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Abstract

The purpose of this paper is to introduce various concepts of #-domination, which generalize
and unify different well-known kinds of domination in graphs. We generalize a result of Lovasz
concerning the existence of a partition of a set of vertices of G into independent subsets and
a result of Favaron concerning a property of Si-dominating sets. Gallai-type equalities for the
strong Z-domination number are proved, which generalize Nieminen’s result.Copyright © 1998
Elsevier Science B.V. All rights reserved
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In this paper we will consider finite undirected graphs with no multiple edges, and
with no loops. For a graph G we will refer to V(G) (or V) and E(G) (or E) as the
vertex and edge set, respectively.

A nonempty subset D of the vertex set V' of a graph G is a dominating set if every
vertex in V' — D is adjacent with a member of D. If ueD and veV — D, and uv€kE,
we say that u dominates v and v is dominated by u. The minimum of the cardinalities
of the minimal dominating sets in G is called the domination number of G and it is
denoted y(G).

The study of domination in graphs was initiated by Ore [11], for a survey see the
special volume Discrete Math. 86 (1990). Applications of minimum dominating sets
have been suggested by many authors, but the determination of the domination number
is an NP-complete problem, see [6]. It should be noted that bounds on y(G) do exist,
though the parameters values on which these bounds depend may also be diffucult to
determine.
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We write H <G if H is an induced subgraph of G. We use the notation (4)s for
the subgraph of G induced by 4 C V(G), by m(4) we denote the number of edges of
(4)¢ and by d,(v) the number of neighbours in 4 of a vertex ve V.

A set SCV(G) is said to be independent if (S)¢ is totally disconnected, i.e., has
no edge. Obviously, each maximal independent set is a minimal dominating set. If §
is a maximal independent set of G, then (SU{v})s contains K,, as a subgraph for
any veV — § ie., the subgraph which is forbidden for the property ‘to be totally
disconnected’. This observation leads us to the various concepts of #-domination in
graphs with respect to any hereditary property Z.

Let .4 denote the set of all mutually nonisomorphic graphs.

If 2 is a nonempty subset of .#, then & will also denote the property that a graph
is a member of the set 2.

A property 2 of graphs is said to be induced hereditary if whenever Ge€ % and
H <G, then also H € . For hereditary properties with respect to a partial order see [1].

Any induced hereditary property & of graphs is uniquely determined by the set of
its forbidden subgraphs, which is defined as follows:

C(P)={He S H¢ P but (H —v)cP for any ve V(H)}.

Let us denote by M the set of all induced hereditary properties of graphs.

A property & is said to be additive, if for each graph G all of whose components
have the property 2 it follows that G & 2. Obviously, £ is additive if and only if the
following holds: if H and G have property 2, then so does their disjoint union H U G.
Denote by M? the set of all additive-induced hereditary properties of graphs.

According to [1] we list some induced hereditary properties in order to introduce
the notion which will be used in the paper.

¢={Gel: G is totally disconnected}, C(0)={K,};
S={Gel: (G)<k}, C(A)={H: |[V(H)| =k +2=A(H) + 1};
S ={Ge€l: G does not contain Ky 2}, C(HA)={Kis2}

Let €M and G=(V,E) be a graph. Two vertices u and v of G are called
P-adjacent if there is a subgraph H’ of G isomorphic to H € C(£) containing u and
v. For a vertex v€V by Nx(v) we denote the P-neighbourhood of v, ie., Np(v)=
{ucV:u is P-adjacent to v}. For a set X CV, let Npy(X)= [J,cy N2(v). Especially
N(v)=N¢(v).

Next, for a vertex v€ V(G) we denote the set of all forbidden subgraphs containing v
by Cg »(v)={H'<G:veV(H'), H ~HecC(P)}.

The number |Cg »(v)| is called P-degree of v in G and it is denoted degg ,(v).
If deg; »(v)=1, then v is said to be #-pendant. 1f deg; ,(v) =0, then v is said to be
P-isolated.

