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Cross Modulation between
the Androgen Receptor

Axis and Protocadherin-PC
in Mediating Neuroendocrine
Transdifferentiation and

Therapeutic Resistance
of Prostate Cancer'?

Abstract

Castration-resistant prostate cancers (CRPCs) that relapse after androgen deprivation therapies (ADTs) are responsible
for the majority of mortalities from prostate cancer (PCa). While mechanisms enabling recurrent activity of androgen
receptor (AR) are certainly involved in the development of CRPC, there may be factors that contribute to the process
including acquired neuroendocrine (NE) cell-like behaviors working through alternate (non-AR) cell signaling systems
or AR-dependent mechanisms. In this study, we explore the potential relationship between the AR axis and a novel
putative marker of NE differentiation, the human male protocadherin-PC (PCDH-PC), in vitro and in human situations.
We found evidence for an NE transdifferentiation process and PCDH-PC expression as an early-onset adaptive mecha-
nism following ADT and elucidate AR as a key regulator of PCDH-PC expression. PCDH-PC overexpression, in turn,
attenuates the ligand-dependent activity of the AR, enabling certain prostate tumor clones to assume a more NE phe-
notype and promoting their survival under diverse stress conditions. Acquisition of an NE phenotype by PCa cells
positively correlated with resistance to cytotoxic agents including docetaxel, a taxane chemotherapy approved for
the treatment of patients with metastatic CRPC. Furthermore, knockdown of PCDH-PC in cells that have undergone
an NE transdifferentiation partially sensitized cells to docetaxel. Together, these results reveal a reciprocal regulation
between the AR axis and PCDH-PC signals, observed both in vitro and in vivo, with potential implications in coordinating
NE transdifferentiation processes and progression of PCa toward hormonal and chemoresistance.
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Introduction

Prostate cancer (PCa) is the most commonly diagnosed malignancy
among men in Western nations [1]. It is well recognized that andro-
gens working through the androgen receptor (AR), play a key role in
PCa disease initiation and progression [2] and are known to stimulate
the PCa cell growth and diminish their rate of apoptosis. This is the
basis for the use of androgen deprivation therapy (ADT) in the form of
medical or surgical castration as standard frontline therapy for patient
with advanced disease [3]. Despite the fact that ADT has been proven
to extend life span in accordance with its effect of limiting the growth
of “androgen-sensitive” PCa cells and inducing cell death of “androgen-
dependent” PCa cells, one important aspect of PCa is that the majority
of cases eventually develop resistance to ADT and castration-resistant
prostate cancer (CRPC) emerges. Although there are a number of ap-
proved and promising therapies for metastatic CRPC, including taxane
chemotherapies (i.e., docetaxel, cabazitaxel) and potent AR-targeted
agents (i.e., abiraterone, MDV3100) [4], all patients develop resistance,
and as such, metastatic CRPC accounts for most PCa-related deaths.

A key mechanism involved in progression of PCa from a hormone-
sensitive to castration-resistant state includes acquisition of molecular
alterations of the androgen/AR axis, such that PCa cells retain active
AR even in the setting of castrate levels of circulating testosterone [5].
However, an alternative mechanism that dominates in some cases of
CRPC involves transformation toward an androgen-independent state,
in which certain PCa cells offset their sensitivity to androgens by altering
their apoptotic pathways such that active androgen/AR signaling is no
longer mandatory for their survival. These androgen-independent cell
populations may either arise from progenitor or neuroendocrine (NE)—
like cells in the primary prostate tumor or from prostate adenocarcinoma
cells that transdifferentiate to NE-like cells. It has been more than a de-
cade since the concept first emerged from iz vitro studies suggesting the
latter, that under certain circumstances, including hormonal manipula-
tion, PCa cells have the potential to transdifferentiate to acquire NE char-
acteristics [6-10]. Despite evidence of upregulated NE differentiation in
patients receiving ADT [11,12], the origin of NE cells in the prostate
remains uncertain. Moreover, the relative lack of knowledge regarding
the chain of events and the mechanistic paradigm underlying the trans-
differentiation process supports the need for further investigations.

