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Abstract
Reactive oxygen species (ROS) are continuously generated during aerobic metabolism and at moderate level. They play a role in redox
signaling, but in significant concentration they cause oxidative damage and neurodegeneration. Because of the enhanced sensitivity of brain to
ROS, it is especially important to maintain the normal redox state in different types of neuron cells. In last decade it became clear that regular
exercise beneficially affects brain function, and can play an important preventive and therapeutic role in stroke, Alzheimer, and Parkinson
diseases. The effects of exercise appear to be very complex and could include neurogenesis via neurotrophic factors, increased capillariszation,
decreased oxidative damage, and increased proteolytic degradation by proteasome and neprilysin. Data from our and other laboratories indicate
that exercise-induced modulation of ROS levels plays a role in the protein content and expression of brain-derived neurotrophic factor, tyrosine-
related kinase B (TrkB), and cAMP response element binding protein, resulting in better function and increased neurogenesis. Therefore, it
appears that exercise-induced modulation of the redox state is an important means, by which exercise benefits brain function, increases the
resistance against oxidative stress, facilitates recovery from oxidative stress, and attenuates age-associated decline in cognition.
Copyright � 2013, Shanghai University of Sport. Production and hosting by Elsevier B.V.
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1. Introduction

Brain is an organ very sensitive to oxidative stress and this
is partly due to the high metabolic rate and the large amount of
iron and copper found in the organ. These interact with the
diffusible hydrogen peroxide and result in the generation of
the extremely reactive hydroxyl radical that yields damage to
proteins, lipids and DNA.1,2 Hydrogen peroxide is generated
by a number of systems, including reactions catalyzed by
monoamine oxidases A and B with a described location of
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neuronal and glial mitochondrial membranes.3 Besides the
possible iron-hydrogen peroxide interactions, Ca2þ-associated
reactive oxygen species (ROS) generation is also a potent
source of ROS in the brain. Both inhibition and activation of
neurons activates Ca2þ-traffic and the excess of glutamate
could result in large increases in ROS production.4,5 Neuronal
membranes are packed with phospholipids containing poly-
unsaturated fatty acid esters, which are very sensitive to attack
of ROS, causing a chain reaction which generates lipid radi-
cals and extensive membrane damage. Nicotinamide adenine
dinucleotide phosphate (NAD(P)H) oxidases are potent
cellular generators of superoxide including neurons and glias.6

NAD(P)H oxidase ROS generation can be influenced by free
fatty acids especially mono and polyunsaturated long-chain
fatty acids, which could increase ROS production.7 Despite
the fact that brain is well protected by the blood brain barrier,
it is important to note that it cannot provide full protection
against circulating inflammatory agents that can generate
radicals in the brain.8
vier B.V.
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It is well established that oxidative stress is closely linked
to the pathology of a variety of neurodegenerative diseases,
including age-associated disorders.9e11 Due to its high reac-
tivity and short lifespan, the direct detection of ROS is diffi-
cult, and hence, the amount is often judged from the alteration
of antioxidant status or the accumulation of relatively stable
products of lipid, protein and DNA interactions. However, the
levels of oxidative damage, besides the concentration and
reactivity of ROS, are also influenced by the activity of the
repair systems.

The levels of oxidative modification of lipids, proteins, and
DNA are generally used as markers of oxidative damage,
which are increased with the neuropathology of aging, and in
some cases suggested to be a causative factor of the progress
of specific diseases.12e14 However, besides ROS-associated
neurodegeneration which could be a result of significant load
of ROS, moderate amount of these reactive species could have
beneficial effects on signaling, neurogenesis, and in epigenetic
regulation as well.

For instance, during physical exercise there is an increased
generation of ROS,15 but regular exercise is known to improve
the physiological performance of skeletal and cardiac muscle
and decrease the incidence of a wide range of diseases,
including heart and vascular diseases, certain kind of cancer,
diabetes II, etc.16 In last decade it became clear that regular
exercise beneficially affects brain function as well, and could
play an important preventive and therapeutic role in stroke,
Alzheimer, and Parkinson diseases.11,17 The effects of exercise
appear to be very complex and could include neurogenesis via
neurotrophic factors, increased capillarization, decreased
oxidative damage, and increased proteolytic degradation by
proteasome and neprilysin.18e24 The present review focuses
on oxidative challenges related to the effects of exercise, and
attempts to summarize the available knowledge in this area.

