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ABSTRACT We have clarified the use of Wyman's differential equation for the
facilitated oxygen flux through a slab of solution of myoglobin or hemoglobin by
showing that there is a unique choice of boundary condition on the carrier concentra-
tion to be employed in conjunction with it. The singular perturbation solution of
Wyman's equation, due to Murray, and Mitchell and Murray, has been extended. By
means of it, the paradox of Wittenberg, that the facilitated oxygen flux per mole of
heme is apparently independent of the protein carrier, has been resolved.

INTRODUCTION

The phenomenon of facilitated diffusion exhibited by solutions of hemoglobin and
myoglobin was discovered by Wittenberg (1) and independently by Scholander (2).
An excellent and comprehensive review of the facilitated diffusion of oxygen by myo-
globin can be found elsewhere (3). Wittenberg (4) presented extensive quantitative
data showing the dependence of the facilitated flux on the initial concentration of the
carrier molecule placed in solution, whether hemoglobin or myoglobin. A principal
result of his work was to display the dependence of the facilitated flux on the total
concentration of heme groups of the carrier molecules. It was observed that the experi-
mental points appeared to lie on a single curve, regardless of whether the heme was in
the hemoglobin or myoglobin. The fact that the facilitated flux per mole of heme
increases initially to a maximum and then decreases was explained qualitatively as a
decrease of the diffusion coefficient of the carrier molecule with increasing carrier con-
centration. However, the deeper puzzle contained in Wittenberg's results, hitherto
unexplained on theoretical grounds, is why hemoglobin and myoglobin, having
markedly different reaction rates for combining with oxygen and different transla-
tional diffusion constants, should behave so similarly (per oxygen combining site) in
facilitating the flux of oxygen through a solution. This paradox of the data was clearly
expounded by Wittenberg himself (3).
We have solved the differential equation of Wyman (5) governing the concentration

of oxygen in a slab of solution containing protein carrier molecules, by the method of
singular perturbation theory. In doing so we follow Murray (6) and extend the work
of Mitchell and Murray (7). With the aid of the solution, we show that the paradox
of Wittenberg is only apparent and is due to a combination of circumstances. First,
the theoretically predicted oxygen flux through a slab of myoglobin solution is very
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close to that through a slab of hemoglobin solution. That is so because the advantage
myoglobin possesses in- being able to diffuse faster than the heavier hemoglobin is to a
large extent offset by the fact that oxygen leaves the myoglobin less readily than it
leaves hemoglobin, on the low pressure side of the slab. Second, the measured facili-
tated oxygen currents at large myoglobin concentrations were systematically under-
estimated, because of the autoxidation of myoglobin occurring during the experi-
ments.

FORMULATION

Our starting point is the steady-state reaction-diffusion equation for oxygen concentration
c(x) in a slab 0 < x < 1 containing a carrier molecule (see Rubinow, 8).

D(d2c/dx2) = k~hoc + (l/D,)(k+c + ki)(Dc - A + jx). (1)

Here D is the translational diffusion constant of oxygen, k+ and k are the forward and
back reaction rates of the reaction oxygen + carrier oxy-carrier, ho is the total initial
concentration of carrier, D. is the translational diffusion constant of the carrier protein,
and A and j are constants of integration to be determined. The boundary conditions satisfied
by c(x) are that

c(O) = cO, c(l) = c,, -D(dc/dx)xo = -D(dcldx)x- = j. (2)

Note that j represents the steady-state current density of the oxygen flux. The carrier con-
centration in the slab h(x), which is the heme group concentration, and the concentration
y(x) of the oxygen-carrier complex are related to c by means of the equations

Dc+Dpy=A - jx, (3)

h + y = ho. (4)

Hence, it can be seen from Eq. 3 that the boundary conditions on dc/dx in Eq. 2 are a
consequence of the condition that the carrier molecules are constrained to the slab, i.e., that
dy/dx and dh/dx must vanish at the boundaries.

