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Abstract

The notion of local subgroupoid as a generalisation of a local equivalence relation was defined in
a previous paper by the first two authors. Here we use the notion of star path connectivity for a Lie
groupoid to give an important new class of examples, generalising the local equivalence relation of a
foliation, and develop in this new context basic properties of coherence, due earlier to Rosenthal in
the special case. These results are required for further applications to holonomy and monodromy.
0 2002 Elsevier Science B.V. All rights reserved.
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Introduction

Any foliation gives rise to a local equivalence relation, defined by the path components
of local intersections of small open sets with the leaves. Local equivalence relations were
generalised to local subgroupoids in a previous paper by the first two authors [2], referred
to hereafter as paper I. In this paper we show that a basic topological groupoid notion, that
of identity star path component, leads easily to a local subgroupoid of a wide class of Lie
groupoids and this generalises the local equivalence relation of a foliation. We define local
subgroupoids:1(Q, U) for certain open cover& of the object space of a Lie groupoid
Q. Further, we show that the theory of coherence, which is prominent in the papers of
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Rosenthal [14,15], generalises nicely to the local subgroupoid case. The application of
paper | to the holonomy and monodromy Lie groupoids of local subgroupoids (to be
dealt with elsewhere) requires a condition on the local subgroupoid of having a ‘globally
adapted atlas’. We develop the ‘coherence’ theory by giving conditiorig for it to be
globally adapted to the local subgroupeid Q, /) (Corollary 7.9). This is related to the
construction of a locally Lie groupoid from a foliation [3,12].

We also develop a similar theory for Lie groupoi@swith a ‘path connectionI” [4,13,

16] leading to a local subgroupaigl (Q, I/) for certain open covers.

This paper is strongly influenced by papers of Rosenthal [14,15] on local equivalence
relations, a concept due originally to Grothendieck and Verdier [6] in a series of exercises
presented as open problems concerning the construction of a certain kind of topos. The
concept was investigated more recently by Kock and Moerdijk [9,10]. The main aims of
the papers [6,9,10,14,15] are towards the connections with sheaf theory and topos theory.

The starting point of our investigation was to notice that an equivalence relatiah on
is a wide subgroupoid of the groupold x X. However an equivalence relation is just
one of the standard examples of a groupoid, and so it is natural to consider the theory
corresponding to local equivalence relations but now for subgroupoids of a given groupoid
0, rather than just of the groupoiki x X. The expectation is that this extended theory will
allow applications to combinations of foliation and bundle theory, since a standard example
of a Lie groupoid is the Ehresmann symmetry groupoid of a principal bundle [13]. For more
information on abstract groupoids, see [1,7], and for the relationship with sheaves, see [8].

In the casea) is the indiscrete groupoi® x X, we recover the well-known concept of
local equivalencerelation, which is related in [9,15] to foliation theory [5].

The remarkable fact is that the theory goes very smoothly, and so suggests it is a natural
generalisation of the foliation case, and one which illuminates some constructions in that
area.

1. Local subgroupoids: Definitions and examples

We first recall some definitions from [2].

Consider a groupoi@ on a setfX of objects, and suppose al¥chas a topology. For any
open subset/ of X we write Q|U for the full subgroupoid oD on the object sel. Let
Lo (U) denote the set of all subgroupoids@fU with object set/ (these are calledide
subgroupoids oRQ|U). For V C U, there is a restriction mapyy :Lo(U) — Lo (V)
sendingH in Lo (U) to H|V. This givesL ¢ the structure of presheaf on.

We now interpret the sheaf : Lo — X constructed in the usual way from the presheaf
Lo.
Forx € X, the stalka‘l(x) of L has elements the gerrfig, Hy 1, whereU is open
in X, x € U, Hy is awide subgroupoid of|U, and the equivalence relation, yielding
the germs ak is thatHy ~, Ky, whereKy is wide subgroupoid oD|V, if and only if
there is a neighbourhod#l of x suchthat? C UNV andHy |W = Ky |W. The topology
on Ly is the usual sheaf topology, with a sub-base of §éfs H].: x € U} for all open
U of X and wide subgroupoidd of G|U.

Definition 1.1. A local subgroupoid of Q on the topological spack is a continuous global
section of the shegiy : Lo — X associated to the preshdag.
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Two standard examples off are Q = X, 0 = X x X, where X x X has the
multiplication (x, y)(y, z) = (x, z). In the first caseL x is already a sheaf anfly — X is
a bijection. More generally, we have:

Proposition 1.2. If Q isa bundle of groups, then L is a sheaf.

