

Discrete Mathematics 191 (1998) 51-56

Generalized independence and domination in graphs

Mieczysław Borowiecki*, Danuta Michalak

Institute of Mathematics, Technical University, Podgórna 50, 65-246 Zielona Góra, Poland

Received 10 May 1996; revised 7 November 1996; accepted 23 December 1997

Abstract

The purpose of this paper is to introduce various concepts of \mathcal{P} -domination, which generalize and unify different well-known kinds of domination in graphs. We generalize a result of Lovász concerning the existence of a partition of a set of vertices of G into independent subsets and a result of Favaron concerning a property of S_k -dominating sets. Gallai-type equalities for the strong \mathcal{P} -domination number are proved, which generalize Nieminen's result.Copyright © 1998 Elsevier Science B.V. All rights reserved

Keywords: Dominating set; Independent set; Hereditary property of graphs; Vertex partition

1.

In this paper we will consider finite undirected graphs with no multiple edges, and with no loops. For a graph G we will refer to V(G) (or V) and E(G) (or E) as the vertex and edge set, respectively.

A nonempty subset D of the vertex set V of a graph G is a *dominating* set if every vertex in V - D is adjacent with a member of D. If $u \in D$ and $v \in V - D$, and $uv \in E$, we say that u *dominates* v and v is *dominated* by u. The minimum of the cardinalities of the minimal dominating sets in G is called the *domination number* of G and it is denoted $\gamma(G)$.

The study of domination in graphs was initiated by Ore [11], for a survey see the special volume Discrete Math. 86 (1990). Applications of minimum dominating sets have been suggested by many authors, but the determination of the domination number is an NP-complete problem, see [6]. It should be noted that bounds on $\gamma(G)$ do exist, though the parameters values on which these bounds depend may also be diffucult to determine.

^{*} Corresponding author. E-mail: m.borowiecki@im.pz.zgora.pl.

⁰⁰¹²⁻³⁶⁵X/98/\$19.00 Copyright © 1998 Elsevier Science B.V. All rights reserved *PII* S0012-365X(98)00092-2

We write $H \leq G$ if H is an induced subgraph of G. We use the notation $\langle A \rangle_G$ for the subgraph of G induced by $A \subseteq V(G)$, by m(A) we denote the number of edges of $\langle A \rangle_G$ and by $d_A(v)$ the number of neighbours in A of a vertex $v \in V$.

A set $S \subseteq V(G)$ is said to be *independent* if $\langle S \rangle_G$ is totally disconnected, i.e., has no edge. Obviously, each maximal independent set is a minimal dominating set. If S is a maximal independent set of G, then $\langle S \cup \{v\} \rangle_G$ contains K_2 , as a subgraph for any $v \in V - S$ i.e., the subgraph which is forbidden for the property 'to be totally disconnected'. This observation leads us to the various concepts of \mathcal{P} -domination in graphs with respect to any hereditary property \mathcal{P} .

Let I denote the set of all mutually nonisomorphic graphs.

If \mathcal{P} is a nonempty subset of \mathcal{I} , then \mathcal{P} will also denote the property that a graph is a member of the set \mathcal{P} .

A property \mathscr{P} of graphs is said to be *induced hereditary* if whenever $G \in \mathscr{P}$ and $H \leq G$, then also $H \in \mathscr{P}$. For hereditary properties with respect to a partial order see [1].

Any induced hereditary property \mathcal{P} of graphs is uniquely determined by the set of its forbidden subgraphs, which is defined as follows:

$$C(\mathscr{P}) = \{ H \in \mathscr{I} : H \notin \mathscr{P} \text{ but } (H - v) \in \mathscr{P} \text{ for any } v \in V(H) \}.$$

Let us denote by M the set of all induced hereditary properties of graphs.

A property \mathscr{P} is said to be *additive*, if for each graph G all of whose components have the property \mathscr{P} it follows that $G \in \mathscr{P}$. Obviously, \mathscr{P} is additive if and only if the following holds: if H and G have property \mathscr{P} , then so does their disjoint union $H \cup G$. Denote by \mathbf{M}^a the set of all additive-induced hereditary properties of graphs.