Eq. 1 is the same as the equation of Wyman (5), and can be recognized as such explicitly if
we replace A andj by the expressions

A = Dco + Dpyo, (5a)

and

j = I [D(co - cl) + Dp(yo - y1)], (5b)

where yo = y(O) and yi = y(l). These relations follow directly from Eq. 3, evaluated at the
boundaries.
We stress here that the abovementioned derivation of Eq. 1 shows that Wyman's equa-

tion is consistent only with the boundary conditions given in Eq. 2. Indeed, if it were
assumed instead that h and y were prescribed at the boundaries, then the right-hand side of
Eq. 4 would contain a term linear in x, and the same linear term would also appear added to
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TABLE I

VALUES OF PARAMETERS(FROM WITTENBERG [4])

k+ ka

M-Is-1 s-I
Hemoglobin 2.85 x 106 40 0.081
Myoglobin 14 x 106 11 0.0044

A = 11.5 cm2; Millipore thickness = 1.50 x 10-2 cm; a at 20C = 1.8 x
10-3 mM/torr (from Sendroy et al. [15]); p = 0.79.
*Corresponding to po = 100 torr.

ho in Eq. 1. These comments should serve to settle the apparent controversy that has arisen
in the literature (9-12) regarding the proper choice of boundary conditions. Hence, the quan-
tity yo - y, appearing in Wyman's form of Eq. 1 is a quantity to be determined from j
in accordance with Eq. 5b, and one that can not be initially prescribed.
To solve Eq. 1, we introduce the nondimensional variables and parameters,

x/l = x', c/co = c', c,/co = cl, k/lk+co = a, Dpho/Dc0=o As

Dp/k+col2 = c, A/Dco = A', jl/Dco = ja, (6)

and drop the primes. Then Eq. I becomes

e(d2c/dx2)= #lc+ (c+ a)(c- A + jx), 0 < x < 1, (7)

subject to the boundary conditions

c(O) = 1, c(l) = cl,

(dc/dx)x.o = (dc/dx)._ X = -1. (8)
Eq. 7 shows that there are only three intrinsic nondimensional parameters to the problem,
a, fl, and E, a useful simplification both for understanding and for computation.
The values of some of the dimensional parameters for hemoglobin and myoglobin, as sug-

gested by Wittenberg (3), are shown in Table I, together with the inferred value of a. The
values of ft and E depend on D and D. and are therefore dependent on the concentration
of protein. Hence, these parameters change as ho changes, as shown by Wittenberg and Riveros-
Moreno (3, 13). From the curves given there, it can be seen that typical values are D - 10-5
cm2 s_ and D. - 5 x 10-7 cm2 sin, so that #-3 2 and e - 10-6 for both hemoglobin and
myoglobin. Because e, a very small quantity, is the coefficient of the highest derivative term
in Eq. 7, solving the latter equation may be treated as a singular perturbation problem (6).

DISCUSSION OF SOLUTION

The derivation of the singular perturbation solution to Eqs. 7 and 8 is given in the
Appendix. It depends on the assumptions that e << 1, and that a and f3 are 0(1) with
respect to e. The uniformly valid approximation to the exact solution is given to order
e as
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c(x) = c(o)(x) + E1/2{c(1)(x) + C-()(Q) + c'')(v)

+ [(1 + a)j(0)/y3][ a _ + y - [(cl + a)j(O)/63][ a3 + 6

E~c(2)x)+ (I1+ a)2 [(c + a)2 j
. E c(2)(X) + c(2)(t) + C -2)( [(1 + a)/62][A(2) _ j(1)

(1 + a)2fyl K2(1 + a) + a2#2/(l + a)3 + 2afly /(1 + a)

+ (1 + a)()2)] -[(c, + a)/62][A(2) - j(2) + j(1)X

. jO)2a/3 (2(c + a) +a2#2/(Ci+aC)3+ 2af3
(Cl + a)266 + c + a

+ (Cl + a)(60)2)]}+ O(03/2), (9)

where the quantities on the right are all defined by Eqs. A3, A4, A7-A1 1, and A14-
A19 of the Appendix. The first term on the right, c(°)(x), was obtained by Murray (6).
The first two terms of the related expansion of y(x), obtainable from Eq. 9 by means
of Eq. 3, were given by Mitchell and Murray (7).
The importance of the boundary layer contributions in the neighborhood of the

