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Abstract

The notion of local subgroupoid as a generalisation of a local equivalence relation was defined in
a previous paper by the first two authors. Here we use the notion of star path connectivity for a Lie
groupoid to give an important new class of examples, generalising the local equivalence relation of a
foliation, and develop in this new context basic properties of coherence, due earlier to Rosenthal in
the special case. These results are required for further applications to holonomy and monodromy.
 2002 Elsevier Science B.V. All rights reserved.

MSC: 18F20; 18F05; 22E99; 22A22; 58H05

Keywords: Local equivalence relation; Local subgroupoid; Coherence; Holonomy; Monodromy

Introduction

Any foliation gives rise to a local equivalence relation, defined by the path components
of local intersections of small open sets with the leaves. Local equivalence relations were
generalised to local subgroupoids in a previous paper by the first two authors [2], referred
to hereafter as paper I. In this paper we show that a basic topological groupoid notion, that
of identity star path component, leads easily to a local subgroupoid of a wide class of Lie
groupoids and this generalises the local equivalence relation of a foliation. We define local
subgroupoidsc1(Q,U) for certain open coversU of the object space of a Lie groupoid
Q. Further, we show that the theory of coherence, which is prominent in the papers of
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Rosenthal [14,15], generalises nicely to the local subgroupoid case. The application of
paper I to the holonomy and monodromy Lie groupoids of local subgroupoids (to be
dealt with elsewhere) requires a condition on the local subgroupoid of having a ‘globally
adapted atlas’. We develop the ‘coherence’ theory by giving conditions onU for it to be
globally adapted to the local subgroupoidc1(Q,U) (Corollary 7.9). This is related to the
construction of a locally Lie groupoid from a foliation [3,12].

We also develop a similar theory for Lie groupoidsQ with a ‘path connection’Γ [4,13,
16] leading to a local subgroupoidc

Γ
(Q,U) for certain open coversU .

This paper is strongly influenced by papers of Rosenthal [14,15] on local equivalence
relations, a concept due originally to Grothendieck and Verdier [6] in a series of exercises
presented as open problems concerning the construction of a certain kind of topos. The
concept was investigated more recently by Kock and Moerdijk [9,10]. The main aims of
the papers [6,9,10,14,15] are towards the connections with sheaf theory and topos theory.

The starting point of our investigation was to notice that an equivalence relation onX

is a wide subgroupoid of the groupoidX × X. However an equivalence relation is just
one of the standard examples of a groupoid, and so it is natural to consider the theory
corresponding to local equivalence relations but now for subgroupoids of a given groupoid
Q, rather than just of the groupoidX×X. The expectation is that this extended theory will
allow applications to combinations of foliation and bundle theory, since a standard example
of a Lie groupoid is the Ehresmann symmetry groupoid of a principal bundle [13]. For more
information on abstract groupoids, see [1,7], and for the relationship with sheaves, see [8].

In the caseQ is the indiscrete groupoidX ×X, we recover the well-known concept of
local equivalence relation, which is related in [9,15] to foliation theory [5].

The remarkable fact is that the theory goes very smoothly, and so suggests it is a natural
generalisation of the foliation case, and one which illuminates some constructions in that
area.

1. Local subgroupoids: Definitions and examples

We first recall some definitions from [2].
Consider a groupoidQ on a setX of objects, and suppose alsoX has a topology. For any

open subsetU of X we writeQ|U for the full subgroupoid ofQ on the object setU . Let
LQ(U) denote the set of all subgroupoids ofQ|U with object setU (these are calledwide
subgroupoids ofQ|U ). For V ⊆ U , there is a restriction mapLUV :LQ(U) → LQ(V )

sendingH in LQ(U) to H |V . This givesLQ the structure of presheaf onX.
We now interpret the sheafpQ :LQ →X constructed in the usual way from the presheaf

LQ.
Forx ∈X, the stalkpQ−1(x) of LQ has elements the germs[U,HU ]x whereU is open

in X, x ∈ U , HU is a wide subgroupoid ofQ|U , and the equivalence relation∼x yielding
the germs atx is thatHU ∼x KV , whereKV is wide subgroupoid ofQ|V , if and only if
there is a neighbourhoodW of x such thatW ⊆U ∩V andHU |W =KV |W . The topology
onLQ is the usual sheaf topology, with a sub-base of sets{[U,H ]x: x ∈ U} for all open
U of X and wide subgroupoidsH of G|U .

Definition 1.1. A local subgroupoid of Q on the topological spaceX is a continuous global
section of the sheafpQ :LQ →X associated to the presheafLQ.
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Two standard examples ofQ are Q = X, Q = X × X, where X × X has the
multiplication(x, y)(y, z)= (x, z). In the first case,LX is already a sheaf andLX →X is
a bijection. More generally, we have:

Proposition 1.2. If Q is a bundle of groups, then LQ is a sheaf.

Proof. By our assumption, ifU is a subset ofX then a wide subgroupoidH |U of Q|U
is uniquely defined by the valuesH(x) for all x ∈ U . This easily implies the usual two
compatibility conditions for a sheaf.✷

In the caseQ is the indiscrete groupoidX×X the local subgroupoids ofQ are the local
equivalence relations onX, as mentioned in the Introduction. It is known thatLX×X is in
general not a sheaf [14].