We previously reported that overexpression of protocadperin-PC
(PCDH-PC, also referred to as PCDH11Y'), a gene primarily identified
for its antiapoptotic properties that encodes from the Y-chromosome
at Yp11.2 [13,14], can drive NE transdifferentiation in LNCaP [15],
a cell line originally established from a lymph node metastatic lesion of
human PCa characterized by its androgen-dependent growth [16].
Here, by exploring the potential relationship between the androgen/
AR axis and PCDH-PC, we investigated the possibility that PCa pro-
gression toward androgen independence is indeed characterized by a
putative subpopulation of cancer cells that undergo an NE transdiffer-
entiation. We also explore the extent to which the emergence of these
populations is influenced by current therapies for advanced CRPC.

Materials and Methods

Cell Culture and Chemicals

The human PCa cell lines LNCaP and 22Rv1 were obtained from
ATCC (Manassas, VA), authenticated at this site, and maintained in
recommended medium. For androgen-reduced conditions, cells were
cultured in phenol red—free RPMI supplemented with 10% dextran
charcoal-stripped FBS (CS-FBS). The LNCaP-PCDH-PC cells were

previously described [17]. Steroids and chemotherapeutic agents were
obtained from Sigma-Aldrich (St Quentin Fallavier, France). Bicaluta-
mide was obtained from LKT Laboratories (St Paul, MN).

Human Prostate Tissue Samples

The prostate samples have been collected as part of an Institutional
Review Board-approved protocol at Henri Mondor Hospital. Speci-
mens consisted of formalin-fixed paraffin-embedded (FFPE) tissues
from hormone-naive PCa (HNPC; » = 222), neoadjuvant hormone
therapy—treated PCa (HTPGC; 7 = 32) obtained from radical prostatec-
tomy specimens, and CRPC specimens (7 = 60), of which 54 were col-
lected at the time of the transurethral resection of the prostate for
obstructive CRPC and 6 isolated from rapid autopsy specimens with
metastatic lesions. The study also included a few specimens derived
from normal prostates of young donors.

Immunohistochemistry and Immunofluorescence

Paraffin-embedded tissues were sectioned at 5-pm thickness and
deparaffinized, and endogenous peroxidase activity was inactivated in
a solution containing 3% hydrogen peroxide (H,O,) for 10 minutes.
Sections were then cleared in running water followed by phosphate-
buffered saline. Antigen unmasking was performed by heat retrieval
with citrate buffer (pH 6; Dako, Trappes, France). The primary anti-
bodies used are listed in Table W1. Antibodies purified from HB 0337
SSA hybridoma and raised against PCDH-PC are available upon request
to Prof. F. Vacherot (vacherot@u-pec.fr). Biotin-labeled antibodies
(Jackson ImmunoResearch, New Market, United Kingdom) were used
as secondary antibodies. Antigen-antibody reactions were revealed using
the streptavidin method with DAB as substrate. All slides were read by a
genitourinary pathologist (Y.A.) and the intensity of staining was scored
as null (0), weak (1), moderate (2), and strong (3). In this analysis, a case
was considered positive only when the score was 2 or more in at least
10% of cancer cells, whereas cases with less than 10% staining or scored
below 2 were considered as negative. For dual immunofluorescence
staining, samples were processed as above but using, as secondary anti-
bodies, anti-mouse Alexa Fluor 488 (Life Technologies, Grand Island,
NY) and biotinylated anti-rabbit antibodies (Jackson ImmunoResearch)
with subsequent incubation with Streptavidin-Fluoprobes 647H
(Interchim, Montlugon, France). Slides were mounted using Vectashield
mounting medium (Vector Laboratories, Burlingame, CA) and in-
spected by confocal microscopy.

Transient Transfection and Luciferase Reporter Assays
Transient transfection assays and measures of luciferase and
p-galactosidase (B-Gal) activities were performed as previously described
[15] with minor modifications. The PSA-61-luc plasmid was described
previously [18] and used as reporter of AR activity. Briefly, cells (6 x
10° per well) were plated onto 24-well plates and cotransfected the
next day using Lipofectamine 2000 (Life Technologies) mixed with
up to 400 ng of pcDNA3-PCDH-PC vector or empty pcDNA3
along with 500 ng of a PSA-61-luc and 50 ng of a Lac-Z luciferase
plasmid as a transfection control, so that all wells received ~1 pg of
DNA. On the next day, cells were treated with dihydrotestosterone
(DHT) for 24 hours after which cell lysates were prepared and pro-
cessed for luciferase activity and p-Gal activity using the Luciferase
Reporter Assay and B-Gal Reporter Gene Assay Kits (Roche Diagnos-
tics, Meylan, France), respectively. Measures have been performed
using Wallac VICTOR? 1420 Multilabel Counter (Perkin-Elmer,