boundaries is illustrated in Fig. 1, which shows c(x) to orders unity, 1/2, and E,
as a function of the "stretched" distance coordinate n = (1 - x/l),E-1/2 in the bound-
ary layer associated with the low pressure side of the slab. For Fig. 1, numerical values
of the parameters were chosen appropriate to myoglobin, and it was assumed that
c, = 0. With I - 2.4 x 10-2 cm, the width of the boundary layer is seen from the
figure to be about 2.5 f/2 1 - 6 x 10-' cm, and is quite small. Nevertheless, even for
hemoglobin, this width represents about 100 times the molecular diameter, 60 A
(Perutz et al., 14).
We note that there is a significant change in slope at the boundary, and indeed in

the oxygen concentration in the boundary layer, when the contribution of order E

is included. In view of the smallness of E, this surprising result occurs both because
c, is zero on the low pressure side and because a is significantly smaller for myoglobin
than for hemoglobin (see Table I). Mathematically, we find that there are terms of
order (c, + a)-' appearing in i-')(i) and terms of order (c, + a)-2 appearing in c-(2)(v)
(see Eqs. A14 and A17). Consequently, when c, = 0, the relevant measure of impor-
tance of these terms is d/2/a and e/a2. For hemoglobin, we see from the Table
that, with e = 10-6, 1/2/a 0.01, which is negligible. That is why the zero-order
solution is adequate to represent the experimental results for it. For myoglobin, by
contrast, O1/2/a 0.2, so that it is necessary to utilize the full expression given by
Eq.9.
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FIGURE I The oxygen concentration in the boundary layer associated with the low pressure
side of a slab of myoglobin solution to orders unity, e 1/2, and e, based on Eq. 9, with cl = 0,
a = 0.5 x 10-2, and , = 2.3. The abscissa represents the stretched coordinate distance ==
(I1- ) f - 1/2. The order (1/2 concentration function is asymptotic to the line labeled "com-
mon part."

The facilitated current density found simultaneously with the solution (Eq. 9) is
given by Eq. A20. The nonfacilitated flux is readily recognized to be, in nondimen-
sional variables, the quantity 1 - c,. Hence, the facilitated current density is
jF = j - (1 - cl), or, from Eq. A20,

jF = (1 - cl)af3/(l + a)(c, + a) + (1 -c1)[1 + a3/(1 + a)(c, + a)]

X f-E'/2af /[ I/y (I + a)2 + 1/6(c1 + a)2]

+ e(a2#2[1/'y(I + a)2 + 1/6(cl + a)2]

+ (1 - cj)[I + a#/(1 + a)(c, + a)I[1/12'y4 + 5(1 + a)/6'y2
- 5/12'y2(1 + a) - 1/2(1 + a)2 _ 1/1264 - 5(c, + a)/666

+ 5/1262(c, + a) + 1/2(c, + a)2])j + 0(,3/2). (10)

When c, is 0(1), or when c, is zero and E'1/2/a is small, the terms above in e/2 and e are
negligible, and the facilitated flux reduces to the first term on the right, or, expressed
dimensionally,

JF = (Co / ) Dpho K/(co + K)(c, + K), (11)

where K k- /k+ is the dissociation constant of the reaction. This expression was
given by Murray (6), and is in satisfactory agreement with observations of hemoglobin.
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The first two terms of Eq. 10 (through the order (l/2 term) were given by Mitchell and
Murray (7).
When cl = 0 and '/2/a is not too small, then Eq. 10 can be written as

jF 3/(1 + a) + [1 + i#/(l + a)]{- E1/23/6ba + E/2a2[1 + i3/(l + a)]j. (12)

We can anticipate that the correction term to the above expression is O(E3/2/a3).
In terms of dimensional quantities, Eq. 12 assumes the form

IF Dphoco/l(co + K) + DpDco/l2K[I + Dpho/D(co + K)]
x I- ho/D[DDp/k+(DK + Dpho)]'/2 + co/21k+K[l + Dpho/D(co + K)]}.