2. Exercise and antioxidants in the brain

There are conflicting data on the effect of exercise on the
activities of antioxidant enzymes. It has been suggested that,
for instance, in the case of DNA, the damage can be reduced
from 109 to 106 in a daily base/cell as a result of the antiox-
idant scavenging system.25

The findings of an early study suggested that exercise,
voluntary running, results in oxidative damage to low vitamin
E fed animals.26 Swimming-exposed rats suffered significant
increases in lipid peroxidation, and glutathione peroxidase
(GPx) activity was also increased,27 while 6-hydrox-
ymelatonin supplementation prevented oxidative lipid dam-
age. On the other hand,28 it was noted that the activities of
antioxidant enzymes were dependent on brain region, and the
effects of exercise were also dependent on the brain portion. In
certain brain parts such as the stem and corpus striatum, ex-
ercise training resulted in increased activities of superoxide
dismutase (SOD) and GPx.28 We have reported that a single
bout of exercise, which caused oxidative damage to skeletal
muscle,29 liver and kidney,30 did not cause damage to the
brain.29 Further, the activities of antioxidant enzymes (Cu, Zn-
SOD, Mn-SOD, catalase (CAT), GPx) were not significantly
altered by an exercise session. A similar phenomenon has been
reported after exercise training. Treadmill running did not alter
the activities of SOD, CAT, or GPx in the brain of rats.
However exercised rats with diabetes have shown decreased
Cu, Zn-SOD, and GPx activities.31 In our recent study we
found that regular exercise increases the content of Cu, Zn-
SOD, GPx, and peroxisome proliferator-activated receptor-g
co-activator 1a (PGC-1a) and the later transcription co-acti-
vator is important since it is involved in mitochondrial
biogenesis.32 Indeed, PGC-1a activation could result in
decreased oxidative challenge, either by up-regulation of
antioxidant enzymes and/or by an increased number of mito-
chondria that allow lower levels of respiratory activity for the
same degree of ATP generation.

The available information on brain antioxidant status for
exercise suggests that exercise training selectively regulates
the activity of antioxidant enzymes in different brain regions.
The activity response of antioxidant enzymes in the brain, with
exercise, is probably dependent on the type of physical ac-
tivity, the intensity and duration of exercise training, and the
age, sex, and strain of rats.

3. Oxidative damage and functional changes

The first study, which described a relationship between the
accumulation of oxidative damage to proteins, reactive
carbonyl derivative (RCD), and certain brain functions, was an
age related study.33 A spin trapping agent of a Phenyl t-Butyl
Nitrone (PBN) was administered for 2 weeks to aged and
young gerbils, and after this period the activities of glutamine
synthase and proteasome increased, while the level of RCD
decreased significantly, and these changes were accompanied
by improved brain function, as measured by the Morris Maze
test. Although, the findings of this study were questioned at
the time by Cao and Cuttler,34,35 the results of the original
study were later confirmed by other laboratories.36

Liu et al.37 immobilized rats overnight and this resulted in
increased oxidative damage of lipids, proteins, and DNA in the
brain of animals. We applied the same immobilizing method
and measured brain function 2 h after immobilization using
the passive avoidance test and found performance to be
impaired.38 We then added groups, which were exposed to a
single bout of exhaustive swimming or swimming after
immobilization. The oxidative damage of macromolecules
increased as a result of immobilization, in accordance with Liu
and co-workers, and we found that exercise after immobili-
zation appeared to decrease damage.