Courtaboeuf, France).
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PCDH-PC Knockdown

All siRNAs were from Thermo Scientific (Waltham, MA). Knockdown
of PCDH-PC in 22Rv1 cells was performed using ON-TARGET plus
SMARTpool Human PCDHI1Y (L-013624); 100 nM ON-TARGET plus
Non-Targeting Pool (D-001810) or siRNAs against PCDH-PC were
transfected in 22Rv1 cells as indicated using Lipofectamine 2000.
Knockdown of PCDH-PC in LNCaP-NE-like cells was carried out
using Accell SMARTpool Human PCDHI11Y (E-013624). Accell Non-
Targeting Pool D-001910 and Accell Green Non-Targeting siRNA
were also used. LNCaP-NE-like cells were incubated in Accell siRNA
Delivery Media mixed with either 1 pM of Non-Targeting siRNAs or
siRNAs against PCDH-PC according to the manufacturer’s instructions.
On the next day, media were changed and cells were subsequently
cultured in the indicated medium.

Cell Growth and Cell Viability

Cell growth was monitored by cell counting and the population
doubling time (DT) was estimated (in hours) by using the following
formula: DT = /* In(2)/In(C2/C1), where C1 and C2 are the cell con-
centrations at the beginning and the end of the chosen period of time.
Cell viability was assessed by the tetrazolium bromide (MTT) assay [19]
or WST-1 assay (Roche Diagnostics) as described previously [20].

Western Blot Analysis
Protein lysates were prepared and processed as described previ-
ously [21].

c¢DNA Synthesis and Real-Time Polymerase Chain Reaction
RNA was extracted using the TRIzol reagent (Life Technologies),
subjected to DNase treatment (DNA-Free Kit; Applied Biosystems,
Foster City, CA) according to the manufacturer’s instructions. One micro-
gram of total RNA was then reverse transcribed using SuperScript II
(Life Technologies). Quantitative polymerase chain reaction (QPCR) was
performed using SYBR Green dye on a StepOnePlus Real-Time PCR
System (Applied Biosystems). Unless indicated, the amount of each
target gene relative to the housekeeping gene RPLPO or HMBS was

2—AACT

determined for each sample using method. Primer sequences

are provided in Table W2.

Statistical Analysis

For qualitative data, y* test and Fisher exact test were applied. For
in vitro studies, comparisons between groups were performed using
the Student’s # test. All statistical tests used a two-tailed o = 0.05 level
of significance and were performed using GraphPad Prism (GraphPad
Software, La Jolla, CA).

Results

Phenotypic Changes in the PCa Cell Line LNCaP upon
Androgen Depletion

LNCaP cells are commonly used 7 vizro to model the response to
ADT of PCa in patients following hormone manipulation [22]. Thus,
we first searched for perturbation in PCDH-PC expression and various
markers in LNCaP cells maintained in androgen-depleted medium for
an extended period. This included known androgen-upregulated gene
products KLK3 (PSA) and KLK2, previously described androgen-
repressed genes, the neuron-specific enolase (NSE) [6], neuronal class
11 p-tubulin (TUBB3) [7], and the hedgehog ligand SHH [23], as well