(13)

From either of the above two expressions for jF we can recognize the biophysical
significance of the additional terms of order E1/2 and E appearing in it. These terms
represent a net negative contribution to the facilitated flux that is significant when
K/co is small. In other words, the relative inability of 02 molecules to leave the
oxy-carrier complex rather than join it, as represented by a smaller value of K, leads to
a reduction in facilitation. For hemoglobin, this reduction is insignificant. For
myoglobin, for which K is about 20 times smaller than it is for hemoglobin, the reduc-
tion is important. Speaking generally, we can say that facilitated diffusion requires
that a >> c, and it is obvious that there can be no facilitation when a = 0, as then the
ligand does not get off the carrier.
We are now in a position to comment on some of the previous mathematical efforts

to resolve the Wittenberg paradox. Murray (6) was primarily concerned with the
exploitation of Eq. 5b. Mitchell and Murray (7) reconsidered the singular perturba-
tion solution using the proper coundary conditions, and could have resolved in large
part the paradox of Wittenberg, but they did not exploit the further consequences of
their results.

Kreuzer and Hoofd (9) employed a semi-analytical approach and solved Wyman's
equation numerically, utilizing the physically correct conditions (Eq. 2). When these
authors considered the case of myoglobin, they too found that the calculated facilitated
flux was almost double the experimental value (10). Kreuzer and Hoofd's assumed
form of the solution in the boundary layers is equivalent to the solution (Eq. 9) to
order c1/2. Howeverj was determined from the gradient of the solution evaluated at a
boundary point. Hence, as we see from Eq. A5 with n = 1, they only determined j to
zero order, Le.,Po).

COMPARISON WITH WITTENBERG'S WORK

The total facilitated current of 02 through the Millipore membrane, JF, in microliters
per minute is given in terms of the facilitated current density as

JF = pAIF, (14)

where A is the cross-sectional area and p the porosity, or fractional volume occupied by
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pores, of the Millipore membrane. Hence, pA is the area of the membrane available for
diffusion. Because JF was measured as a function of pressure, comparison of the theo-
retical expression (Eq. 14) with experiment requires the conversion of the concentra-
tion appearing injF to pressure by means of Henry's law, c0o = apol, where a is the
solubility constant. Similarly, the nonfacilitated oxygen current JN is

JN = pAa(po -P) D. (15)

Here I is to be interpreted as the length of a pore, which is greater than the thickness of
the Millipore membrane, due to pore tortuosity. The values of p and A were reported
by Wittenberg (4) (see Table I), D is given in ref. 3 (see also 9), and a is known from the
work of Sendroy et al. (15). Consequently, Eq. 15 may be used to determine 1 from
measurements of JN versus (po - Pi). We have adopted the value I = 2.45 x 10-2
cm, based on the slope of Fig. 1 of Wittenberg (4), in which JN for a solution of ferric
hemoglobin is reported. Thus, all the parameters of the problem are completely deter-
mined. This same value of! was also utilized for the case of myoglobin.

In Fig. 2 we show the predicted nonfacilitated flux JN and the total flux, JN + JF,
as a function of oxygen partial pressurepo, when hemoglobin is the carrier. In obtain-
ing JF from Eq. 10, we have set cl = 0. Note that for po > 100 torr, the curve for
JF is a straight line with the same slope as that for JN, just as in the experimental curves
of Fig. 1. This is a consequence of the fact that the terms in E 1/2 and E in Eq. 10 are

5-

Hemoglobin

°2 Flux JN
prI/min

0 100 200
po torr

FIGURE 2 Nonfacilitated flux JN and total flux JN + JF through a slab of hemoglobin solution
are shown as a function of oxygen partial pressure po, based on Eqs. 10, 14, and 15; cl = 0, ho =
10 mM, and other parameters as in the Table.
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FIGURE 3 JN and JN + JF through a slab of myoglobin as a function of po, based on Eqs. 10, 14,
and 15; cl = 0, ho = 10 mM, and other parameters as in the Table. The dashed line has been
drawn parallel to JN.