Proof. By our assumption, it/ is a subset o then a wide subgroupoif |U of Q|U
is uniquely defined by the valudg(x) for all x € U. This easily implies the usual two
compatibility conditions for a sheaf.O

In the case&) is the indiscrete groupoil x X the local subgroupoids @ are the local
equivalence relations oK, as mentioned in the Introduction. It is known that « x is in
general not a sheaf [14].

Definition 1.3. If G is a wide subgroupoid of the groupo@ on X, then log¢G) is the
local subgroupoid defined by

loc(G)(x) =[X, Gli.

This gives a wide and important class of local subgroupoids, but we are more interested
in those which derive from connectivity considerations on a topological groupoid. For this
we need to discuss the major way of specifying a local subgroupoid, namely in terms of
atlases.

Definition 1.4. An atlas Uy = {(U;, H;): i € I} for a local subgroupoid consists of an
open coveld = {U;: i € I} of X, and for eachi € I a wide subgroupoi@; of Q|U; such
that the following compatibility condition holds:

Comp(H): foralli,jel, x e U; NU; there is an open sé¥ such thatx e W C
UiNU; andH,-|W=Hj|W.

Thelocal subgroupoid s of the atlasis then well defined by (x) = [U;, H;lx, x € X.

The above atlas igompatible with an atlasi/’ gy = {(U/.,H]’.): j € J} if for all
iel,jeJandx e U; N Uj’. there is an open sé¥ such thatx e W C U; N U]’. and
H;|W = Hj’.|W. Clearly, two compatible atlases define the same local subgroupoid.

It is well known from general sheaf theory that any local subgroupoid has a compatible
atlas. Note also that the atld$X, H)} with a single element determines the local
subgroupoid lo¢H). So the atlas is a crucial part of the construction of a local sub-
groupoids.

2. Thestar path component of a topological groupoid

A key concept for topological groups is the path component of the identity. The
analogue for topological groupoids is the star identity path component.
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Definition 2.1. Let Q be a topological groupoid. lf € Ob(Q) we write Sp x for the
star of O at x, namely the union of all th@(x, y) for y € Ob(Q). Thestar identity path
component C1(Q) of Q consists of allg € Q such that ifx = «(g) then there is a path in
Stp x joining g to the identity %. Such a path is calledstar path. We sayQ is star path
connected if Q = C1(Q).

Proposition 2.2. The star identity path component of Q isa subgroupoid of Q.

Proof. Write C for this star identity component. Lete Q(x, y), h € Q(y, z) and suppose
alsog,h € C. Then there are paths in Sty x, m; in Sty y such thatlp = g, I1 = 14,
mo=h, m1=1,. Henceg.m, is a path in § x joining gk to g, and this composed with
I; joinsgh to 1. SoC is closed under composition.

If g € C(x,y) andl, joins g to 1, theng~1l1_, joins g~ to 1,. SoC is a subgroupoid
of 0. O

Note that [13, Example 11.3.7, p. 46] gives an example wi&r@) is not normal inQ.
We will later need the following.

Proposition 2.3. Let Q be star path connected and let 2/ be an open cover of X. Then Q
is generated by the subgroupoids C1(Q|U) for all U e U.

Proof. Let g € Sty x. Then there is a path in Sty x from g to 1. Let u = BA. By the
Lebesgue covering lemma, we can write= i1 + - - - + , Where eachu, lie in an open
setU, of Y forr =1,...,n. Then we can writé. = A1 +--- + A, wheregr, = u,,r =

1,...,n,and), isapathin SyxNU, forr =1,...,n. Letg, = —A,(0) + A, (1). Then
greCi(Q|Uy)andg=g1+ - +gu. O

Now we recall some major examples of Lie groupoids.

Example 2.4. Let £ be a principal bundlgp: E — B with group £2. ThenE x E is
certainly a topological groupoid, and so also is its quotignt E x E by the diagonal
action of the topological groug. If b,b’ € B, we can by choosing a point in—1(b),
identify Q (b, b’) with the 2-mapsp~1(b) — p~1(»'). For this reason, we also write
Sym(€) or Sym(p) for Q. In the casef is locally trivial, and assuming is a manifold,
the topology may also be constructed from this alternative description, sinée-thaps
p~1(b) - p~1(b") may, again by choosing a point ip—1(b), be identified with the
elements off2. It is this description we now use. Note also that the starg aire all
homeomorphicto the origindl. Thusiif E is path connected, tha is star path connected
follows immediately.

Consider in particular the double cover of the cirples® — §* given byz — z2. In
this case&? is the cyclic group of order 2. Led = Sym(p).