as various genes assumed to be critical in PCa progression comprising

Bcl-2, Ake, TP53, MYC, and AR [5,24]. Western blot (WB) and quan-
titative reverse transcription—polymerase chain reaction (QRT-PCR)
analyses showed that when cells are switched to androgen-deficient me-
dium, NSE and TUBB3, two prominent markers of NE differentiation,
are induced along with PCDH-PC, which shows a peak expression
(~125-fold increase) at 2 weeks (Figures 1, A and B, and W1A4). SHH
was also augmented (Figure W1B). This period was associated with
a decreased of cell growth accompanied by the emergence of neurite-
like outgrowths from the cells (Figure 1C). We likewise observed a
down-regulation of PSA and KLK2 levels, two AR target genes, during
the first weeks of androgen depletion, as expected. We also noted some
increase in phosphorylated Akt and a decrease in expression of p53
and MYC (Figures 1, A and B, and W1A). Intriguingly, PCDH-PC
expression was found to be gradually decreased with time in conjunc-
tion with reappearance of an epithelial-like morphology and a loss
of neurite outgrowth (Figure 1C). After 3 months of culturing in
androgen-depleted medium, PSA and KLK2 were again detected, sug-
gestive of AR activity (Figures 1, A and B, and W1A). This was con-
comitant with the down-modulation of PCDH-PC, NSE, and TUBB3
and increased expression of active phosphorylated Akt, p53, and MYC.
Together, these observations further qualified PCDH-PC as a novel
in vitro marker of NE differentiation in PCa cells and indicate that
its expression may fluctuate in concordance with AR activity. After
more than 11 months of culturing, the obtained LNCaP derivative
grows perfectly in androgen-depleted media and expresses significant
levels of AR and PSA. The growth rate was comparable to cultures of
parental LNCaP cells grown in normal media (Figure W1C). For sub-
sequent studies, these cells will be referred to as LNCaP-androgen-

independent (LNCaP-AI).

The Androgen/AR Axis Regulates PCDH-PC Expression

We then sought to determine the extent to which the androgen/
AR axis regulates PCDH-PC expression. LNCaP were treated during
24 hours with increasing concentrations of the androgen DHT, and
KLK3 (PSA) and PCDH-PC mRNA levels were measured by qRT-
PCR. The increased level of KLK3, an AR-targeted gene, was used as a
positive control of the AR activity in the presence of DHT. In DHT-
treated cells, we observed a four-fold reduction in PCDH-PC mRNA
levels in conjunction with increased KLK3 expression (Figure 24). The
temporal effects of androgen were further tested in an experiment where
the cells were maintained in androgen-depleted media for 72 hours and
then DHT was added back for 6, 12, and 24 hours. In such conditions,
inhibition of PCDH-PC expression was detectable as early as 6 hours
following DHT supplementation, suggesting that the androgen/AR axis
directly mediates PCDH-PC expression (Figure 25).

Moreover, PCDH-PC expression was similarly reduced when cells
were chronically exposed to androgens (Figure W2A), estrogen, or
progesterone, which are two alternative ligands of mutated AR in this
line [25]. We then asked whether a functional AR is required to medi-
ate the repressive effect of androgens on PCDH-PC expression. LNCaP
cells were incubated in the presence of the antiandrogen bicalutamide
[26]. A 10-day treatment resulted in augmenting by seven-fold PCDH-
PC expression (Figure 2C) while expectedly reducing KLK3 expression.
Changes in cell morphology were also visible upon the treatment (Fig-
ure W2B). We next applied bicalutamide treatment to the LNCaP-Al
derivative. We observed a dose-dependent relative decrease in KLK3
and KLK2 expression compared to untreated cells with a concurrent
increase in PCDH-PC expression (Figure 2D). To ascertain our
assumption that PCDH-PC is repressed by AR activity, we next treated
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Figure 1. Phenotypic changes in LNCaP cells upon long-term androgen deprivation. At day 0, monolayer cultures of LNCaP cells were
grown in 10% CS-FBS-containing medium. (A) gRT-PCR analysis for mRNA expression of PCDH-PC, TUBB3, KLK2, and MYC. (B) Western
blot analysis for indicated proteins. 3-Actin is used as a loading control. Densitometry of some western blot bands is provided in Figure W1A.
(C) Morphology of cultured LNCaP cells maintained in medium containing 10% FBS (day 0) or 10% CS-FBS-containing medium for 15, 30, or
345 days. Photomicrographs are taken at X 10 objective magnification under inverted light microscopy.

the LNCaP-Al cells with docetaxel. Docetaxel is the standard-of-
care first-line chemotherapy for men with metastatic CRPC. In PCa
cells, recent studies showed that short-term treatment with docetaxel
impeded AR activity [27]. Here, we exposed LNCaP-Al cells to
2.5 nM docetaxel for a prolonged period and examined the expression
of PCDH-PC and NE markers over time. After 15 days, we found that
the cell populations surviving this chronic exposure to docetaxel had
greater levels of NE markers NSE (~2- to 4-fold increase), TUBB3
(~2- to 5-fold increase), and PCDH-PC (~25- to 125-fold increase)
compared to untreated cells (Figure 2E). The morphology of the cells
also changed substantially with the formation of neurite outgrowths (Fig-
ure 2F). These data suggest that NE-like cancer cells likely emerged
through transdifferentiation following the chronic exposure to docetaxel.