negligible, so that the facilitated flux is essentially determined by the expression given
in Eq. 11, which is independent ofpo whenpo is large.
By contrast, the theoretical curves for JN and JN + JF are not parallel for the

case of myoglobin as carrier, as shown in Fig. 3. Because of the importance of the
higher order terms, there is here no unambiguous definition of facilitated flux, inde-
pendent of the value ofpo. We remark that the two curves must ultimately converge for
po (and hence co) - a, because (, a, and 1B all vanish in this limit. We have seen

previously that facilitation disappears if a vanishes. An important cautionary note is
that Eq. 10 can not be used to determine the flux if po becomes very large: it is known
that the error involved in utilizing an asymptotic sequence is of the order of the last
term in the sequence, and it can be seen from Eq. 12 that as co approaches infinity,
the term of order e increases without limit. This property can be anticipated if we recall
that, in the derivation of the solution (see Appendix), a is assumed to be 0(l) with re-
spect to (I/2, and since E'/2/a is O(cO/2), this condition is clearly violated for co suffi-
ciently large.

In determining experimentally the facilitated flux for myoglobin, Wittenberg de-
fined JF as the intercept with the ordinate scale of the slope of the curve for JN + JF
at high values ofpo. While this is a convenient approximation for hemoglobin, it is not
so for myoglobin, and it is desirable that future observations of the facilitated flux of
myoglobin should indicate the value ofpo at which the observations are made.

Using Eq. 10, we have calculated the facilitated flux defined at po = 300 torr, as a
function of heme concentration ho, inserting for D and DP the values obtained from
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FIGURE 4 The solid curves represent the facilitated flux JF through a slab of hemoglobin
solution or myoglobin solution, and are shown as functions of the heme concentration ho,
based on Eqs. 10 and 14; c} = 0, Po = 300 torr, and other parameters are as in the Table.
The experimental observations of Wittenberg (4) are superposed.

the smoothed representation of the data given in refs. 3 and 13. The results both for
hemoglobin and myoglobin are shown in Fig. 4, with the experimental observations of
Wittenberg superposed. Note that there are two distinct theoretical curves that, al-
though virtually identical at small values of ho, are distinct and different at large values
of ho, when the higher order terms in jF, linear in ho, are more significant (see Eq. 13).
It is important to realize that we have made no adjustments in parameters to fit the
theoretical curves to the experimental data, which we could easily do. For example, by
increasing the value of pA a/l assigned to hemoglobin, the theoretical curve for it is
raised, so that an excellent fit to the data is obtained. By deliberately choosing p A a//
to accord to the one observation available for determining it, we are emphasizing that
there are still uncertainties in observation of the parameters entering the theory, so that
a perfect fit with the data cannot yet be expected. By the same token, if a different
value of I were assigned to the Millipore membrane utilized in the myoglobin experi-
ments, the theoretical curve for myoglobin of Fig. 4 could be lowered. Furthermore,
Wittenberg reported that at the end of each experiment, from 10 to 25% of the myo-
globin was rendered incapable of reacting with oxygen because of conversion to the
ferric state. This strongly suggests that, under ideal conditions, the experimentally ob-
served oxygen currents for myoglobin in Fig. 4 would be larger, and in better agree-
ment with the theory.

In Fig. 5 the facilitated oxygen current JF is displayed as a function of the product
Dpho. The motivation for such a presentation of the data arises from Eq. 5b and the
replacement of yo - yi there by hO(YO - Y,), where Y represents the saturation
function, or fraction of carrier sites bound to ligand molecules. The simplistic as-

RUBINOW AND DEMBO Facilitated Diffusion of02 by Hemoglobin and Myoglobin 37



x Hb
o Mb

Myoglobin

x
x

0

.

JF Hemoglobin
il/min*

0.5-
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FIGURE 5 The same functions and data as in Fig. 4, with the abscissa changed to hODp.
The arrowheads on the theoretical curves represent the direction ofincreasing ho.

sumption that local reaction equilibrium is established between ligand and carrier, or
nearly so, leads to the conclusion that YO - 1, Y, - 0, and YO - Y, is constant, so
that the resulting plot of JF versus Dpho should be linear. The figure shows that the
relationship between these quantities is indeed approximately linear, but the
".slope" is not the same for hemoglobin and myoglobin, as the zero-order theory for
jF, Eq. 11, incorrectly predicts. As seen from the figure, the theoretical curves based on