According to [1] we list some induced hereditary properties in order to introduce the notion which will be used in the paper.

$$\mathcal{O} = \{ G \in I : G \text{ is totally disconnected} \}, C(\mathcal{O}) = \{ K_2 \};$$

$$\mathcal{S}_k = \{ G \in I : \Delta(G) \leq k \}, C(\mathcal{S}_k) = \{ H : |V(H)| = k + 2 = \Delta(H) + 1 \};$$

$$\mathcal{S}_k = \{ G \in I : G \text{ does not contain } K_{k+2} \}, C(\mathcal{S}_k) = \{ K_{k+2} \}.$$

Let $\mathscr{P} \in \mathbf{M}$ and G = (V, E) be a graph. Two vertices u and v of G are called \mathscr{P} -adjacent if there is a subgraph H' of G isomorphic to $H \in C(\mathscr{P})$ containing u and v. For a vertex $v \in V$ by $N_{\mathscr{P}}(v)$ we denote the \mathscr{P} -neighbourhood of v, i.e., $N_{\mathscr{P}}(v) = \{u \in V: u \text{ is } \mathscr{P}\text{-adjacent to } v\}$. For a set $X \subseteq V$, let $N_{\mathscr{P}}(X) = \bigcup_{v \in X} N_{\mathscr{P}}(v)$. Especially $N(v) = N_{\mathscr{C}}(v)$.

Next, for a vertex $v \in V(G)$ we denote the set of all forbidden subgraphs containing v by $C_{G,\mathscr{P}}(v) = \{H' \leq G: v \in V(H'), H' \simeq H \in C(\mathscr{P})\}.$

The number $|C_{G,\mathscr{P}}(v)|$ is called \mathscr{P} -degree of v in G and it is denoted $\deg_{G,\mathscr{P}}(v)$. If $\deg_{G,\mathscr{P}}(v) = 1$, then v is said to be \mathscr{P} -pendant. If $\deg_{G,\mathscr{P}}(v) = 0$, then v is said to be \mathscr{P} -isolated.

For a property \mathscr{P} , let $\Delta(\mathscr{P}) = \min{\{\Delta(H): H \in C(\mathscr{P})\}}$.

A set $S \subseteq V(G)$ is \mathcal{P} -independent in G if $\langle S \rangle_G \in \mathcal{P}$.

A set $D \subseteq V$ is said to be \mathscr{P} -dominating in G if $N_{\mathscr{P}}(v) \cap D \neq \emptyset$ for any $v \in V - D$.

A set $D \subseteq V$ is said to be strongly \mathscr{P} -dominating in G if for every $v \in V - D$ there is $H' \leq G$ containing v such that $H' \simeq H \in C(\mathscr{P})$ and $V(H') - \{v\} \subseteq D$.

The minimum of the cardinalities of the (strongly) \mathscr{P} -dominating sets of G is called the (strong) \mathscr{P} -domination number of G and is denoted by $\gamma_{\mathscr{P}}(G)$ ($\gamma'_{\mathscr{P}}(G)$), respectively.¹

Notice, that if $\mathcal{P} = \mathcal{O}$, then \mathcal{P} -dominating and strongly \mathcal{P} -dominating sets in G are dominating sets in the ordinary sense.

Next, if $\mathscr{P} = \mathscr{I}_{n-2}$, then the \mathscr{I}_{n-2} -dominating set in G is the K_n -dominating set in G, see [8].

2.

Lemma. Let $\mathscr{P} \in \mathbf{M}$. For any graph G and every \mathscr{P} -independent set D of G such that $w(D) = \Delta(P)|D| - m(D)$ is maximum, every vertex of V - D is dominated by at least $\Delta(\mathscr{P})$ vertices of D.

Proof. Let D be a \mathscr{P} -independent set such that w(D) is maximum. Let us assume that there is a vertex $v \in V - D$ which is not dominated by at least $\Delta(\mathscr{P})$ vertices of D. Let $\mathscr{H}_v = \{H_v^i: i = 1, ..., r\}$ be the family of all forbidden subgraphs in G with $v \in V(H_v^i)$ and $(V(H_v^i) - \{v\}) \subseteq D$. It is clear that $\mathscr{H}_v \neq \emptyset$, for otherwise, $\langle D \cup \{v\} \rangle \in \mathscr{P}$ and $w(D \cup \{v\}) > w(D)$, a contradiction.

Let

$$U = \bigcup_{i=1}^{\prime} (V(H_v^i) - \{v\}) \text{ and } N(v) \cap D = B \text{ with } |B| = b.$$

Let A be a subset of U defined as follows:

$$A = \{x: d_U(x) \ge \Delta(\mathscr{P}) - 1, \text{ if } x \in N(v)\} \cup \{x: d_U(x) \ge \Delta(\mathscr{P}), \text{ if } x \notin N(v)\}.$$

Let $T \subseteq A$ be a minimal transversal of $\{V(H_v^i) - \{v\}: i = 1, ..., r\}$. Such a transversal exists since $A \cap (V(H_v^i) - \{v\}) \neq \emptyset$ for i = 1, ..., r. Now we consider the set $C = (D - T) \cup \{v\}$. Obviously, the set C is \mathscr{P} -independent. Let |T| = t and $|T \cap B| = s$. Since T is minimal, for each $x \in B \cap T$ there is $H_x \in \mathscr{H}_v$ such that $d_{H_x}(x) \ge \Delta(\mathscr{P}) - 1$ and for each $y \in T - B$ there is $H_y \in \mathscr{H}_v$ such that $d_{H_y}(y) \ge \Delta(\mathscr{P})$. Now, we can estimate the number of edges in $\langle C \rangle_G$ as follows:

$$m(C) \leq m(D) + b - s - (t - s)\Delta(\mathscr{P}) - s(\Delta(\mathscr{P}) - 1) - m(T)$$

