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A b s t r a c t  

The purpose of this paper is to introduce various concepts of g?-domination, which generalize 
and unify different well-known kinds of domination in graphs. We generalize a result of Lov/tsz 
concerning the existence of a partition of a set of vertices of G into independent subsets and 
a result of Favaron concerning a property of Sk-dominating sets. Gallai-type equalities for the 
strong ~-domination number are proved, which generalize Nieminen's result.Copyright @ 1998 
Elsevier Science B.V. All rights reserved 
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In this paper we will consider finite undirected graphs with no multiple edges, and 

with no loops. For a graph G we will refer to V(G) (or V) and E(G) (or E)  as the 
vertex and edge set, respectively. 

A nonempty subset D of  the vertex set V of  a graph G is a dominating set if  every 

vertex in V -  D is adjacent with a member of  D. I f  uED and vE V -  D, and uvEE, 

we say that u dominates v and v is dominated by u. The minimum of  the cardinalities 

o f  the minimal dominating sets in G is called the domination number of  G and it is 

denoted 7(G). 
The study of  domination in graphs was initiated by Ore [11], for a survey see the 

special volume Discrete Math. 86 (1990). Applications of  minimum dominating sets 

have been suggested by many authors, but the determination o f  the domination number 

is an NP-complete problem, see [6]. It should be noted that bounds on 7(G) do exist, 
though the parameters values on which these bounds depend may also be diffucult to 
determine. 
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We write H<<.G if H is an induced subgraph of G. We use the notation (A)c for 

the subgraph of G induced by A C V(G), by re(A) we denote the number of  edges of  
(A)c and by dm(v) the number of  neighbours in A of a vertex vE V. 

A set S C_ V(G) is said to be independent if (S)G is totally disconnected, i.e., has 

no edge. Obviously, each maximal independent set is a minimal dominating set. I f  S 
is a maximal independent set of G, then (SU{v})c  contains /£2, as a subgraph for 
any v E V -  S i.e., the subgraph which is forbidden for the property 'to be totally 
disconnected'. This observation leads us to the various concepts of  ~-domination in 

graphs with respect to any hereditary property 2~. 
Let J denote the set of  all mutually nonisomorphic graphs. 
I f  ~ is a nonempty subset of  jr, then 2~ will also denote the property that a graph 

is a member of  the set ~ .  
A property 59 of graphs is said to be induced hereditary if whenever G E 59 and 

H ~< G, then also H E ~ .  For hereditary properties with respect to a partial order see [1]. 
Any induced hereditary property 2~ of graphs is uniquely determined by the set of  

its forbidden subgraphs, which is defined as follows: 

C(2~) = {HE J :  H ~ but ( H -  v)E2~ for any vE V(H)}. 

Let us denote by M the set of  all induced hereditary properties of  graphs. 
A property ~ is said to be additive, if  for each graph G all of  whose components 

have the property 59 it follows that G E ~ .  Obviously, ~ is additive if and only if the 
following holds: if H and G have property ~ ,  then so does their disjoint union H @ G. 
Denote by M a the set of  all additive-induced hereditary properties of  graphs. 

According to [1] we list some induced hereditary properties in order to introduce 
the notion which will be used in the paper. 

C =  {GEl :  G is totally disconnected}, C ( C ) =  {K2}; 

5~k = { a  El:  A(G)<.k}, C(SZk) ---- {H: [ V(H)] = k + 2 - -A(H)  + 1); 

= {GEl :  G does not contain Kk+2}, C(~ ) - - -  {Kk+2). 

Let ~ E M  and G=(V,E) be a graph. Two vertices u and v of  G are called 
~-adjacent if  there is a subgraph H t of  G isomorphic to H E C ( ~ )  containing u and 
v. For a vertex v E V by N~(v) we denote the ~-neighbourhood of v, i.e., N¢(v)= 
{uE V:u is 59-adjacent to v}. For a set X c_ V, let N¢(X)= U~ex N~(v). Especially 
N(v) =Nc, (v). 

Next, for a vertex vE V(G) we denote the set of  all forbidden subgraphs containing v 
by Cc,~(v) = {H'<<.G: vE V(H'), H' ~ H E  C(~')}. 

The number ]Cr,:¢(v)I is called ~-degree of v in G and it is denoted degv,.~(v ). 
I f  degc,.~(v ) = 1, then v is said to be ~-pendant. I f  degG..e(v ) = 0, then v is said to be 
~-isolated. 