PCDH-PC Is a Negative Mediator of Ligand-Dependent
AR Tmnscriptz'omzig Activity

We earlier found that transient overexpression of PCDH-PC, under
certain circumstances, can perturb AR protein stability in LNCaP cells
through a complex mechanism that involves Akt activation and increase
proteasomal activity toward AR [28]. However, the potential links be-
tween AR activity, PCDH-PC expression, and phenotypic changes in
LNCaP cells have not been investigated. Here, we tested the possibility
that PCDH-PC expression could disrupt androgen signaling. We tran-
siently overexpressed PCDH-PC using cultures of LNCaP cells. Increased
expression of PCDH-PC was verified by qRT-PCR (Figure W3A4); West-
ern blot analysis showed a marked down-regulation of PSA in PCDH-
PC-transfected cells while expectedly increased NSE and phospho-Akt

levels (Figure 34). There was also significant enrichment for inactivated

phospho—glycogen synthase kinase-3 beta (GSK-3; Ser9). The AR level
was not perturbed, suggesting that PCDH-PC expression disrupted
androgen signaling by inhibition of AR activity in our conditions.
To further explore this inhibitory effect, we performed luciferase re-
porter assays on these latter cells following transfection of incremental
amounts of the PCDH-PC expression construct. These analyses dem-
onstrated a dose-dependent decrease of the PSA promoter transactiva-
tion (Figure 3B). We then investigated long-term effects of PCDH-PC
expression by analyzing PSA expression in LNCaP derivatives stably
transfected with PCDH-PC. In normal culture conditions, these cells
showed more neurites and a decrease in cell growth compared to control
cells (Figure 3C). PCDH-PC mRNA and protein levels in LNCaP-
pcDNA3 and LNCaP-PCDH-PC are depicted in Figure W3, B and C.
Stable transfectants exhibited reduced AR activity compared to vector-
transfected LNCaP cells (Figure 3D). These cells have enhanced levels
of endogenous NSE, phospho-Akt, and phospho—GSK-3p, compar-
able AR expression, but lower levels of PSA protein compared to the
vector-transfected or LNCaP-Al cells (Figure 3E). Interestingly, inhibi-
tion of phosphatidylinositol 3-kinase (PI3K)/Akt signal using the PI3K
inhibitor LY294002 compromised NE features in these cells (Fig-
ure 3F). We next investigated whether knockdown of PCDH-PC could
affect the AR activity in the 22Rv1 PCa cells [29], which endogenously
express PCDH-PC. 22Rv1 cells are androgen-independent given that
they can grow in the absence of androgens. However, they remain AR
dependent expressing several AR target genes including KLK3 and
KLK2. When 22Rv1 cells were maintained in the presence of andro-
gens, ablation of PCDH-PC with PCDH-PC-targeted siRNAs did not
significantly affect KLK3 expression (Figure 3G). By contrast, this led
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to KLK2 levels that were approximately 12-fold higher. It was earlier ~ dependent AR activity in this line. To pursue this possibility, we tran-
demonstrated that 22Rv1 is androgen responsive for KLK2 but weakly siently transfected 22Rv1 cells with a PCDH-PC expression construct
for KLK3 expression [30]. We confirmed this information in an experi-  or control vector and measured KLK2 and KLK3 in either control
ment where cells were exposed to 10 nM DHT for 24 hours (Figure 3H).  (ethanol) or DHT-treated cells. Overexpression of PCDH-PC resulted
Thus, we conceived that PCDH-PC is a potential repressor of ligand-  in a significant decrease in KLK2 expression compared to minor changes
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of bicalutamide (10 uM) for 10 days, and mRNA levels for PCOH-PC and KLK3 were examined. (D) Histograms showing normalized levels
of KLK2 (left), KLK3 (middle), and PCDH-PC (right) from LNCaP-Al cultures treated with bicalutamide for 8 days. (E) Time course expression of
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PCDH-PC is accompanied by elevation of KLK2 mRNA but had minor effects on KLK3. (H) 22Rv1 cells were treated with vehicle (EtOH)
or DHT (10 nM) for 24 hours, and endogenous levels of KLK3 and KLK2 were examined. (1) 22Rv1 cells pretransfected with PCDH-PC plasmid
were treated with vehicle (EtOH) or DHT (10 nM) for 24 hours, and PCDH-PC, KLK3, and KLK2 levels were compared by gPCR.
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for KLK3 (Figure 37), and the effect was perceived only in the presence
of DHT. Together, these results strongly suggest that PCDH-PC
overexpression inhibits ligand-dependent activity of AR in PCa cells,
with no or marginal effects on its ligand-independent activity.