This groupoidQ is star path connected. For supp@se Q(z, w). Let A be a path of
shortest length irs* from z to w (if z = —w then there are two such paths). Let St
satisfyu? = z. Sincep is a covering map, there are unique pattis A~ starting atu, —u
and covering.. Letv = A*(1). Theng is a bijection{u, —u} — {v, —v}. If g(u) = v, then
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the pair of paths.™, A~ define a star path from the identity ¢m, —u} to g. If g(u) = —v,
then such a path is determined bY; the shortest path joining to w in the opposite
direction rounds?, and its corresponding lifts.

However, ifU = S1 with a single point removed, the@|U is not star-connected, since
if A is a path joining; to w in U, then’ is not a path inJ.

Example 2.5. Let 2 be a Lie group acting smoothly on the right oC&manifold X .
Form the Lie action groupoi@ = X x £2. Even if Q is star path connected, this is not
necessarily so fo@|U for all open subset8’ of X.

It would also be interesting to develop analogous concepts for connectivity rather than
path-connectivity.

3. Local subgroupoidsand star path connectivity

The previous notions give us our major examples of new and interesting local
subgroupoids.

Example 3.1. Consider an equivalence relati@hon the space& . Then for each open set

U of X we have an equivalence relatidgiU on U and we can consider the partition of

U given by the path components of the equivalence class&3f In general, this will

not give us a local equivalence relation. Instead we need to assume given an open cover
U ={U;: i € I} of X satisfying the compatibility condition thatforallj € I, x € U;NU;

there is an open s& such thatr e W C U; NU; and the path components BfW are the
intersections withV of the path components of the equivalence classéq Bf the classes

of each ofE|U;, E|U;. The resulting local equivalence relation will be writter(E, ).

The compatibility condition is satisfied in for example equivalence relations given by the
leaves of a foliation on a manifold, and is the standard example of the local equivalence
relation defined by a foliation.

We now consider similar questions for topological groupoids.

Of course ifG is a wide subgroupoid of), then so also i€1(G) and then 10¢C1(G))
is a local subgroupoid of).

Suppose is star path connected, that isQ = C1(Q). Let X = Ob(Q) and letU be a
subset ofX. In generalQ|U need not be star path connected, as we show below. Further,
while C1(Q|U) € C1(Q)|U, in general we do not have equality here. Such a condition is
needed locally to obtain the local subgroupeidQ, /) defined below.

Definition 3.2. An open coveld = {U;: i € I} of X is said to begpath compatible with a
topological groupoid? on X if forall i, j € I, x € U; N U; there is an open sé¥ such
thatx e W C U; NU; and

C1(QIUNIW = C1(QIU)|W.

In this case, the local subgroupaid(Q, I/) is defined to have valugd/;, C1(Q|U;)], at
X € U,'.
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The next proposition gives useful sufficient conditionsdgrQ, U) to be defined.

Proposition 3.3. Let Q beatopological groupoid on X and suppose there is an open cover
U={U;: iel}of Xsuchthatforalli, jel andx e U; NU; thereis an open set W,
such that x € W, € U; N U; and there are groupoid retractions r; w, : Q|U; — Q|Wx,
riw, :QlU; — Q|W, over retractions U; — W, U; — W,. Then a local subgroupoid
c1(0,U) iswell defined by for i € I, x € U, x — [U;, C1(Q|Uj)]x.

Proof. The retractions ensure the compatibility condition, since if € W and if A is a
path in Spy, joining 1, to the elemeng:x — y of Q|W, thenr; wA is a path in Shw
joining 1, to g. S0 C1(Q|U;)|W = C1(Q|W), and similarly forj. O

Let O be atopological groupoid ol. ThenQ is called locally trivial if for all x € X
there is an open sét containingr and a section: U — Stg x of 8. ThusBs = 1y and for
eachy e U, a(s(y)) = x, i.e.,s(y):x — y in Q. We recall the following standard result
(see for example [13]).

Proposition 3.4. Let Q be a topological groupoid on X and U be an open subset of
X. If s:U — Sty x is a continuous section of g for some x € U, then the topological
groupoid Q|U istopologically isomorphic to the product groupoid Q(x) x (U x U), and
if x e W C U, thenany retraction U — W iscovered by aretraction Q|U — Q|W.

Proof. Remark that the groupoid multiplication @(x) x (U x U) is defined by

(8. . 2)(h, (z,w)) = (gh, (v, w)).
Define

¢:0lU - Q) x (U xU), gr (s(Mgs@ L (v,2)

wherey = a(g) andz = B(g). Sinces is continuousg is clearly an isomorphism of
topological groupoids.
The last part follows easily. O

We have emphasised these results, despite their simple proofs, because they have useful
applications for example to manifold and bundle theory.