For a property ~ ,  let A(~)=min{A(H): HEC(59)}.  
A set SC_ V(G) is ~-independent in G if (S)GE~.  
A set DC_ V is said to be ~-dominating in G ifN2(v)ND¢O for any vE V - D .  
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A set D C_ V is said to be strongly ~-dominating in G if for every v E V - D there 

is H '  ~<G containing v such that H '  ~ - - H E C ( ~ )  and V ( H ' ) -  {v} C_D. 
The minimum of  the cardinalities o f  the (strongly) ~-dominat ing sets o f  G is called 

the (strong) ,~-domination number of  G and is denoted by 7~(G) (Tt¢(G)), respec- 

tively. 1 

Notice, that if J / =  C, then ~-dominating and strongly ,#-dominating sets in G are 

dominating sets in the ordinary sense. 

Next, if g / =  J,i-2, then the ~_2-dominat ing set in G is the K,,-dominating set in G, 

see [8]. 

. 

Lemma.  Let ~ E M. For any graph G and every ~-independent set D of  G such that 

w(D) = A(P) IDI -  re(D) is maximum, ever), vertex o f  V -  D is dominated by at least 

A(g/) vertices o f  D. 

Proof.  Let D be a ~-independent set such that w(D) is maximum. Let us assume 

that there is a vertex v E V -  D which is not dominated by at least A(,JJ °) vertices 

of  D. Let ~ ' , =  {H~I: i =  1 . . . . .  r} be the family of  all forbidden subgraphs in G with 

v E V(H~) and (V(H~) - {v}) C_ D. It is clear that ~ ¢ 0, for otherwise, (D U {v}} E,~ 

and w(D U {v}) > w(D), a contradiction. 

Let 
Y 

U =  U ( V ( H { ) -  {v}) and N(v)ND----B with IBI = b .  
i = l  

Let A be a subset of  U defined as follows: 

A = { x :  d u ( x ) > ~ A ( ~ ) -  1, if  x E N ( v ) } U { x :  dv(x)>~A(~), if xq~N(t;)}. 

Let T C_A be a minimal transversal of  {V(H~()- {v}: i = 1 . . . . .  r}. Such a transversal 

exists since A n ( V ( H ~ ) -  { v } ) ¢  0 for i=- 1 . . . . .  r. Now we consider the set C = ( D -  

T)U{v} .  Obviously, the set C is ~-independent.  Let I T] = t  and ]TNBI=s.  Since T 

is minimal, for each x E B N T  there is HxE~.~, such that d~(x )>~A( .~ ) -  1 and for 

each y E T -  B there is H y E ~ ,  such that dH,(y)>~A(.~). Now, we can estimate the 

number o f  edges in (C)G as follows: 

re(C) <~ m(D) + b -  s -  (t - s ) A ( ~ ) -  s (A(~)  - 1 ) - m ( T )  

= m(D) + b - tA(~)  - m(T). 

Hence, w(C) = A(~) [C  I - m(C)>~A(:#)(IDI - t + 1) - (m(D) + b - tA(~)  - m( T) ) = 

A(~)ID[ - re(D) + A ( ~ )  - b + m(T)>w(D) ,  a contradiction. 

1 V(G) is .~-dominating set and also strongly ~-dominating set, Every (strongly) ~-dominating set contains 
a minimal (strongly) #-dominating subset, therefore 7~(G) and (7!¢(G)) are defined for every G. 
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Using induction on A(G) and the above lemma we get the following result concern- 
ing the existence of a partition of  V(G) into a 'small' number of ~-independent subsets. 

Theorem 1. Let ~ E M. Then for every graph G there is a partition ( Vl . . . . .  Vt ) of  V 
into t = IA(G)/A(~)J + 1 vertex disjoint subsets with (V,.)E~ for i=  1 . . . . .  t. 

For ~ = 5Pk Theorem 1 implies a result of Lovfisz [9]. 
Some other results of this type are presented in [1]. 
Since every maximal ~-independent set of G is a minimal 

set, Lemma implies the following result. 
strongly ~'-dominating 

Theorem 2. Let ~ E M .  In every graph G there exists a minimal strongly ~ -  
dominating set D of  G such that every vertex of  V - D is dominated by at least 
A ( ~ )  vertices o f  D. 

Theorem 2 implies Favaron's Theorem [2] in the case ~ = ~ .  

. 