Definition 1.3. If G is a wide subgroupoid of the groupoidQ on X, then loc(G) is the
local subgroupoid defined by

loc(G)(x)= [X,G]x.

This gives a wide and important class of local subgroupoids, but we are more interested
in those which derive from connectivity considerations on a topological groupoid. For this
we need to discuss the major way of specifying a local subgroupoid, namely in terms of
atlases.

Definition 1.4. An atlas UH = {(Ui,Hi): i ∈ I } for a local subgroupoid consists of an
open coverU = {Ui : i ∈ I } of X, and for eachi ∈ I a wide subgroupoidHi of Q|Ui such
that the following compatibility condition holds:

Comp(H): for all i, j ∈ I , x ∈ Ui ∩ Uj there is an open setW such thatx ∈ W ⊆
Ui ∩Uj andHi |W =Hj |W .

Thelocal subgroupoid s of the atlas is then well defined bys(x)= [Ui,Hi]x, x ∈X.
The above atlas iscompatible with an atlasU ′

H ′ = {(U ′
j ,H

′
j ): j ∈ J } if for all

i ∈ I, j ∈ J and x ∈ Ui ∩ U ′
j there is an open setW such thatx ∈ W ⊆ Ui ∩ U ′

j and
Hi |W =H ′

j |W . Clearly, two compatible atlases define the same local subgroupoid.

It is well known from general sheaf theory that any local subgroupoid has a compatible
atlas. Note also that the atlas{(X,H)} with a single element determines the local
subgroupoid loc(H). So the atlas is a crucial part of the construction of a local sub-
groupoids.

2. The star path component of a topological groupoid

A key concept for topological groups is the path component of the identity. The
analogue for topological groupoids is the star identity path component.
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Definition 2.1. Let Q be a topological groupoid. Ifx ∈ Ob(Q) we write StQ x for the
star ofQ at x, namely the union of all theQ(x,y) for y ∈ Ob(Q). Thestar identity path
component C1(Q) of Q consists of allg ∈ Q such that ifx = α(g) then there is a path in
StQ x joining g to the identity 1x . Such a path is called astar path. We sayQ is star path
connected if Q= C1(Q).

Proposition 2.2. The star identity path component of Q is a subgroupoid of Q.

Proof. WriteC for this star identity component. Letg ∈Q(x,y), h ∈Q(y, z) and suppose
also g,h ∈ C. Then there are pathslt in StQ x, mt in StQ y such thatl0 = g, l1 = 1x ,
m0 = h, m1 = 1y . Henceg.mt is a path in StQ x joining gh to g, and this composed with
lt joinsgh to 1x . SoC is closed under composition.

If g ∈ C(x, y) andlt joinsg to 1x theng−1l1−t joinsg−1 to 1y . SoC is a subgroupoid
of Q. ✷

Note that [13, Example II.3.7, p. 46] gives an example whereC1(Q) is not normal inQ.
We will later need the following.

Proposition 2.3. Let Q be star path connected and let U be an open cover of X. Then Q

is generated by the subgroupoids C1(Q|U) for all U ∈ U .

Proof. Let g ∈ StQ x. Then there is a pathλ in StQ x from g to 1x . Let µ = βλ. By the
Lebesgue covering lemma, we can writeµ= µ1 + · · · +µn where eachµr lie in an open
setUr of U for r = 1, . . . , n. Then we can writeλ = λ1 + · · · + λn whereβλr = µr, r =
1, . . . , n, andλr is a path in StQ x ∩ Ur for r = 1, . . . , n. Let gr = −λr(0)+ λr(1). Then
gr ∈ C1(Q|Ur) andg = g1 + · · · + gn. ✷

Now we recall some major examples of Lie groupoids.

Example 2.4. Let E be a principal bundlep :E → B with groupΩ . ThenE × E is
certainly a topological groupoid, and so also is its quotientQ = E ×Ω E by the diagonal
action of the topological groupΩ . If b, b′ ∈ B, we can by choosing a point inp−1(b),
identify Q(b,b′) with the Ω-mapsp−1(b) → p−1(b′). For this reason, we also write
Sym(E) or Sym(p) for Q. In the caseE is locally trivial, and assumingX is a manifold,
the topology may also be constructed from this alternative description, since theΩ-maps
p−1(b) → p−1(b′) may, again by choosing a point inp−1(b), be identified with the
elements ofΩ . It is this description we now use. Note also that the stars ofQ are all
homeomorphic to the originalE. Thus ifE is path connected, thatQ is star path connected
follows immediately.

Consider in particular the double cover of the circlep :S1 → S1 given byz �→ z2. In
this caseΩ is the cyclic group of order 2. LetQ= Sym(p).

This groupoidQ is star path connected. For supposeg ∈ Q(z,w). Let λ be a path of
shortest length inS1 from z to w (if z = −w then there are two such paths). Letu ∈ S1

satisfyu2 = z. Sincep is a covering map, there are unique pathsλ+, λ− starting atu,−u

and coveringλ. Let v = λ+(1). Theng is a bijection{u,−u} → {v,−v}. If g(u)= v, then
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the pair of pathsλ+, λ− define a star path from the identity on{u,−u} to g. If g(u)= −v,
then such a path is determined byλ′, the shortest path joiningz to w in the opposite
direction roundS1, and its corresponding lifts.