If s is a local subgroupoid oD defined by an atlag/ = {(U;, H;): i € I} andU
is an open subset of thens|U is the local subgroupoid of|U defined by the atlas
Unu ={U;NU, H;|(U;NU)): i € I}.Itis easy to verify this is an atlas, and as a section
s|U is just the restriction of to the open subséf.

Suppose now that we have the local subgroupei(@®, ¢/) defined by the open cover
U, andU is an open subset of. We will later need a result which follows easily from
compatibility:

Proposition and Definition 3.5. The equality
(@, UHU =c1(QlU, UNT)
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holdsif for any i, j e I andx e U; N U; N U thereisan open set W suchthat x e W C
U;NU; NU and C1(Q|U; N U)W = C1(Q|U; N U)|W. If this condition holds for all
open sets U of X, then we say that the cover U/ is path local for ¢1(Q, U).

Remark 3.6. There is a variation of the local subgroupeid Q, /) in which the paths in
QO which are used are controlled, for example to belong to a given class, or to derive from
the paths inX in a specified way. We give an example of this in the next section.

4. Path connections

The purpose of this section is to give new examples of local subgroupoids with a
possibility of working towards relating the concepts of holonomy in foliation theory and in
bundle theory.

Let A(X) denote the path space of a topological space_et Q be a topological
groupoid overX. A path connection [4,13,16]7" in Q is a continuous map

I AX) > AQ), A>T

satisfying the following conditions

() a(I"(M) (@) =1(0) andB(I"(A)(1)) = A1(1), t €[0,1];
(i) the transport condition: If
¥ 1[0, 1] — [0, 121 € [0, 1]
is a homeomorphism, then

roy=rM)(¥©0)ol(Ay).

The second condition means

o)y @) =re(¥©)orl Ap)(@)
forr €0, 1],

By taking the homeomorphism to be the identity map/ : [0, 1] — [0, 1] it follows
from the condition (i) that"" (1) (0) = 1, (g). Let A, u € A(X) andA(1) = u(0), that is the
compositiom. + u is defined, then we have= (A + ) o Yo andu = (A + ) o 1 where
Yo(t) = 3t andya (1) = 3¢ + 1. Moreover applying (ii) to the path + x andyo and then

applying tox + n andyr1 we obtain
[y 0<1r<
F(H“)(”_{F(Axl)or(u)(zr—l) l<i<

In particular
roa+w@=rm@orwa.

Let O be a topological groupoid oX with a continuous path connectidn: A(X) —
A(Q). Let Cr(Q) be the set of alg € Q such that ifu(g) = x then there is a path in
X such that" (1) joins g to the identity 1 atx, thatis,I"(1)(0) =1, andI"(A)(1) = g.
Then we prove the following proposition.
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Proposition 4.1. C-(Q) isawide subgroupoid of Q.

Proof. Let g,h € Cr(Q) such thatgh is defined inQ. Then there are paths and
joining g to 1,(,) andh to 1y, respectively. Here note thal0) = a(g), A(1) = B(g)
and u(0) = a(h), u(1) = B(h). So the composition. + u of the paths is defined and
I'(h+w)(0) =T (A)(0) =Ly and I"'(d + u)(1) = I'(A)(D) o I'(w)(1) = gh. Sogh €
Cr(Q). That mean€ - (Q) is closed under the groupoid composition.

If ¢ € Cr(Q) with a(g) = x then there is a path in X such thatl"(1)(0) = 1,
andI"(1)(1) = g. Define a path in X such that.(r) = A(1 —1). Theni(r) = (A\Y)(r)
with v (1) = 1 — ¢. By the transport law we havB(L) (V¥ (1)) = I'(A)(1) o I" (1) (¢) where
(M) (1) = g. So we have

rpO=¢grom=¢reg=1,
and
rA@=gto(ram))=gtol, =g~

Sog~1e Cr(Q). HenceCr(Q) is a wide subgroupoid of. O
We also need an analogue of Proposition 2.3.

Proposition 4.2. If I" isa path connection on the topol ogical groupoid Q and/ isan open
cover of X, then C(Q) isgenerated by the family C-(Q|U) for all U e U.

Proof. If g € Cr(Q)isjoinedto X by the pathl” (1), then we canwritgr = w1+ - -+,
where eachu, lies in some seU, of U. Let g, = —I'(u,)(0) + I'(u,)(1). Theng, €
Cr(QlUr)andg=g1+---+gu. O

If Q is a topological groupoid oX with a path connectiord™ : A(X) — A(Q) then
of course lo€Cr(Q)) is a local subgroupoid. However we would like an analogue of
c1(Q, U) and this needs extra conditions. In fact the existence of a smooth path connection
for the groupoidSym(p) of a principal bundlep: E — B relies on the existence of an
infinitesimal connection (see [11,13]) which itself requires extra structure on the space
involved.