For a property 2, let A(?)=min{A(H): Hc C(P)}.

A set SCV(G) is P-independent in G if (S)g€P.

A set DCV is said to be P-dominating in G if Ny»(v)ND#0 for any ve ¥V — D.
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A set DCV is said to be strongly ?-dominating in G if for every veV — D there
is H' <G containing v such that H' ~H € C(#) and V(H') — {v} CD.

The minimum of the cardinalities of the (strongly) #-dominating sets of G is called
the (strong) P-domination number of G and is denoted by y.,(G) (y,(G)). respec-
tively. !

Notice, that if 2 =(, then #-dominating and strongly #-dominating sets in G are
dominating sets in the ordinary sense.

Next, if Z=.4,_,, then the .%,_,-dominating set in G is the K,-dominating set in G,
see [8].

Lemma. Let <M. For any graph G and every P-independent set D of G such that
w(D) = A(P)|D| — m(D) is maximum, every vertex of V — D is dominated by at least
A(P) vertices of D.

Proof. Let D be a P-independent set such that w(D) is maximum. Let us assume
that there is a vertex v€V — D which is not dominated by at least A(#) vertices
of D. Let # ={H):i=1,...,r} be the family of all forbidden subgraphs in G with
veEV(H!) and (V(H!)— {v}) CD. It is clear that #; # 0, for otherwise, (DU {v}) €2
and w(D U {v})>w(D), a contradiction.

Let

U= | J(V(H)) —~ {v}) and N(v) "D =B with |B|=b.

i=1

Let A be a subset of U defined as follows:
A={x1dy(x)=2A(P) — 1, if xeNQ@)}U{x: dy(x)=A(P), if x&N(v)}.

Let 7 C A be a minimal transversal of {V(H!)—{v}:i=1,...,r}. Such a transversal
exists since AN(V(H) — {v})#0 for i=1,...,r. Now we consider the set C = (D —
Tyu{v}. Obviously, the set C is 2-independent. Let |T| =t and |TNB|=s. Since T
is minimal, for each x€ BN T there is H, € 3 such that dy (x)=A4(#) — | and for
each yeT — B there is H, € #, such that dy (y)= A(Z). Now, we can estimate the
number of edges in (C); as follows:

m(C) < m(D)+b—s—(t — $)AP) — s(A(P) — 1) — m(T)
= m(D)+ b — tAP) — m(T).

Hence, w(C) = A(?)|C| — m(CYzA(PX|D| —~t + 1) — (m(DY+ b — tA(P) — m(T)) =
A(P)D| — m(D) + A(P) — b+ m(T)>w(D), a contradiction, ]

' ¥(G) is #-dominating set and also strongly #-dominating set. Every (strongly) #-dominating set contains
a minimal (strongly) Z-dominating subset, therefore y.»(G) and (y/,(G)) are defined for every G.



54 M. Borowiecki, D. Michalak | Discrete Mathematics 191 (1998) 51-56

Using induction on A(G) and the above lemma we get the following result concern-
ing the existence of a partition of ¥ (G) into a ‘small’ number of #-independent subsets.

Theorem 1. Let <M. Then for every graph G there is a partition (V\,...,V;) of V
into t = |A(G)/ A(P)] + 1 vertex disjoint subsets with (Vi)eP for i=1,...,¢

For 2 = %, Theorem 1 implies a result of Lovasz [9].

Some other results of this type are presented in [1].

Since every maximal Z-independent set of G is a minimal strongly #-dominating
set, Lemma implies the following result.

Theorem 2. Let M. In every graph G there exists a minimal strongly -
dominating set D of G such that every vertex of V — D is dominated by at least
A(P) vertices of D.

Theorem 2 implies Favaron’s Theorem [2] in the case Z = 4.