Eq. 14 are distinct and not straight lines, even for the case of hemoglobin, because of
the higher order terms resulting from Eq. 10. The arrowheads on the theoretical curves
indicate the direction of increasing ho. If the result is viewed in terms of the saturation
function, we see from Eq. 3 that yo = (A - Dco)/DP and y, = (A - j)/DI. Hence,
the major difference in YO - Y, between myoglobin and hemoglobin occurs because
Y, is larger for myoglobin than for hemoglobin, as suggested previously by B. Witten-
berg.'
We conclude that the theory of facilitated diffusion, based on the singular perturba-

tion solution of Wyman's equations, satisfactorily describes the experimental observa-
tions of facilitated oxygen transport through slabs of hemoglobin and myoglobin
solutions.
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APPENDIX: SINGULAR PERTURBATION SOLUTION

We present here an asymptotic solution of Eq. 7 by singular perturbation methods (see Cole, 16).
Thus, we assume for the outer solution, valid in the interior region of the solution and away
from the boundaries, the expansions

c(x) = E C()(X)En2, A - i A(n),n12, =jE j(n)n/2. (Al)
n-O n-O n-O

By substituting these expressions into Eq. 7 and equating the coefficients of 'En2 to zero,
we obtain the following equations for the first three powers of 1/2, as much of the expansion
as we need to obtain.

EO:O = /3c(°) + (c(°) + a)(c(°)- A(0) + j°)X),

1/2 0= (3c1') + (c(°) + a)(c(1) - A(l) + j (x)X

+ c(1)(c(0)-A (0) + j()x ),

EI:[d2c(0)/dx2] = #c(2) + (C(°) + a)(C(2) _ A(2) + j(2)x)

+ c)(cO') - A(') + j(')x) + C(2)(C(0) -A() + j(])x). (A2)

Thus, the functions c(")(x), comprising the outer expansion of c(x), are expressible recursively
as solutions of algebraic equations, e.g.,

-
=

(O) - j( - -
a

) + [j(A()- j()x- a - )2 + a(A(0) -j(x)]1/2
Co) = [c(°) + a][A(l) - j(')x]/[a + ,B + 2c(°)- A(° + j(°)X],

c(2) = [d2c(0)/dx2 + (c(°) + a)(A(2) -(2)x) -c'(c') - A(') + j(')x)]/

[a + ,B + 2c(°) - A(°) + j(°)x]. (A3)

To obtain the inner solution near x = 0, we introduce the stretched variable t and assume
that c is given as

C(X) = Q(t) = 1 + E O(n)(t)n12 X = 1/2. (A4)
n-I

The choice of expansion in powers of E1/2 is motivated by the requirement that near the bound-
aries, the derivative term in Eq. 7 should be as important as the other terms in the Equation
(6). JQ) must satisfy the boundary conditions on c(x) at x = 0 and must match, for large val-
ues of {, the outer solution at small values of x. In view of Eq. 8, it follows that

=()= 1, = i'

or j(n)(O) = 0, ( o j(n-1) n = 1,2,3,.... (A5)

By substituting Eq. A4 into Eq. 7 and again equating coefficients of fn/2 to zero, we obtain
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0:0 = /B + (1 + I)(l -A(°)),

(1/2 : = (2 + a + f3 - A(°))c-() + (1 + a)(-A(1) + j(O)t),

El: [d2e(2)/d 2] = (2 + a + B- A(0))e(2) + (1 + a)(-A(2) + j(l)t)
+ (') - A0') + j(O)t) (A6)

The first equation above determines A(°) uniquely as

A(°) = 1 4+ (A7)
1 + a,

The solution to the second equation in A6 that satisfies the condition that el) vanish at 0= 0 is

(') - ( + a)j(0)/y3 1[at3/(l + a)2](l - emit) + yty1,
,y = 2 + a + A-A(O) = I + a + a#/(I + a). (A8)

In obtaining A8, we have set to zero the coefficient of the term e"t appearing in the gen-
eral solution to the equation because of the requirement of matching with c(l) and have
satisfied the boundary condition (A5) on the gradient of cLXl), from which we infer that

-)= -j(0)ai3/'y(l + a)2. (A9)