In 1959 Gallai presented his, now classical, theorem, involving the vertex covering 
number ~0, the vertex independence number flo, the edge covering number ~1 and the 
edge independence number ill. 

Theorem (Gallai [5]). For every nontrivial connected graph G with p vertices we 

have 

~ o + f l o = p  and ~ l + f l l = p .  

A large number of similar results and generalizations of this theorem have been 
obtained in subsequent years; they are called Gallai-type equalities. 

Theorem (Nieminen [10]). Let 7(G) be the domination number and g(G) be the 
maximum number o f  pendant edges in a spanning forest of  a graph G with p vertices. 
Then 7(G) + e(G) = p. 

Let ~ E M  and G be a graph. Let S be a spanning subgraph of G. A family 
X & ( S )  ~- {GI, G2 . . . . .  Gk} of induced subgraphs of S such that 
(1) Gi~--HEC(~)  and 
(2) For any Gi there is a vertex vie V(Gi) such that vi q~ V(Gj), j ~ i ,  1 <<,i,j<~k is 

called a family of  ~-pendant subgraphs o f  S. 
A vertex vi E V(Gi) satisfying (2) is called a ~-pendant vertex in the family X~(S).  
Let e:~(G) be the maximum number of ~-pendant subgraphs in a spanning subgraph 

of the graph G. 
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Notice, that if ~ = C, then e e (G)  = e(G). 

Theorem 3. Let ~ E M. For every graph G o f  order p, we have 

7!¢(G) + e¢(G) = p. 

Proof. Let D be a minimal strongly ~-dominating set with IDI = 7!e(G). Then for 

every x~  V - D there is H '  <~G, H '  _ ~ H E C ( ~ ) ,  such that xE V(H' )  and V(H' )  N 

D = V(H' )  - {x}. For every xE V - D we choose exactly one such subgraph and de- 
note it by H~; in this way, we have a family of ?)'-pendant subgraphs in a spanning 

subgraph S of G with the edge set E ( S ) =  U,:cv_DE(H~). Hence, e¢(G)>~ 

IV - D I  = p  - 7~(G). 
On the other hand, let S be a spanning subgraph of G with ~-pendant subgraphs 

GI, G2 . . . . .  G, in S, where e = e,e(G). By X~ we denote the set of all ~-pendant vertices 
of the subgraph Gi, 1 <~ i <~ ~. The family of  sets {XI ,X2 . . . . .  X~:} has a system of different 

representatives. Denote one of them by Y. It is obvious that I Y l = e ¢ ( a ) ,  The set 
V - Y is a strongly ~-dominating set of G. Hence 7 ( ~ ( G ) ~ l g -  YI = P -  e~(G). This 
completes the proof. [] 

Hedetniemi and Laskar proved a similar equality as in Nieminen's Theorem, involv- 
ing connectivity. 

A set D C V is called connected dominating in G, i f D  is a dominating set and {D}G 

is a connected graph. By 7c(G) is denoted the cardinality of  a minimum connected 
dominating set in G. Let ~ ( G )  equal the maximum number of pendant edges in a 
spanning tree of  G. 

Theorem (Hedetniemi and Laskar [7]). Let G be a connected graph o f  order p. Then 
~,~(G) + ~ ( G )  = p, 

Let G be a connected graph and ~ E M  a. I f  a set D C V ( G )  is strongly 

Y)'-dominating and (D)G is a connected graph, then D is said to be a connected strongly 
,~-dominatin9 set. The minimum of the cardinalities of  the connected strongly ::~- 

dominating sets is called the connected strong ~-domination number and denoted by 

7'c,/~(G). 
Now, we introduce the corresponding number to ec(G). 
Let G be a connected graph and ,@ E M a and S be a connected spanning subgraph 

of G with a family X~ of ~-pendant subgraphs. Let Y = { v l , v 2  . . . . .  vk}, vicV(Gi), 
1 <~i<~k be a set of ~-pendant vertices in X~(S).  

If (V - Y)G is a connected graph, then we denote this family by Xc.,e(S). 

Let ec ~(G) equal the maximum number of elements in an Xc,~(S). 

Theorem 4. For every connected graph G o f  order p and ~ E M a we have 

7r~..~(G) + ec,.~(G)= p. 
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Proof. To prove the above theorem it is enough to notice that forbidden subgraphs 

of an additive property are connected and to proceed analogously to the proof of  the 
previous theorem. [] 

Note that the results of  this paper can be extended to the hereditary properties with 
respect to a partial order as well. 
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