= $m(D) + b - t\Delta(\mathscr{P}) - m(T).$

Hence, $w(C) = \Delta(\mathscr{P})|C| - m(C) \ge \Delta(\mathscr{P})(|D| - t + 1) - (m(D) + b - t\Delta(\mathscr{P}) - m(T)) = \Delta(\mathscr{P})|D| - m(D) + \Delta(\mathscr{P}) - b + m(T) > w(D)$, a contradiction. \Box

V(G) is \mathscr{P} -dominating set and also strongly \mathscr{P} -dominating set. Every (strongly) \mathscr{P} -dominating set contains a minimal (strongly) \mathscr{P} -dominating subset, therefore $\gamma_{\mathscr{P}}(G)$ and $(\gamma'_{\mathscr{P}}(G))$ are defined for every G.

Using induction on $\Delta(G)$ and the above lemma we get the following result concerning the existence of a partition of V(G) into a 'small' number of \mathcal{P} -independent subsets.

Theorem 1. Let $\mathcal{P} \in \mathbf{M}$. Then for every graph G there is a partition (V_1, \ldots, V_t) of V into $t = \lfloor \Delta(G) / \Delta(\mathcal{P}) \rfloor + 1$ vertex disjoint subsets with $\langle V_i \rangle \in \mathcal{P}$ for $i = 1, \ldots, t$.

For $\mathscr{P} = \mathscr{G}_k$ Theorem 1 implies a result of Lovász [9].

Some other results of this type are presented in [1].

Since every maximal \mathcal{P} -independent set of G is a minimal strongly \mathcal{P} -dominating set, Lemma implies the following result.

Theorem 2. Let $\mathcal{P} \in \mathbf{M}$. In every graph G there exists a minimal strongly \mathcal{P} -dominating set D of G such that every vertex of V - D is dominated by at least $\Delta(\mathcal{P})$ vertices of D.

Theorem 2 implies Favaron's Theorem [2] in the case $\mathscr{P} = \mathscr{S}_k$.

3.

In 1959 Gallai presented his, now classical, theorem, involving the vertex covering number α_0 , the vertex independence number β_0 , the edge covering number α_1 and the edge independence number β_1 .

Theorem (Gallai [5]). For every nontrivial connected graph G with p vertices we have

 $\alpha_0 + \beta_0 = p$ and $\alpha_1 + \beta_1 = p$.

A large number of similar results and generalizations of this theorem have been obtained in subsequent years; they are called Gallai-type equalities.

Theorem (Nieminen [10]). Let $\gamma(G)$ be the domination number and $\varepsilon(G)$ be the maximum number of pendant edges in a spanning forest of a graph G with p vertices. Then $\gamma(G) + \varepsilon(G) = p$.

Let $\mathscr{P} \in \mathbf{M}$ and G be a graph. Let S be a spanning subgraph of G. A family $X_{\mathscr{P}}(S) = \{G_1, G_2, \ldots, G_k\}$ of induced subgraphs of S such that

- (1) $G_i \simeq H \in C(\mathscr{P})$ and
- (2) For any G_i there is a vertex $v_i \in V(G_i)$ such that $v_i \notin V(G_j)$, $j \neq i$, $1 \leq i, j \leq k$ is called a *family of* \mathcal{P} -pendant subgraphs of S.

A vertex $v_i \in V(G_i)$ satisfying (2) is called a \mathscr{P} -pendant vertex in the family $X_{\mathscr{P}}(S)$. Let $\varepsilon_{\mathscr{P}}(G)$ be the maximum number of \mathscr{P} -pendant subgraphs in a spanning subgraph of the graph G. Notice, that if $\mathscr{P} = \mathcal{O}$, then $\varepsilon_{\mathscr{P}}(G) = \varepsilon(G)$.

Theorem 3. Let $\mathcal{P} \in \mathbf{M}$. For every graph G of order p, we have

$$\gamma'_{\mathscr{P}}(G) + \varepsilon_{\mathscr{P}}(G) = p.$$

Proof. Let D be a minimal strongly \mathscr{P} -dominating set with $|D| = \gamma'_{\mathscr{P}}(G)$. Then for every $x \in V - D$ there is $H' \leq G$, $H' \simeq H \in C(\mathscr{P})$, such that $x \in V(H')$ and $V(H') \cap$ $D = V(H') - \{x\}$. For every $x \in V - D$ we choose exactly one such subgraph and denote it by H_x ; in this way, we have a family of \mathscr{P} -pendant subgraphs in a spanning subgraph S of G with the edge set $E(S) = \bigcup_{x \in V - D} E(H_x)$. Hence, $\varepsilon_{\mathscr{P}}(G) \geq$ $|V - D| = p - \gamma'_{\mathscr{P}}(G)$.