In 1959 Gallai presented his, now classical, theorem, involving the vertex covering
number o, the vertex independence number f3;, the edge covering number «; and the
edge independence number f3;.

Theorem (Gallai [5]). For every nontrivial connected graph G with p vertices we
have

o+ Po=p and ay+ fi=p.

A large number of similar results and generalizations of this theorem have been
obtained in subsequent years; they are called Gallai-type equalities.

Theorem (Nieminen [10]). Let y(G) be the domination number and e(G) be the
maximum number of pendant edges in a spanning forest of a graph G with p vertices.
Then y(G) + &(G)=p.

Let €M and G be a graph. Let S be a spanning subgraph of G. A family
X»(S)={G1,Gs,...,Gi} of induced subgraphs of § such that
(1) G;~He(C(#) and
(2) For any G; there is a vertex v;€ V(G;) such that v; ¢ V(G;), j#i, 1<i,j<k is
called a family of P-pendant subgraphs of S.
A vertex v; € V(G;) satisfying (2) is called a #-pendant vertex in the family X»(S).
Let £»(G) be the maximum number of #-pendant subgraphs in a spanning subgraph
of the graph G.
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Notice, that if 2= (0, then £,(G)=¢&(G).

Theorem 3. Let ZcM. For every graph G of order p, we have

Y)(G) + ex(G)= p.

Proof. Let D be a minimal strongly #-dominating set with [D|=1+/,(G). Then for
every x&V — D there is H' <G, H' ~H e C(2), such that xeV(H’) and V(H') N
D=V(H'"y - {x}. For every x&€ ¥V — D we choose exactly one such subgraph and de-
note it by H,; in this way, we have a family of Z-pendant subgraphs in a spanning
subgraph S of G with the edge set E(S)= J,.,_pE(H;). Hence, £,(G)>
|V = D|=p —7,(G).

On the other hand, let S be a spanning subgraph of G with #-pendant subgraphs
Gy, Gy,...,G, In S, where ¢ = £»(G). By X; we denote the set of all #-pendant vertices
of the subgraph G;, 1 <i<e¢. The family of sets {X,,X5....,X,} has a system of different
representatives. Denote one of them by Y. It is obvious that |Y|=¢»(G). The set
V —Y is a strongly #-dominating set of G. Hence y,(G)<|V ~ Y|= p —e,(G). This
completes the proof. [

Hedetniemi and Laskar proved a similar equality as in Nieminen’s Theorem, involv-
ing connectivity.

A set DCV is called connected dominating in G, if D is a dominating set and (D)
is a connected graph. By 7.(G) is denoted the cardinality of a minimum connected
dominating set in G. Let ¢(G) equal the maximum number of pendant edges in a
spanning tree of G.

Theorem (Hedetniemi and Laskar [7]). Let G be a connected graph of order p. Then
VC(G) + 6C(G) =p-

Let G be a connected graph and ZeM?. If a set DCV(G) is strongly
#-dominating and (D) is a connected graph, then D is said to be a connected strongly
P-dominating set. The minimum of the cardinalities of the connected strongly #-
dominating sets is called the connected strong 2-domination number and denoted by
Ve.»(G).

Now, we introduce the corresponding number to &.(G).

Let G be a connected graph and #€M? and S be a connected spanning subgraph
of G with a family X, of %-pendant subgraphs. Let ¥ ={v\,v2,...,0x}, ;€ V(G)),
1 <i<k be a set of ?-pendant vertices in X ,»(S).

If (V¥ —Y)s is a connected graph, then we denote this family by X »(S).

Let ¢ »(G) equal the maximum number of elements in an X; »(S).

Theorem 4. For every connected graph G of order p and P € M? we have

e r(G) + e 2(G)= p.
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Proof. To prove the above theorem it is enough to notice that forbidden subgraphs
of an additive property are connected and to proceed analogously to the proof of the
previous theorem. [

Note that the results of this paper can be extended to the hereditary properties with
respect to a partial order as well.
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