However, ifU = S1 with a single point removed, thenQ|U is not star-connected, since
if λ is a path joiningz tow in U , thenλ′ is not a path inU .

Example 2.5. Let Ω be a Lie group acting smoothly on the right of aCr -manifoldX.
Form the Lie action groupoidQ = X � Ω . Even ifQ is star path connected, this is not
necessarily so forQ|U for all open subsetsU of X.

It would also be interesting to develop analogous concepts for connectivity rather than
path-connectivity.

3. Local subgroupoids and star path connectivity

The previous notions give us our major examples of new and interesting local
subgroupoids.

Example 3.1. Consider an equivalence relationE on the spaceX. Then for each open set
U of X we have an equivalence relationE|U onU and we can consider the partition of
U given by the path components of the equivalence classes ofE|U . In general, this will
not give us a local equivalence relation. Instead we need to assume given an open cover
U = {Ui : i ∈ I } of X satisfying the compatibility condition that for alli, j ∈ I , x ∈ Ui ∩Uj

there is an open setW such thatx ∈W ⊆Ui ∩Uj and the path components ofE|W are the
intersections withW of the path components of the equivalence classes ofE|W the classes
of each ofE|Ui , E|Uj . The resulting local equivalence relation will be writtenc1(E,U).
The compatibility condition is satisfied in for example equivalence relations given by the
leaves of a foliation on a manifold, and is the standard example of the local equivalence
relation defined by a foliation.

We now consider similar questions for topological groupoids.
Of course ifG is a wide subgroupoid ofQ, then so also isC1(G) and then loc(C1(G))

is a local subgroupoid ofQ.
SupposeQ is star path connected, that isQ = C1(Q). LetX = Ob(Q) and letU be a

subset ofX. In generalQ|U need not be star path connected, as we show below. Further,
while C1(Q|U)⊆ C1(Q)|U , in general we do not have equality here. Such a condition is
needed locally to obtain the local subgroupoidc1(Q,U) defined below.

Definition 3.2. An open coverU = {Ui : i ∈ I } of X is said to bepath compatible with a
topological groupoidQ onX if for all i, j ∈ I , x ∈ Ui ∩Uj there is an open setW such
thatx ∈W ⊆ Ui ∩Uj and

C1(Q|Ui)|W = C1(Q|Uj )|W.

In this case, the local subgroupoidc1(Q,U) is defined to have value[Ui,C1(Q|Ui)]x at
x ∈Ui .
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The next proposition gives useful sufficient conditions forc1(Q,U) to be defined.

Proposition 3.3. Let Q be a topological groupoid on X and suppose there is an open cover
U = {Ui : i ∈ I } of X such that for all i, j ∈ I and x ∈ Ui ∩ Uj there is an open set Wx

such that x ∈ Wx ⊆ Ui ∩ Uj and there are groupoid retractions ri,Wx :Q|Ui → Q|Wx ,
rj,Wx :Q|Uj → Q|Wx over retractions Ui → Wx , Uj → Wx . Then a local subgroupoid
c1(Q,U) is well defined by for i ∈ I , x ∈Ui , x �→ [Ui,C1(Q|Ui)]x .

Proof. The retractions ensure the compatibility condition, since ifx, y ∈ W and if λ is a
path in StQ|Ui joining 1x to the elementg :x → y of Q|W , thenri,W λ is a path in StQ|W
joining 1x to g. SoC1(Q|Ui)|W = C1(Q|W), and similarly forj . ✷

Let Q be a topological groupoid onX. ThenQ is called locally trivial if for all x ∈X

there is an open setU containingx and a sections :U → StG x of β . Thusβs = 1U and for
eachy ∈ U , α(s(y)) = x, i.e., s(y) :x → y in Q. We recall the following standard result
(see for example [13]).

Proposition 3.4. Let Q be a topological groupoid on X and U be an open subset of
X. If s :U → StQ x is a continuous section of β for some x ∈ U , then the topological
groupoid Q|U is topologically isomorphic to the product groupoid Q(x)× (U ×U), and
if x ∈W ⊆U , then any retraction U →W is covered by a retraction Q|U →Q|W .

Proof. Remark that the groupoid multiplication onQ(x)× (U ×U) is defined by(
g, (y, z)

)(
h, (z,w)

) = (
gh, (y,w)

)
.

Define

φ :Q|U →Q(x)× (U ×U), g �→ (
s(y)gs(z)−1, (y, z)

)
wherey = α(g) and z = β(g). Sinces is continuous,φ is clearly an isomorphism of
topological groupoids.

The last part follows easily. ✷
We have emphasised these results, despite their simple proofs, because they have useful

applications for example to manifold and bundle theory.
If s is a local subgroupoid ofQ defined by an atlasU = {(Ui,Hi): i ∈ I } andU

is an open subset ofX then s|U is the local subgroupoid ofQ|U defined by the atlas
U ∩U = {(Ui ∩U,Hi|(Ui ∩U)): i ∈ I }. It is easy to verify this is an atlas, and as a section
s|U is just the restriction ofs to the open subsetU .