We give some conditions which are sufficient égr(Q, /) to be well defined.

We suppose given an open covee= {U;: i € I} for X and for eachi € I a collection
geodU;) of paths inU; — an elemenk € geodU;) with A(0) = x, A(1) = y is called a
“geodesic path” fronx to y. We suppose

(i) if x, y € U;, then there is a unique geodesic path géady) from x to y;
(i) if x,y € Ui NU; then geoglx, y) = geod (x, y).

We also need the connection to be ‘flat’ for this structure in the sense that € U; then

I'(geod(x, y) + geod(y, 2))(1) = I'(geod (x, 2))(1).
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Then we find that (¢, i) is well defined by the atlas (see below). (We could strengthen
the ‘flat’ condition by requiring that ifA:x — y is any path inU; then I'(A)(1) =
I'(geod(x, y))(1), but we do note do this.)

Proposition 4.3. Under the above atlas assumptions, there is a local subgroupoid
CF(Q,Z/{) defined by

¢ (Q,U)(x) =[U;, Cr(QIU)], .

Proof. We have to prove that if € U; N U; then
[Ui. Cr(QIU)], =[U).CrQIU]..

This means there is an open neighbourh@odf x in U; N U; such that
Cr(QIUHIW =Cr(QlUHIW.

Let W be an open neighbourhood ofin U; NU;. Let g € Cr(Q|U;)|W with a(g) = x
andpB(g) = y. So there isa path:x — y in U; such thatl"(A)(1) = g. LetA;:x —> y

be the geodesic path. So(;)(1) = g, by the flat condition, and sg € Cr(Q|U;)|W.
Hence Cr(Q|U)|IW < Cr(Q|U;)|W. Since the converse proof is similar we have
CrQIUHIW =Cr(QIUHIW. O

Suppose now that we have the local subgroupeid?, /) defined by the open cover
U, andU is an open subset of. We will later need a result which follows easily from
compatibility:

Proposition and Definition 4.4. The equality
cr(QUDIU =c . (QIU,UND)

holdsif for any i, j e I andx e U; N U; N U thereisan open set W suchthat x ¢ W C
UiNnU; NU and Cr(Q|UHIW = Cr(Q|U; NU)|W. If this condition holds for all open
sets U of X, then we say that the cover U/ is I path local for c.(Q, U).

5. Partial ordersand induced morphisms

We first establish some elementary but essential basic theory.

The setL o (X) of wide subgroupoids 0@ is a poset under inclusion. We write for
this partial order. This poset has a top element nar@eind a bottom element namely the
discrete groupoid .

Let Loc(Q) be the set of local subgroupoids @f Let x € X. We define a partial order
onthe stalkpo~(x) = (Lo). by [U’, H'], < [U, H), if there is an open neighbourhood
W of x such thatW € U N U’ and H'|W is a subgroupoid ofZ |W. Clearly this partial
order is well defined. Its bottom element is of the fdith H], whereH is discrete, and its
top element is of the foru, Q|U1,. This partial order induces a partial orderlooc(Q)
bys <rifandonlyifs(x) <t(x) forall x € X.
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The major purpose of the next topic is to relate local subgroupoidg aind local
equivalence relations o@b(Q). This seems an area requiring much more development,
and we hope will be the start of new ways of relating bundle and foliation theory.

Suppose given two groupoid®, H and a groupoid morphisgh: 0 — H on X, which
is the identity on objects. Then we obtain morphisms of presheates , — Ly,
¢« Ly — Lo as follows.

Let U be open inX. Then¢,:Lo(U) — Ly (U) is given by¢(K) is the image of
K € Lo(U) by ¢. HereK is a wide subgroupoid oD|U, and so its image (K) is a
subgroupoid ofH |U, sinceOb(¢) is injective and is clearly wide.

Furtherg*: Ly (U) — Lo (U) is given byg*(K') = ¢~ 1(K"), for K’ € Ly (U).

Hence we get induced morphism of sheawgsLo — L, ¢*: Ly — Lg.

In particular, we get for a groupoi@® an ‘anchor’ morphism of groupoidsd: Q9 —
X x X and so sheaf morphisms

Ay Lo — Lxxx, A*3£XxX—>£Q-

Hence a local subgroupoidof Q yields a local equivalence relatiof,.(s) on X, and a
local equivalence relationon X yields a local subgroupoid*(r) of Q. This gives further
examples of local subgroupoids.