Oxidative damage has been associated with poor physio-
logical function of the brain. We have also shown that regular
exercise training attenuated the age-related accumulation of
RCD in the brain, increased the activity of proteasome com-
plex, and improved brain function.39 Chronic exercise training
in rats did not cause significant alteration of lipid peroxidation
levels in the brain. On the other hand, the supplementation of
vitamin C elevated the oxidative damage of lipids.40 Ogo-
novszky et al.41 subjected rats to moderate-, very hard- and
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over-training, and found beneficial effects on brain function
and lowered accumulation of RCD even with very hard
training and over-training. On the other hand, when rats brain
were treated by N-methyl-D-aspartate (NMDA) to induce
lesion, a method used to mimic Alzheimer diseases (AD), it
was found that exercise alone and with supplementation of
nettle reduced ROS formation and levels of carbonyl groups.42

We could also show in this study, that lower level of oxidative
damage was associated with better function, assessed by
passive avoidance test.

Oxidative modification of DNA could lead to increased
apoptosis. Impaired function and accumulation of DNA
damage in neurons have been suggested to be major factors
related to brain aging and neurodegenerative diseases.43,44

Koltai et al.45 observed that aging increases the levels of 8-
oxoguanine (8-oxoG) in hippocampus of rats, which poten-
tially could jeopardize brain function.46,47 Indeed, the repair of
8-oxoG, by the enzyme 8-oxoguanine glycosylase (OGG1), is
a high priority of cells for survival. The total protein content of
OGG1 was increased in aged rats, which could be a cellular
attempt to combat the enhanced levels of 8-oxoG, although in
this case, without significant success.45

Acetylation of OGG1 is a posttranslational activation of
incision activity of this enzyme.48,49 Thus, the age-associated
increase in 8-oxoG levels, which we recently reported could
be due to the large decrease in acetylation of OGG1.45 On the
other hand, exercise with IGF-1 supplementation increased the
levels of OGG1 acetylation. It was also shown that acetylation
of OGG1 takes place in vivo and exercise increases the rate of
acetylation. This finding could suggest that pharmacological
manipulations, which induce OGG1 acetylation, might be
beneficial in the aging process and affect specific diseases
where 8-oxoG-mediated apoptosis and mutations are markedly
enhanced. Exercise, therefore could decrease the age-associ-
ated DNA damage in rats brain, and we have shown earlier
that exercise with a huge load did not increase 8-oxoG level in
brain of rats.50

The findings of several studies indicate that regular exercise
acts as a pre-conditioner against oxidative stress. Hence,
trained rats suffer less damage during stroke or other oxidative
stress-associated challenges.51

Thus, available data indicate that accumulation of oxidative
damage impairs brain function, and exercise, under certain
conditions, can attenuate the accumulation of damage causing
a decline in function.

4. Neurotrophins, trophic factors, and physiological
function

Brain-derived neurotrophic factor (BDNF) is one of the
most versatile, important neurotrophic factors in the brain. It
plays a curricular role in the learning process, memory,
locomotion, behaviors, and a wide range of stress responses.52

It has been suggested that BDNF regulates brain development,
neuroplasticity, neurogenesis, neurite outgrowth, synaptic
plasticity, and cell survival.53 The expression and protein
content of BDNF have been shown to be up-regulated by
exercise, and oxidative stress.54 Exercise does not simply up-
regulate the content and expression of BDNF in different brain
regions, but also impacts downstream effectors of BDNF,
namely the transcription factor cAMP response element
binding protein (CREB). DNA binding of CREB does not
directly translate to gene transcription but activates inducible
transcription factors, such as NF-kB, cFos, and Jun, and this
trans-activation causes persistent expression of genes. CREB
DNA binding sites contribute to the activation of mRNA of
BDNF transcription and this process can be regulated by ROS.
It has been reported that glutamate neurotoxicity and treatment
with hydrogen peroxide decreased the DNA binding of CREB
and increased the DNA binding of NF-kB.55 Moreover, it
appears that BDNF acts through tyrosine-related kinase B
(TrkB) receptors that activate CREB, thus creating a positive
loop for the cascades.55 Exercise, which enhances the content
of BDNF and TrkB, activates CREB and increases the
expression of BDNF to make the neurons more resistant to
oxidative stress, probably by the alteration of redox state in the
neurons. On the other hand, when BDNF was blocked, the
exercise-induced increase in CREB mRNA levels, as well as
the phosphorilation of CREB, were prevented.56,57 It has been
shown, that ROS stimulate the expression of BDNF, at least in
cell culture, and antioxidants prevent this increase.58 Rela-
tively short exposure (6 h) of neurons to ROS resulted in
activation of CREB, while a longer exposure (24 h) suppressed
the protein content and mRNA levels of ROS.59 In some brain
regions, exercise training increases the level of ROS, although
the level of oxidative damage does not increase.41,60,61 We
have recently shown that regular exercise decreased the level
of RCD in hippocampus of aging rats.32