Suppose now that we have the local subgroupoidc1(Q,U) defined by the open cover
U , andU is an open subset ofX. We will later need a result which follows easily from
compatibility:

Proposition and Definition 3.5. The equality

c1(Q,U)|U = c1(Q|U,U ∩U)
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holds if for any i, j ∈ I and x ∈ Ui ∩ Uj ∩ U there is an open set W such that x ∈ W ⊆
Ui ∩ Uj ∩ U and C1(Q|Ui ∩ U)|W = C1(Q|Uj ∩ U)|W . If this condition holds for all
open sets U of X, then we say that the cover U is path local for c1(Q,U).

Remark 3.6. There is a variation of the local subgroupoidc1(Q,U) in which the paths in
Q which are used are controlled, for example to belong to a given class, or to derive from
the paths inX in a specified way. We give an example of this in the next section.

4. Path connections

The purpose of this section is to give new examples of local subgroupoids with a
possibility of working towards relating the concepts of holonomy in foliation theory and in
bundle theory.

Let Λ(X) denote the path space of a topological spaceX. Let Q be a topological
groupoid overX. A path connection [4,13,16]Γ in Q is a continuous map

Γ :Λ(X)→Λ(Q), λ �→ Γ (λ)

satisfying the following conditions

(i) α(Γ (λ)(t))= λ(0) andβ(Γ (λ)(t))= λ(t), t ∈ [0,1];
(ii) the transport condition: If

ψ : [0,1] → [t0, t1] ⊆ [0,1]
is a homeomorphism, then

Γ (λ) ◦ψ = Γ (λ)
(
ψ(0)

) ◦ Γ (λψ).

The second condition means

Γ (λ)
(
ψ(t)

) = Γ (λ)
(
ψ(0)

) ◦ Γ (λψ)(t)
for t ∈ [0,1],

By taking the homeomorphismψ to be the identity mapψ : [0,1] → [0,1] it follows
from the condition (ii) thatΓ (λ)(0)= 1λ(0). Let λ,µ ∈Λ(X) andλ(1)= µ(0), that is the
compositionλ+µ is defined, then we haveλ= (λ+µ) ◦ψ0 andµ= (λ+µ) ◦ψ1 where
ψ0(t)= 1

2t andψ1(t)= 1
2t + 1

2. Moreover applying (ii) to the pathλ+µ andψ0 and then
applying toλ+µ andψ1 we obtain

Γ (λ+µ)(t)=
{
Γ (λ)(2t) 0 � t � 1

2,
Γ (λ)(1) ◦Γ (µ)(2t − 1) 1

2 � t � 1.

In particular

Γ (λ+µ)(1)= Γ (λ)(1) ◦Γ (µ)(1).

Let Q be a topological groupoid onX with a continuous path connectionΓ :Λ(X) →
Λ(Q). Let CΓ (Q) be the set of allg ∈ Q such that ifα(g) = x then there is a pathλ in
X such thatΓ (λ) joins g to the identity 1x at x, that is,Γ (λ)(0) = 1x andΓ (λ)(1) = g.
Then we prove the following proposition.
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Proposition 4.1. CΓ (Q) is a wide subgroupoid of Q.

Proof. Let g,h ∈ CΓ (Q) such thatgh is defined inQ. Then there are pathsλ andµ
joining g to 1α(g) andh to 1α(h), respectively. Here note thatλ(0) = α(g), λ(1) = β(g)

andµ(0) = α(h), µ(1) = β(h). So the compositionλ + µ of the paths is defined and
Γ (λ + µ)(0) = Γ (λ)(0) = 1α(g) andΓ (λ + µ)(1) = Γ (λ)(1) ◦ Γ (µ)(1) = gh. Sogh ∈
CΓ (Q). That meansCΓ (Q) is closed under the groupoid composition.

If g ∈ CΓ (Q) with α(g) = x then there is a pathλ in X such thatΓ (λ)(0) = 1x
andΓ (λ)(1) = g. Define a path̄λ in X such thatλ̄(t) = λ(1 − t). Thenλ̄(t) = (λψ)(t)

with ψ(t) = 1 − t . By the transport law we haveΓ (λ)(ψ(t)) = Γ (λ)(1) ◦ Γ (λ̄)(t) where
Γ (λ)(1)= g. So we have

Γ
(
λ̄
)
(0)= g−1Γ (λ)(1)= g−1g = 1y

and

Γ
(
λ̄
)
(1)= g−1 ◦ (

Γ (λ)(0)
) = g−1 ◦ 1x = g−1.

Sog−1 ∈CΓ (Q). HenceCΓ (Q) is a wide subgroupoid ofQ. ✷
We also need an analogue of Proposition 2.3.

Proposition 4.2. If Γ is a path connection on the topological groupoid Q and U is an open
cover of X, then CΓ (Q) is generated by the family CΓ (Q|U) for all U ∈ U .