Clearly alsog,, ¢* are order preserving on stalks for any morphigmQ — H of
groupoids ovelX. Hence they induce morphism of posets

¢+ :Loc(Q) — Loc(H), ¢*Loc(H) — Loc(Q).

Further,s < ¢*r if and only if ¢,.s < r. This can be expressed by saying thatis left
adjoint tog*.
6. Coherencefor wide subgroupoids and local subgroupoids

We now fix a groupoid? on X, so thatL o (X) is the set of wide subgroupoids ¢f,

with its inclusion partial order, which we shall write.
Clearly log as defined in Definition 1.3 gives a poset morphism

locg:Lo(X) — Loc(Q).

Definition 6.1. Let s be a local subgroupoid a®. Then glolis) is the wide subgroupoid
of Q which is the intersection of all wide subgroupoiisof Q such that < loc(H).

We think of glol(s) as an approximation toby a global subgroupoid.
Proposition 6.2.

(i) loc and glob are morphisms of posets.
(i) For any wide subgroupoid H of Q, glob(loc(H)) < H.

Proof. The proofs are clear. O
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However,s < loc(glob(s)) need not hold. Rosenthal in [14] gives the example of the
local equivalence relation= loc(E) whereE is the equivalence relatianE b if and only
if a =+b. Here is a similar example.

Example 6.3. Let Q be a groupoid orR such that allx € R with x # O there is a
neighbourhood/ of x such thatQ|U is a bundle of groups, while no such neighbourhood
of 0 exists. Let =loc(Q). ThenH = glob(s) onRR \ {0} coincides withQ on this set, and

in fact H is the bundle of group@(x) for all x € R. It follows thats(0) > loc(H)(0).

We therefore adapt from [14,15] some notions of coherence.

Definition 6.4. Let s be a local subgroupoid ap on X.

(i) s is calledcoherent if s < loc(glob(s)).
(i) s is calledglobally coherent if s = loc(glob(s)).
(iii) s is calledtotally coherent if for every open seU of X, s|U is coherent.

Definition 6.5. Let H € L (X), so thatH is a wide subgroupoid of.

(i) H is calledlocally coherent if loc(H) is coherent.
(i) H is calledcoherent if H = glob(loc(H)).

Example 6.6. Let O be a groupoid on the discrete spateThen glokloc(Q)) = Inn(Q),
the groupoid of vertex groups @. Thus in generalQ is not coherent.

At another extreme we have:

Proposition 6.7. Let O be a bundle of groups. Then any local subgroupoid of Q isglobally
coherent, and any wide subgroupoid of Q is coherent.

Proof. Let s be a local subgroupoid 0o and let{(U;, H;): i € I} be an atlas for
s. Then if x € U;, we haves(x) = [U;, Hilx. Let H(x) = H;(x). If x e U; N Uj,

there is a neighbourhoo® of x such thatW C U; N U; and H;|W = H;|W, and
henceH;(x) = H;(x). Thus H is independent of the choices. Algd|U; = H;. Hence
loc(H)(x) =[U;, H;]x,and so lo¢H) = s, H =glob(s). O

Coherence aof says that in passing between local and global information nothing is lost
due to collapsing. Notice also that these definitions depend on the grog@poid

Proposition 6.8. loc and glob induce morphisms of posets from the locally coherent
subgroupoids of Q to the coherent local subgroupoids of Q, and on these posets glob
is left adjoint to loc. Further, glob and loc give inverse isomorphisms between the posets
of coherent subgroupoids and of globally coherent local subgroupoids.
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Proof. Let H be a locally coherent subgroupoid ¢f and lets be a coherent local
subgroupoid of0. By the definition of locally coherent subgroupoid (&) is a coherent
local subgroupoid oD.

Conversely, letk = glob(s). Sinces is coherents < loc(K). Since glob is a poset
morphism, gloles) < glob(loc(K)), i.e., K < glob(loc(K)). Since loc is also a poset
morphism,

loc(K) < loc(glob(loc(K))).

So lodK) is a coherent local subgroupoid, akdis locally coherent.

The adjointness relation is that gigh < H <= s < loc(H). The implication«<
follows from the fact that for alH we have glolloc(H)) < H. The implication= follows
from the coherence of.

The final statement is obvious O

Note in particular that coherence Hf implies local coherence df .

Proposition 6.9. Let Q be a topological groupoid on X and G a star path connected wide
subgroupoid of Q. Then G is coherent and loc(G) is globally coherent.