In addition to ROS, nitric oxide might also act as a
modulator of exercise-induced changes in BDNF levels.
Administration of L-NAME, a non-selective nitric oxide syn-
thase inhibitor, has been shown to decrease the activation of
CREB,62 and the exercise-induced BDNF mRNA expression
seems to be related to nitric oxide production.63 On the other
hand, we could not detect increased nNOS protein content in
the brain of exercise-trained and caloric restricted animals
(Szabo et al., unpublished data). Thus, the exact regulation
pathways by which exercise increase the content and expres-
sion of BDNF, CREB are vague, but it appears that the redox
homeostasis could play a curricular role in the regulatory
process.

Among the other trophic factors, elevated by exercise, are
insulin-like growth factor (IGF-1), and vascular endothelial
growth factor (VEGF). It is well established that exercise in-
creases neurogenesis and this is one of the processes by which
exercise benefits brain function.53 However, in our recent study
the increased level of neurogenesis was observed in IGF-1
treated rats compared to untreated group, butwe could not detect
differences in spatial memory, assessed by Morris Maze test.45

This was an intriguing observation, which questions the
dogma that IGF-1 is always neuroprotective and beneficial.

It has been suggested that BDNF is one of the major reg-
ulators of neurogenesis. However, the findings of a recent
paper indicate that VEGF is also heavily involved in
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neurogenesis.51,64 The exercise effects seem to be dependent
on the dose of exercise on VEGF content and mRNA
expression.51 Recent reports suggest that ROS play an
important role in angiogenesis; however, its underlying mo-
lecular mechanisms remain unknown. But it is known that
VEGF induces angiogenesis by stimulating endothelial cell
proliferation and migration.65 Therefore, it seems that exercise
training could result in better oxygen and fuel supply to the
brain.

IGF-1 is essential for nerve growth, neurotransmitter syn-
thesis and release,66 and it is believed to be functionally
associated with the action of BDNF.51 IGF-1 may protect from
hyperglycemia-induced oxidative stress and neuronal injuries
by regulating MMP, possibly by the involvement of uncou-
pling protein (UCP)-3.67 The main functional effects of IGF-1
are not dependent on redox homeostasis, but observations
indicate that IGF-1 could act as a regulator of oxidative
challenge.

Exercise is a very potent modulator of certain neuro-
trophins and these agents could be significantly involved in the
beneficial effects of exercise on the function of the nervous
system. Moreover, exercise-induced alteration of redox bal-
ance might be delicately engaged in some of the regulatory
pathways.

5. Neurogenesis

Neurons are non-dividing cells, however, it is well estab-
lished that neuronal precursor cells in the dentate gyrus are
able to proliferate throughout the life and differentiate and
their progenity can lead to neurogenesis.68 Observations sug-
gest that progenitor cells are readily respond to changes in
energy homeostasis, therefore ischemia/reperfusion, aging and
metabolic pathology or even physical exercise can change the
rate of neurogenesis. Indeed, precursor cells exhibit high
mitotic and potential and ROS are one of the important signals
that control their ability to divide and differentiate.69 One of
the reasons is precursor cells are very sensitive to oxygen level
which is suggested to be around 2% in the brain.70 Lowering
the level of oxygen concentration by transient middle cerebral
artery occlusion on rat brain leads to increases in neuro-
genesis.71 It has been shown that neuronal precursor cells
exhibit about four times higher ROS levels than other cell
types, and the concentration of ROS which is dependent on the
density of precursor cells is associated with the rate of pro-
liferation.69 The fine redox tuning is a necessary modulator of
the proliferation of neuronal progenitor cells, and of course the
bell-shape doseeresponse is true to the relation of ROS and
neurogenesis.72