Proof. If g ∈CΓ (Q) is joined to 1x by the pathΓ (µ), then we can writeµ= µ1+· · ·+µn

where eachµr lies in some setUr of U . Let gr = −Γ (µr)(0) + Γ (µr)(1). Thengr ∈
CΓ (Q|Ur) andg = g1 + · · · + gn. ✷

If Q is a topological groupoid onX with a path connectionΓ :Λ(X) → Λ(Q) then
of course loc(CΓ (Q)) is a local subgroupoid. However we would like an analogue of
c1(Q,U) and this needs extra conditions. In fact the existence of a smooth path connection
for the groupoidSym(p) of a principal bundlep :E → B relies on the existence of an
infinitesimal connection (see [11,13]) which itself requires extra structure on the space
involved.

We give some conditions which are sufficient forcΓ (Q,U) to be well defined.
We suppose given an open coverU = {Ui : i ∈ I } for X and for eachi ∈ I a collection

geod(Ui) of paths inUi – an elementλ ∈ geod(Ui) with λ(0) = x, λ(1) = y is called a
“geodesic path” fromx to y. We suppose

(i) if x, y ∈ Ui , then there is a unique geodesic path geodi (x, y) from x to y;
(ii) if x, y ∈ Ui ∩Uj then geodi (x, y)= geodj (x, y).

We also need the connection to be ‘flat’ for this structure in the sense thatx, y, z ∈ Ui then

Γ
(
geodi (x, y)+ geodi (y, z)

)
(1)= Γ

(
geodi (x, z)

)
(1).
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Then we find thatcΓ (q,U) is well defined by the atlas (see below). (We could strengthen
the ‘flat’ condition by requiring that ifλ :x → y is any path inUi then Γ (λ)(1) =
Γ (geodi (x, y))(1), but we do note do this.)

Proposition 4.3. Under the above atlas assumptions, there is a local subgroupoid
cΓ (Q,U) defined by

cΓ (Q,U)(x)= [
Ui,CΓ (Q|Ui)

]
x
.

Proof. We have to prove that ifx ∈Ui ∩Uj then[
Ui,CΓ (Q|Ui)

]
x

= [
Uj ,CΓ (Q|Uj)

]
x
.

This means there is an open neighbourhoodW of x in Ui ∩Uj such that

CΓ (Q|Ui)|W = CΓ (Q|Uj)|W.

Let W be an open neighbourhood ofx in Ui ∩ Uj . Let g ∈ CΓ (Q|Ui)|W with α(g) = x

andβ(g) = y. So there is a pathλ :x → y in Ui such thatΓ (λ)(1) = g. Let λi :x → y

be the geodesic path. SoΓ (λi)(1) = g, by the flat condition, and sog ∈ CΓ (Q|Uj )|W .
HenceCΓ (Q|Ui)|W � CΓ (Q|Uj)|W . Since the converse proof is similar we have
CΓ (Q|Ui)|W = CΓ (Q|Uj)|W . ✷

Suppose now that we have the local subgroupoidcΓ (Q,U) defined by the open cover
U , andU is an open subset ofX. We will later need a result which follows easily from
compatibility:

Proposition and Definition 4.4. The equality

c
Γ
(Q,U)|U = c

Γ
(Q|U,U ∩U)

holds if for any i, j ∈ I and x ∈ Ui ∩ Uj ∩ U there is an open set W such that x ∈ W ⊆
Ui ∩Uj ∩U and CΓ (Q|Ui)|W = CΓ (Q|Uj ∩U)|W . If this condition holds for all open
sets U of X, then we say that the cover U is Γ path local for cΓ (Q,U).

5. Partial orders and induced morphisms

We first establish some elementary but essential basic theory.
The setLQ(X) of wide subgroupoids ofQ is a poset under inclusion. We write� for

this partial order. This poset has a top element namelyQ and a bottom element namely the
discrete groupoidX.

Let Loc(Q) be the set of local subgroupoids ofQ. Let x ∈X. We define a partial order
on the stalkspQ−1(x)= (LQ)x by [U ′,H ′]x � [U,H ]x if there is an open neighbourhood
W of x such thatW ⊆ U ∩ U ′ andH ′|W is a subgroupoid ofH |W . Clearly this partial
order is well defined. Its bottom element is of the form[U,H ]x whereH is discrete, and its
top element is of the form[U,Q|U ]x . This partial order induces a partial order onLoc(Q)

by s � t if and only if s(x)� t (x) for all x ∈X.
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The major purpose of the next topic is to relate local subgroupoids ofQ and local
equivalence relations onOb(Q). This seems an area requiring much more development,
and we hope will be the start of new ways of relating bundle and foliation theory.

Suppose given two groupoidsQ,H and a groupoid morphismφ :Q→H onX, which
is the identity on objects. Then we obtain morphisms of presheavesφ∗ :LQ → LH ,
φ∗ :LH →LQ as follows.

Let U be open inX. Thenφ∗ :LQ(U) → LH (U) is given byφ(K) is the image of
K ∈ LQ(U) by φ. HereK is a wide subgroupoid ofQ|U , and so its imageφ(K) is a
subgroupoid ofH |U , sinceOb(φ) is injective and is clearly wide.