Proof. We prove that gloloc(G)) = G. By Proposition 6.2 gloffoc(G)) < G. To prove
thatG < glob(loc(G)) let H be a wide subgroupoid @ such that l0¢G) < loc(H). Then
forx € X,

[X, Gl <[X, H]x

and so for some open neighbourhobid of x, G|U, < H|U,. These setd/, form a
coverl{ of X. By Proposition 2.3G is generated by th&|U for U € U. It follows that
GLH. O

Corollary 6.10. If X isatopological space then its fundamental groupoid 71 X is coherent
and globally coherent.

Corollary 6.11. Let O be a topological groupoid on X. Then the star identity component
C1(Q) iscoherent.

Corollary 6.12. Let Q be a topological groupoid with a path connection I' : A(X) —
A(Q). Then the wide subgroupoid Cr(Q) is coherent.

Proposition 6.13. Let Q be a topological groupoid on X. Suppose that the local
subgroupoid ¢1(Q, U) of Q iswell defined by an open cover /. Then

(i) glob(c1(Q,U)) = C1(Q).
(i) c1(Q,U) iscoherent.
(i) 1f U ispathlocal for Q, then c1(Q, U) istotally coherent.
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Proof. (i) Certainly c¢1(Q,U) < loc(C1(Q)) since for all openU in X, C1(Q|U) <
C1(Q)|U and so[U;, C1(Q|Ui)]x < [X, C1(Q)]; forallx e U.

Now suppose is a wide subgroupoid of andc1(Q, U) < loc(H). We have to prove
C1(Q) < H.

Leti e I andx € U;. We have[U;, C1(Q|U;)]x < [X, H]x. Hence there is an open
neighbourhoodV, of x contained inU/; and such that

C1(QIUn)|Wx < H.

By Proposition 2.3C1(Q1U;) is generated by th€1(Q|U;)|W, for all x € U; and by the
same PropositiorG1(Q) is generated by th€1(Q|U;) forall i € I. HenceC1(Q) < H.

Coherence ot1(Q, U) follows from (i) andC1(Q|U;) < C1(Q)|U;. Total coherence
in the path local case follows by applying (ii) t0|U, using Proposition and Defini-
tion 3.5. O

Proposition 6.14. Let Q be a topological groupoid on X such that the local subgroupoid
¢~ (0, U) iswell defined by the open cover . Then:

(i) glob(c-(Q.U)) =Cr(Q).
(i) c,(Q,U) iscoherent.
(iii) If UisTI pathlocal for Q, thenc.(Q,U) istotally coherent.

Proof. (i) Note thatc.(Q,U) <loc(Cr(Q)) sinceforalllU in X, Cr(Q|U) < Cr(Q)|U.
So glotcr(Q)) < Cr(Q). To prove thatCr(Q) < glob(c,.(Q,U)) suppose thaH is a
wide subgroupoid 0 such that.(Q, ) < loc(H). We have to prove thaf-(Q) < H.
If U eld andx € U then

[U,CrQIn)], <[X. Hl,.

HenceU has a covering by open séig, such thaU, Cr(Q|U)|W, < H. By Proposi-
tion 2.3,Cr(Q|U) is generated by the groupoidg-(Q|U)|W, and by Proposition 4.2
Cr(Q) is generated by th€ - (Q|U) for U e . HenceCr(Q) < H.

The proofs of (ii), (iii) are analogous to those in the previous propositian.

7. Coherenceand atlases

We lead up to conditions for an atlas for a local subgroupaabeglobally adapted to
s. This notion is important for considerations of holonomy (see [2]), and the applications
will be developed elsewhere.

The next proposition gives an alternative description of glob.

Let U, = {(U;, H;): i € I} be an atlas for the local subgroupaidThen gloliif) is
defined to be the subgroupoid @fgenerated by all thél;,i € 1.

An atlasV; = {(V;, Hj’.): j € J} for s is said to refiné/; if for each index;j € J there
exists an index(;) € I such thatv; C U(;) andH;(;|V; = H;.
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Proposition 7.1. Let s be alocal subgroupoid of Q given by theatlasit; = {(U;, H;): i €
I}. Then glob(s) is the intersection of the subgroupoids glob(V;) of Q for all refinements
Vs of Us.

Proof. Let K be the intersection given in the proposition.

Let Q be a subgroupoid 0® on X such thats < loc(Q). Then for allx € X there
is a neighbourhood of x andi, € I such thatx € U;, and H; |V, N U;. < Q. Then
W={V,NU, Hi |Vx NU;,): x € X} refinesdss; and glogWW) < Q. HencekK < Q, and
SO0 K < glob(s).