The landmark paper of van Praag et al.53 showed that ex-
ercise not only improves spatial memory, but also results in
neurogenesis. This finding has been confirmed by others.73

Moreover, van Praag et al.74 also showed that the newly
formed neurons were functional. Hence, a link was established
between newly formed neurons and the functional benefits of
exercise (see the recent review of Lazarov et al.75). However, a
recent report has challenged this finding, as the data from this
study showed that exercise was able to improve results on the
Morris Maze test, even with inhibition of neurogenesis.76

Most studies on neurogenesis have used voluntary
running,77,78 but studies using enforced running79,80 have
shown similar results. However, the data from these studies
further suggest that voluntary and treadmill running have
different effects on brain plasticity in different regions of the
brain.81 Furthermore, the nature of exercise-induced neuro-
genesis has been shown to be different in mice and rats.82 In
that study, treadmill running failed to increase the number of
BrdU/NeuN positive cells in young and old exercise groups, a
finding which differs from most earlier observations (see re-
view by Fabel and Kempermann83). Few data exist on the
effects of treadmill running on neurogenesis in healthy rats,
and only one study reported unchanged neurogenesis after
high intensity enforced exercise,84 as observed in the
mentioned study. This paucity of available data makes com-
parisons of treadmill trained rats and aging difficult.

Supplementation of IGF-1 increased the levels of new
neuron formation in aged groups, but unexpectedly, eliminated
the beneficial effects of exercise on spatial learning.45 A recent
finding suggests that the administration of anti-IGF-1 antibody
to block the function of IGF-1 is not influenced by the time it
takes mice to find a hidden platform in the Morris Maze test.85

IGF-1 affects exercise-mediated neurogenesis, but brain plas-
ticity could be an IGF-1-dependent and/or IGF-1-independent
process.85 Indeed, it has been suggested that the beneficial
effects of exercise on brain function are partly dependent upon
IGF-1.86 IGF-1 and insulin act through insulin/insulin resis-
tance (IR) signaling pathway, the activation of which supports
neuronal surviving and brain plasticity.87 The neuroprotective
effects of the IR pathway are well documented,54,88 but it has
also been shown that insulin injection could impair brain
function.89,90 Also, a recent paper reports findings similar to
ours, namely, that insulin injection eliminates the beneficial
effects of exercise as shown on the Morris Maze test and it was
suggested that this could be a result of the IR signaling on
NMDA receptors.89,91 Therefore, the available data suggest
that activation of IGF-1/insulin signaling could be both
beneficial and harmful, thus, stressing the importance of the
very delicate IR signaling in the brain. This finding could also
suggest that, while certain IGF-1/insulin signaling has been
shown to benefit brain function, insulin resistance is closely
related to the etiology of neurodegenerative diseases.

6. Conclusion

There is mounting body of evidence, which suggests that
regular exercise improves brain function and causes structural,
biochemical and physiological adaptation via different path-
ways. However, this phenomenon might be also interpreted in
a different way: exercise attenuates the inactivity-caused
deteriorative effects on the CNS. Either interpretation could be
correct, as it appears that ROS, and the changes in redox ho-
meostasis could play a role in the very complex mechanism by
which exercise training benefits the brain. The relationship
between ROS concentration and brain function can be
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characterized by a bell-shape curve, which is the typical curve
of hormesis. We suggest, here, that both low and high levels of
ROS could impair cell function. Low levels of ROS might
cause insufficient gene expression for redox homeostasis and,
therefore, impaired response to oxidative challenge, eventually
leading to increased vulnerability. On the other hand, high
levels of ROS exceed the adaptive tolerance of cells, resulting
in significant oxidative damage, apoptosis, and necrosis. Ex-
ercise training likely increases the window between the two
critical checkpoints (too little and too much) resulting in
increased resistance and tolerance against oxidative challenge.
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