Furtherφ∗ :LH(U)→LQ(U) is given byφ∗(K ′)= φ−1(K ′), for K ′ ∈LH (U).
Hence we get induced morphism of sheavesφ∗ :LQ → LH , φ∗ :LH →LQ.
In particular, we get for a groupoidQ an ‘anchor’ morphism of groupoidsA :Q →

X ×X and so sheaf morphisms

A∗ :LQ → LX×X, A∗ :LX×X → LQ.

Hence a local subgroupoids of Q yields a local equivalence relationA∗(s) on X, and a
local equivalence relationr onX yields a local subgroupoidA∗(r) of Q. This gives further
examples of local subgroupoids.

Clearly alsoφ∗, φ∗ are order preserving on stalks for any morphismφ :Q → H of
groupoids overX. Hence they induce morphism of posets

φ∗ : Loc(Q)→ Loc(H), φ∗ : Loc(H)→ Loc(Q).

Further,s � φ∗r if and only if φ∗s � r. This can be expressed by saying thatφ∗ is left
adjoint toφ∗.

6. Coherence for wide subgroupoids and local subgroupoids

We now fix a groupoidQ onX, so thatLQ(X) is the set of wide subgroupoids ofQ,
with its inclusion partial order, which we shall write�.

Clearly locQ as defined in Definition 1.3 gives a poset morphism

locQ :LQ(X)→ Loc(Q).

Definition 6.1. Let s be a local subgroupoid ofQ. Then glob(s) is the wide subgroupoid
of Q which is the intersection of all wide subgroupoidsH of Q such thats � loc(H).

We think of glob(s) as an approximation tos by a global subgroupoid.

Proposition 6.2.

(i) loc and glob are morphisms of posets.
(ii) For any wide subgroupoid H of Q, glob(loc(H))�H .

Proof. The proofs are clear.✷
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However,s � loc(glob(s)) need not hold. Rosenthal in [14] gives the example of the
local equivalence relations = loc(E) whereE is the equivalence relationaEb if and only
if a = ±b. Here is a similar example.

Example 6.3. Let Q be a groupoid onR such that allx ∈ R with x �= 0 there is a
neighbourhoodU of x such thatQ|U is a bundle of groups, while no such neighbourhood
of 0 exists. Lets = loc(Q). ThenH = glob(s) onR \ {0} coincides withQ on this set, and
in factH is the bundle of groupsQ(x) for all x ∈ R. It follows thats(0) > loc(H)(0).

We therefore adapt from [14,15] some notions of coherence.

Definition 6.4. Let s be a local subgroupoid ofQ onX.

(i) s is calledcoherent if s � loc(glob(s)).
(ii) s is calledglobally coherent if s = loc(glob(s)).
(iii) s is calledtotally coherent if for every open setU of X, s|U is coherent.

Definition 6.5. LetH ∈ LQ(X), so thatH is a wide subgroupoid ofQ.

(i) H is calledlocally coherent if loc(H) is coherent.
(ii) H is calledcoherent if H = glob(loc(H)).

Example 6.6. LetQ be a groupoid on the discrete spaceX. Then glob(loc(Q))= Inn(Q),
the groupoid of vertex groups ofQ. Thus in general,Q is not coherent.

At another extreme we have:

Proposition 6.7. Let Q be a bundle of groups. Then any local subgroupoid of Q is globally
coherent, and any wide subgroupoid of Q is coherent.

Proof. Let s be a local subgroupoid ofQ and let {(Ui,Hi): i ∈ I } be an atlas for
s. Then if x ∈ Ui , we haves(x) = [Ui,Hi]x . Let H(x) = Hi(x). If x ∈ Ui ∩ Uj ,
there is a neighbourhoodW of x such thatW ⊆ Ui ∩ Uj and Hi |W = Hj |W , and
henceHi(x) = Hj(x). ThusH is independent of the choices. AlsoH |Ui = Hi . Hence
loc(H)(x)= [Ui,Hi]x , and so loc(H)= s, H = glob(s). ✷

Coherence ofs says that in passing between local and global information nothing is lost
due to collapsing. Notice also that these definitions depend on the groupoidQ.

Proposition 6.8. loc and glob induce morphisms of posets from the locally coherent
subgroupoids of Q to the coherent local subgroupoids of Q, and on these posets glob
is left adjoint to loc. Further, glob and loc give inverse isomorphisms between the posets
of coherent subgroupoids and of globally coherent local subgroupoids.
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Proof. Let H be a locally coherent subgroupoid ofQ and let s be a coherent local
subgroupoid ofQ. By the definition of locally coherent subgroupoid loc(H) is a coherent
local subgroupoid ofQ.

Conversely, letK = glob(s). Sinces is coherent,s � loc(K). Since glob is a poset
morphism, glob(s) � glob(loc(K)), i.e., K � glob(loc(K)). Since loc is also a poset
morphism,

loc(K)� loc
(
glob

(
loc(K)

))
.

So loc(K) is a coherent local subgroupoid, andK is locally coherent.
The adjointness relation is that glob(s) � H ⇐⇒ s � loc(H). The implication⇐

follows from the fact that for allH we have glob(loc(H))�H . The implication⇒ follows
from the coherence ofs.