On the other hand, let S be a spanning subgraph of G with \mathscr{P} -pendant subgraphs $G_1, G_2, \ldots, G_{\varepsilon}$ in S, where $\varepsilon = \varepsilon_{\mathscr{P}}(G)$. By X_i we denote the set of all \mathscr{P} -pendant vertices of the subgraph $G_i, 1 \leq i \leq \varepsilon$. The family of sets $\{X_1, X_2, \ldots, X_{\varepsilon}\}$ has a system of different representatives. Denote one of them by Y. It is obvious that $|Y| = \varepsilon_{\mathscr{P}}(G)$. The set V - Y is a strongly \mathscr{P} -dominating set of G. Hence $\gamma'_{\mathscr{P}}(G) \leq |V - Y| = p - \varepsilon_{\mathscr{P}}(G)$. This completes the proof. \Box

Hedetniemi and Laskar proved a similar equality as in Nieminen's Theorem, involving connectivity.

A set $D \subseteq V$ is called *connected dominating* in G, if D is a dominating set and $\langle D \rangle_G$ is a connected graph. By $\gamma_c(G)$ is denoted the cardinality of a minimum connected dominating set in G. Let $\varepsilon_c(G)$ equal the maximum number of pendant edges in a spanning tree of G.

Theorem (Hedetniemi and Laskar [7]). Let G be a connected graph of order p. Then $\gamma_{c}(G) + \varepsilon_{c}(G) = p$.

Let G be a connected graph and $\mathscr{P} \in \mathbf{M}^a$. If a set $D \subseteq V(G)$ is strongly \mathscr{P} -dominating and $\langle D \rangle_G$ is a connected graph, then D is said to be a connected strongly \mathscr{P} -dominating set. The minimum of the cardinalities of the connected strongly \mathscr{P} -dominating sets is called the connected strong \mathscr{P} -domination number and denoted by $\gamma'_{c,\mathscr{P}}(G)$.

Now, we introduce the corresponding number to $\varepsilon_{c}(G)$.

Let G be a connected graph and $\mathscr{P} \in \mathbf{M}^a$ and S be a connected spanning subgraph of G with a family $X_{\mathscr{P}}$ of \mathscr{P} -pendant subgraphs. Let $Y = \{v_1, v_2, \ldots, v_k\}, v_i \in V(G_i),$ $1 \leq i \leq k$ be a set of \mathscr{P} -pendant vertices in $X_{\mathscr{P}}(S)$.

If $\langle V - Y \rangle_G$ is a connected graph, then we denote this family by $X_{c,\mathscr{P}}(S)$. Let $\varepsilon_{c,\mathscr{P}}(G)$ equal the maximum number of elements in an $X_{c,\mathscr{P}}(S)$.

Theorem 4. For every connected graph G of order p and $\mathcal{P} \in \mathbf{M}^{a}$ we have

$$\gamma'_{\mathrm{c},\mathscr{P}}(G) + \varepsilon_{\mathrm{c},\mathscr{P}}(G) = p.$$

Proof. To prove the above theorem it is enough to notice that forbidden subgraphs of an additive property are connected and to proceed analogously to the proof of the previous theorem. \Box

Note that the results of this paper can be extended to the hereditary properties with respect to a partial order as well.

References

- [1] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: Advances in Graph Theory, Vishwa International Publications, 1991, 41-68.
- [2] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, J. Combin. Theory B 39 (1985) 101-102.
- [3] J.F. Fink, M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, 1985, pp. 283–300.
- [4] J.F. Fink, M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, 1985, pp. 301–311.
- [5] T. Gallai, Über extreme Punkt-und Kantenmengen, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 2 (1959) 133–138.
- [6] M.R. Garey, D.S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, W.H. Freeman, San Francisco, CA, 1979.
- [7] S.T. Hedetniemi, R. Laskar, Connected Domination in Graphs, in: Graph Theory and Combinatorics, B. Bollobás (Eds.), Academic Press, London, 1984, pp. 209–218.
- [8] M.A. Henning, H.C. Swart, Bounds on a generalized domination parameter, Quaestiones Math. 13 (1990) 237-253.
- [9] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hung. 1 (1966) 237-238.
- [10] J. Nieminen, Two bounds for the domination number of a graph, J. Inst. Math. Appl. 14 (1974) 183-187.
- [11] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., vol. 38, Providence, RI, 1962.