cells and

tissues of neuronal origin. Interestingly, SEPT2, which is

considered to be closely related to cell division, is broadly

expressed in most human organs that are predominantly

nonmitotic [4,46,47]. We recognize that our study is limited

by the availability of septin antibodies, and that antibody

specificity remains an important issue [48]. Still, none of the

septin antibodies cross-reacts with other septins, and all were

developed from unique sequences as entered in GenBank.

Studies on septins in yeast may provide us with clues to

their functions in mammalian cells. Yeast septin mutants

exhibit not only a multinuclear phenotype as a result of

defective cytokinesis, but also abnormalities in bud site

selection, cell polarity, and partitioning membrane domains

[2,49–52]. On the other hand, Drosophila septin, Sep1,

accumulates at the leading edge of migrating epithelial cells

[6]. Biochemical interactions of the mammalian SEPT4 and

SEPT5 complex with the sec6/sec8 complex [11] and with

syntaxin-1 [31] suggest possible involvement of the mem-

brane fusion machinery in mammalian cytokinesis, as has

been implicated in nematodes and plants [52–54]. The

mammalian septins may be involved in other cellular pro-

cesses including apoptosis [20], leukemogenesis and carci-

nogenesis [55–57], and neurodegeneration [15,58]. Although

information is fragmentary at this time, septins represent a

diverse and important family of proteins in dividing and

postmitotic cells. Our preliminary experiments suggest that

as a septin, SEPT2 may be a valuable new target for

strategies aimed at inhibiting astrocytoma cell division. Future

studies will focus on determining if the inhibition of the various

septins (alone and in combination) using various strategies,

such as antisense oligonucleotide, Tet-on inducible expres-

sion, or pTAT delivery, can serve as a rational approach to

blocking the growth of astrocytoma cells.
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