The final statement is obvious.✷
Note in particular that coherence ofH implies local coherence ofH .

Proposition 6.9. Let Q be a topological groupoid on X and G a star path connected wide
subgroupoid of Q. Then G is coherent and loc(G) is globally coherent.

Proof. We prove that glob(loc(G))=G. By Proposition 6.2 glob(loc(G))�G. To prove
thatG� glob(loc(G)) letH be a wide subgroupoid ofQ such that loc(G)� loc(H). Then
for x ∈X,

[X,G]x � [X,H ]x
and so for some open neighbourhoodUx of x, G|Ux � H |Ux . These setsUx form a
coverU of X. By Proposition 2.3,G is generated by theG|U for U ∈ U . It follows that
G�H . ✷
Corollary 6.10. If X is a topological space then its fundamental groupoid π1X is coherent
and globally coherent.

Corollary 6.11. Let Q be a topological groupoid on X. Then the star identity component
C1(Q) is coherent.

Corollary 6.12. Let Q be a topological groupoid with a path connection Γ :Λ(X) →
Λ(Q). Then the wide subgroupoid CΓ (Q) is coherent.

Proposition 6.13. Let Q be a topological groupoid on X. Suppose that the local
subgroupoid c1(Q,U) of Q is well defined by an open cover U . Then

(i) glob(c1(Q,U))= C1(Q).
(ii) c1(Q,U) is coherent.
(iii) If U is path local for Q, then c1(Q,U) is totally coherent.
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Proof. (i) Certainly c1(Q,U) � loc(C1(Q)) since for all openU in X, C1(Q|U) �
C1(Q)|U and so[Ui,C1(Q|Ui)]x � [X,C1(Q)]x for all x ∈U .

Now supposeH is a wide subgroupoid ofQ andc1(Q,U)� loc(H). We have to prove
C1(Q)�H .

Let i ∈ I andx ∈ Ui . We have[Ui,C1(Q|Ui)]x � [X,H ]x . Hence there is an open
neighbourhoodWx of x contained inUi and such that

C1(Q|Ui)|Wx �H.

By Proposition 2.3,C1(Q|Ui) is generated by theC1(Q|Ui)|Wx for all x ∈ Ui and by the
same Proposition,C1(Q) is generated by theC1(Q|Ui) for all i ∈ I . HenceC1(Q)�H .

Coherence ofc1(Q,U) follows from (i) andC1(Q|Ui) � C1(Q)|Ui . Total coherence
in the path local case follows by applying (ii) toQ|U , using Proposition and Defini-
tion 3.5. ✷
Proposition 6.14. Let Q be a topological groupoid on X such that the local subgroupoid
cΓ (Q,U) is well defined by the open cover U . Then:

(i) glob(cΓ (Q,U))= CΓ (Q).
(ii) cΓ (Q,U) is coherent.
(iii) If U is Γ path local for Q, then cΓ (Q,U) is totally coherent.

Proof. (i) Note thatcΓ (Q,U)� loc(CΓ (Q)) since for allU in X,CΓ (Q|U)� CΓ (Q)|U .
So glob(cΓ (Q)) � CΓ (Q). To prove thatCΓ (Q) � glob(cΓ (Q,U)) suppose thatH is a
wide subgroupoid ofQ such thatcΓ (Q,U)� loc(H). We have to prove thatCΓ (Q)�H .
If U ∈ U andx ∈U then

[
U,CΓ (Q|U)]

x
� [X,H ]x.

HenceU has a covering by open setsWx such that[U,CΓ (Q|U)|Wx � H . By Proposi-
tion 2.3,CΓ (Q|U) is generated by the groupoidsCΓ (Q|U)|Wx and by Proposition 4.2
CΓ (Q) is generated by theCΓ (Q|U) for U ∈ U . HenceCΓ (Q)�H .

The proofs of (ii), (iii) are analogous to those in the previous proposition.✷

7. Coherence and atlases

We lead up to conditions for an atlas for a local subgroupoids to beglobally adapted to
s. This notion is important for considerations of holonomy (see [2]), and the applications
will be developed elsewhere.

The next proposition gives an alternative description of glob.
Let Us = {(Ui,Hi): i ∈ I } be an atlas for the local subgroupoids. Then glob(Us ) is

defined to be the subgroupoid ofQ generated by all theHi, i ∈ I .
An atlasVs = {(Vj ,H ′

j ): j ∈ J } for s is said to refineUs if for each indexj ∈ J there
exists an indexi(j) ∈ I such thatVj ⊆Ui(j) andHi(j)|Vj =H ′

j .
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Proposition 7.1. Let s be a local subgroupoid of Q given by the atlas Us = {(Ui,Hi): i ∈
I }. Then glob(s) is the intersection of the subgroupoids glob(Vs) of Q for all refinements
Vs of Us .

Proof. LetK be the intersection given in the proposition.
Let Q be a subgroupoid ofQ on X such thats � loc(Q). Then for allx ∈ X there

is a neighbourhoodV of x and ix ∈ I such thatx ∈ Uix andHix |Vx ∩ Uix � Q. Then
W = {(Vx ∩Uix ,Hix |Vx ∩Uix ): x ∈X} refinesUs and glob(W)�Q. HenceK �Q, and
soK � glob(s).