Conversely, leV, = {(V;, H]’.): j € J} be an atlas fos which refined/;. Then for each
Jj € J there is ani(j) € I such thatV; C U;(;, H]’. = H;;|V;. Thens < loc(glob(Vy)).
Hence glolgs) < glob(Vy) and so glols) < K. O

Corollary 7.2. Awide subgroupoid H of Q is coherent if and only if for every open cover
V of X, H isgenerated by the subgroupoids H|V, V € V.

Proof. Notethat{(X, H)}is an atlas forlo¢H ), whichis refinedbwy = {(V, H|V): V €
V} for any open covep.

Suppose the latter condition holds. Then Proposition 7.1 impliegthaglob(loc(H)),
i.e., H is coherent. The converse holds since glip) < H. O

Let U be an open subset af. Then we have notions of local subgroupoidggt/ and
also of the restriction|U of a local subgroupoislof Q. Clearly if H is a wide subgroupoid
of Q thenlodH|U) = (loc(H))|U.

Proposition 7.3. Let s be a local subgroupoid of QO and let U be open in X. Then
glob(s|U) < glob(s)|U.

Proof. Let H be a wide subgroupoid @ such thats < loc(H). Thens|U < loc(H|U).
So glol(s|U) < H|U. The result follows.

Proposition 7.4. Let s be alocal subgroupoid of Q. Then

(i) If s isglobally coherent, U isopenin X, and s|U is coherent, then s|U is globally

coherent.

(i) If there is an open cover V of X such that s|V is coherent for all V € V, then s is
coherent.

(iii) If s is globally coherent then for any open cover V of X, glob(s) is generated by the
groupoids glob(s)|V for all V € V.

(iv) Ifthereisopen cover V of X suchthat s|V isglobally and totally coherent for V € V,
then s istotally coherent.

Proof. (i) We are givers = loc(glob(s)). By Proposition 7.3
loc (glob(s|U)) < loc(glob(s)|U) = loc(glob(s))|U = s|U.
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Sinces|U is coherent, we havgU < loc(glob(s|U)). Sos|U = loc(glob(s|U)), i.e.,s|U
is globally coherent.
(i) We have

s|V < loc(glob(s|V)) < loc(glob(s)|V) < (loc(glob(s)))| V.

Since this holds for allV of an open cover, we have< loc(glob(s)).

(iii) This follows from Corollary 7.2.

(iv) Let U be open inX. Let V € V. Sinces|V is globally and totally coherent, then
s|V N U is globally coherent. Hence by (i§|U is coherent, since th&# N U,V €V,
coverU. O

Proposition 7.5. Let Us = {(U;, H;): i € I} be an atlasfor the local subgroupoid s. Then:

(i) s|U; =loc(H;) foralli eI,

(ii) loc(glob(s|U;)) <s|U; forallieI;
(i) if s|U; iscoherent for all i € I then s isglobally coherent;
(iv) if s|U; iscoherent for all i € I then glob(s) = glob(lf;).

Proof. (i) This is clear.
(i) We have by Proposition 6.2

loc(glob(s|U;)) = loc(glob(loc(H;))) < loc(H;) = s|U;.

(i) This is immediate from the definition of coherence and (ii).

(iv) Let H = glob(l;), i.e., H is the subgroupoid of generated by thé&/;,i € I. Then
glob(s) < H. Let K be a wide subgroupoid @ such thats < loc(K). Then for alli € 1
andx € U; there is a neighbourhood! of x such thatV! € U; and H;|V! < K|Vi. By
global coherence of|U; and Proposition 7.4(i) and (ii)#; is generated by th&/;| V! for
all x € U;. HenceH; < K|U; < K. HenceH < K. HenceH < glob(s). O

Definition 7.6. Let s be a local subgroupoid of the groupailon X. An atlasl/ for s is
calledglobally adapted if glob(s) = glob(i/y).

Remark 7.7. This is a variation on the notion of anadaptable family defined by
Rosenthal in [15, Definition 4.4] for the case of a local equivalence relatidthe also
imposes a connectivity condition on the local equivalence classes.

The construction of the holonomy groupoid of a local subgroupoid requires a globally
adapted atlas (see Theorems 3.7 and 3.8 [2]). The following proposition is very useful to
this end.

Proposition 7.8. Let s be a totally coherent local subgroupoid of the groupoid Q on X.
Then any atlas for s is globally adapted.

Proof. This isimmediate from the previous Proposition, since total coherence implies that
eachs|U; is coherent. O
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Corollary 7.9. Any path local atlas ¢/ of the local subgroupoid c1(Q, i) is globally
adapted.

Corollary 7.10. Any I" path local atlas of the local subgroupoid c,.(Q,U) is globally
adapted.
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