We proceed in a similar manner to obtain the inner expansion in the neighborhood of the
boundary x = 1. Thus, we assume that c is expressible there as

C(X) =c(v) = c + E C(n)(?)O/2, 1 -nX = ("2 1 (AIO)
n-I

c(v) must satisfy the boundary conditions on c(x) at x = 1 and must match for large
values of q, the outer solution at large values of x. In view of Eq. 8, it follows that

c(O) = cl, (dZ!/d7)41 = -i

or c(")(O) = 0, (d1(n)/d )_O= - j(n-l) n - 1,2,3 . (All)

By substituting Eq. AI0 into Eq. 7 and equating coefficients of En/2 to zero, we obtain

(0:0 = 0'c1 + (Cl + a)(Cl - A(°) + j(0)),

1/2 : [d c( )/d = [2c, + a + ft + j(O) - A(°)]c(I) + (cl + a)(j(') AM - j(O)-q),
ed: [d2e(2)/d712] = [2c, + a + # + j(O) - A(0)]C-2) + (cl + a)(j(2) - A(2) j(1))

+ e0X)(Z(0) + j(0) -AM- j(O),) (A12)

The solution to the first equation above determinesj(°) uniquely with the aid of Eq. A7 as

j(0) = (1 - cl)[l + af,/(l + a)(c, + a)]. (A13)
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The solution to the second equation that satisfies the conditions that -c" vanish at 7q = 0 and
matches, for large values of q, the appropriate terms in c(°)(x) and c(l)(x) at large values of x is

-() = [(cl + a)/63] j(0)f[a#/(c1 + a)2](1 - e-") + a5n

= 2c, + a +d3 + j(O-A (°) = cl + +[af/(c + a)]. (A14)

with A(') given by Eq. A9 and Eq. A13. In obtaining Eq. A14, we imposed the boundary condi-
tion All on the gradient of Z!(')() for iq = 0, which determines j(1) uniquely as

j(i) = -j(°)a3[1/'y(l + a)2 + l/6(c, + a)2], (A15)

In a similar manner we find that the solutions to the equations of order e in the inner re-
gions are as follows,

c(2)() [(1 + a)/y2]{A(2)(l -eft) -

+ [(j(0))2a1/(1 + a)2,y6][(2(1 + a) + a212/(1 + a)3)(1 - e-)

+ 2a# y~+ (1+ a)(4)2 _ a/3 (e-'Y - e 2,yk)
(1 + a) 3(1 + a)

2(1 )3 [al- (1 + a)2][a/3 + J(l + a)2]fye-t
- j[a - (1 + a)2](,y)2e-t]}, (A16)

- [(cl + a)/62]{(A(2) - j(2))(1 - e-6") + P(l)r

+ (( ) )2a F2(c, + a) + ( a 32 1 -e )(c, + a)2S6 L- (C1 + aL)3fI

+ (2o# 5a + (cl + a)(6b)2 a (e -2)
(c, + a) 3(c, + a)

2(c + a)3 [a/3 - (cl + a)2][a# + 1(c, + a)2] 6ie-^
- I[a3 - (c, + a)2](61)2 e- ]}, (A17)

whence, with the aid of Eqs. A5 and All,

A(2) = _ j(1)[a,3/'y(l + a)2] + (j(0))2(l/12/2y4) + (5/6)[(l + a)/76]

- [5/1292(1 + a)] - [1/2(1 + a)2]}, (A18)

j(2) = A-(2) j(')[a3/6(cj + a)2] + (j(O))2f_(1/1264)
-(5/6)[(c, + a)/66] + [5/1262(C1 + a)] + [1/2(c, + a)2]j. (A19)

From Eqs. Al, A13, A15, and A19, we determine the current density to order e as
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= (1 - c,)[I + af/(1 + a)(c, + a)] - '/12a#13[ a)2 6( a)2]

( [7 +a)2 + 2 a)] + (1--c) +(1+ axc1 + a)]

1 + 5 (1 + a) _ 5 1
L12,4 6+ 6 122(1 + a) 2(1 + a)2

1 _ 5(Cl+a) + + 1 ]'1 +0(E3/2) (A20)
1264 6 66 1262(C1 + a) 2(c + a)2JJ
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