Conversely, letVs = {(Vj ,H ′
j ): j ∈ J } be an atlas fors which refinesUs . Then for each

j ∈ J there is ani(j) ∈ I such thatVj ⊆ Ui(j),H
′
j = Hi(j)|Vj . Thens � loc(glob(Vs)).

Hence glob(s)� glob(Vs) and so glob(s)�K. ✷
Corollary 7.2. A wide subgroupoid H of Q is coherent if and only if for every open cover
V of X, H is generated by the subgroupoids H |V,V ∈ V .

Proof. Note that{(X,H)} is an atlas for loc(H), which is refined byVH = {(V ,H |V ): V ∈
V} for any open coverV .

Suppose the latter condition holds. Then Proposition 7.1 implies thatH = glob(loc(H)),
i.e.,H is coherent. The converse holds since glob(VH)�H . ✷

LetU be an open subset ofX. Then we have notions of local subgroupoids ofQ|U and
also of the restrictions|U of a local subgroupoids ofQ. Clearly ifH is a wide subgroupoid
of Q then loc(H |U)= (loc(H))|U .

Proposition 7.3. Let s be a local subgroupoid of Q and let U be open in X. Then
glob(s|U)� glob(s)|U .

Proof. Let H be a wide subgroupoid ofQ such thats � loc(H). Thens|U � loc(H |U).
So glob(s|U)�H |U . The result follows.

Proposition 7.4. Let s be a local subgroupoid of Q. Then

(i) If s is globally coherent, U is open in X, and s|U is coherent, then s|U is globally
coherent.

(ii) If there is an open cover V of X such that s|V is coherent for all V ∈ V , then s is
coherent.

(iii) If s is globally coherent then for any open cover V of X, glob(s) is generated by the
groupoids glob(s)|V for all V ∈ V .

(iv) If there is open cover V of X such that s|V is globally and totally coherent for V ∈ V ,
then s is totally coherent.

Proof. (i) We are givens = loc(glob(s)). By Proposition 7.3

loc
(
glob(s|U)) � loc

(
glob(s)|U) = loc

(
glob(s)

)|U = s|U.
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Sinces|U is coherent, we haves|U � loc(glob(s|U)). Sos|U = loc(glob(s|U)), i.e.,s|U
is globally coherent.

(ii) We have

s|V � loc
(
glob(s|V )) � loc

(
glob(s)|V )

�
(
loc

(
glob(s)

))|V.
Since this holds for allV of an open cover, we haves � loc(glob(s)).

(iii) This follows from Corollary 7.2.
(iv) Let U be open inX. Let V ∈ V . Sinces|V is globally and totally coherent, then

s|V ∩ U is globally coherent. Hence by (ii)s|U is coherent, since theV ∩ U,V ∈ V ,
coverU . ✷
Proposition 7.5. Let Us = {(Ui,Hi): i ∈ I } be an atlas for the local subgroupoid s. Then:

(i) s|Ui = loc(Hi) for all i ∈ I ;
(ii) loc(glob(s|Ui))� s|Ui for all i ∈ I ;
(iii) if s|Ui is coherent for all i ∈ I then s is globally coherent;
(iv) if s|Ui is coherent for all i ∈ I then glob(s)= glob(Us).

Proof. (i) This is clear.
(ii) We have by Proposition 6.2

loc
(
glob(s|Ui)

) = loc
(
glob

(
loc(Hi)

))
� loc(Hi)= s|Ui.

(iii) This is immediate from the definition of coherence and (ii).
(iv) Let H = glob(Us), i.e.,H is the subgroupoid ofQ generated by theHi , i ∈ I . Then

glob(s)� H . LetK be a wide subgroupoid ofQ such thats � loc(K). Then for alli ∈ I

andx ∈ Ui there is a neighbourhoodV i
x of x such thatV i

x ⊆ Ui andHi |V i
x � K|V i

x . By
global coherence ofs|Ui and Proposition 7.4(i) and (ii),Hi is generated by theHi |V i

x for
all x ∈ Ui . HenceHi �K|Ui �K. HenceH �K. HenceH � glob(s). ✷
Definition 7.6. Let s be a local subgroupoid of the groupoidQ onX. An atlasUs for s is
calledglobally adapted if glob(s)= glob(Us ).

Remark 7.7. This is a variation on the notion of anr-adaptable family defined by
Rosenthal in [15, Definition 4.4] for the case of a local equivalence relationr. He also
imposes a connectivity condition on the local equivalence classes.

The construction of the holonomy groupoid of a local subgroupoid requires a globally
adapted atlas (see Theorems 3.7 and 3.8 [2]). The following proposition is very useful to
this end.

Proposition 7.8. Let s be a totally coherent local subgroupoid of the groupoid Q on X.
Then any atlas for s is globally adapted.

Proof. This is immediate from the previous Proposition, since total coherence implies that
eachs|Ui is coherent. ✷
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Corollary 7.9. Any path local atlas U of the local subgroupoid c1(Q,U) is globally
adapted.

Corollary 7.10. Any Γ path local atlas of the local subgroupoid cΓ (Q,U) is globally
adapted.
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