PCDH-PC Expression during PCa Progression

By immunohistochemistry, we then explored the distribution of
PCDH-PC protein in normal and pathologic specimens. In tissues
derived from normal prostate, luminal epithelial cells were consistently
found to be negative for PCDH-PC and pronounced expression of this
protein was observed in lonely cells scattered within the epithelium
(Figure 44, i). Occasionally, a faint staining was detected in the basal
cell layer (Figure W4). A series of HNPC specimens was examined using
tissue microarrays. This analysis revealed moderate to high expression of

PCDH-PC in at most 11% (25 of 222) of evaluable cases (Table 1).
There was no significant correlation with clinicopathologic data
(Table W3). Evaluation of PCDH-PC expression in CRPC samples in-
dicated a much higher proportion of positive cases (that is, 61%, 33 of
54 CRPC; Figure 44, ii and Table 1). It is noteworthy that PCDH-PC
protein was also detectable in cancer cells of metastatic CRPC lesions
present in the brain and the lymph nodes of patients (Figure 44, iii-iv).
Despite only six cases were analyzed, this suggested that deregulated
expression of PCDH-PC in CRPC is not restricted to recurrent lesions
localized to the prostate.

We then evaluated a series of prostatectomy specimens of PCa
obtained from patients treated for 3 to 6 months with neoadjuvant
hormone therapy (HTPC). Of the 32 cases of HTPC evaluated,
14 (43.7%) were recorded as positive for PCDH-PC (Table 1).

PCDH-PC- ..

AN -f.'*-' s
e ol "_._,_‘!
WA AN D AT

Figure 4. (A) Expression of PCDH-PC in human prostatic tissues. Anti—-PCDH-PC identifies single normal cells in the prostatic epithelium of
a healthy subject (i), in PCa cells in prostate tissue of CRPC (ii), in brain containing PCa metastases (iii), and in a lymph node metastasis (iv)
of CRPC. (v) Positive PCDH-PC staining in cancer cells of a section of the surgical piece from a patient who had received 3 months of
neoadjuvant ADT. (vi) Representative biopsy core from the same patient before neoadjuvant ADT showing negativity for PCDH-PC.
(B, C) Expression of PCDH-PC correlates with NE characteristics in human PCa. Representative consecutive sections stained with anti-
bodies to PCDH-PC, CgA, and PSA of primary PCa from a patient treated by neoadjuvant ADT. Immunohistochemical stains reveal mixed

populations of cancer cells suggesting a common origin.
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Table 1. PCDH-PC Expression before and after ADT.

No. of PCDH-PC~
Negative Samples (%)

No. of PCDH-PC~

Positive Samples (%)

Prostate Carcinoma

HNPC 197 (88.8) 25 (11.2)
HTPC 18 (56.3) 14 (43.7)
CRPC 21 (38.9) 33 (61.1)
Pearson y test P < .0001
Fisher exact test
HNPC/HTPC P < .0001
HTPC/CRPC P=.178
HNPC/CRPC P < .0001

Especially, intense expression was consistently detected in clusters
comprising of 5 to 100 cells (Figure 44, v). For the overall HTPC
group, PCDH-PC was found to be significantly higher when com-
pared with the HNPC group as evaluated by Fisher exact test (P <
.0001). To test further the hypothesis that ADT is causative for in-
creased expression of PCDH-PC in these specimens, we examined
the hormone-naive tissues of these patients by examining their initial
prostatic biopsies. Matched biopsy specimens were available in seven
cases. In six of these index cases, we found no evidence of PCDH-PC
expression after analyzing cancer foci of several biopsy specimens (Fig-

ure 44, vi), and one other case showed strong positivity for PCDH-PC
but in dispersed isolated cells rather than in clusters. These results
demonstrate that high PCDH-PC expression is rare in men with still
hormonally untreated PCa but substantially increases in response to
hormonal manipulation.

PCDH-PC Expression Associates with NE Features in
Human Prostate Tissues

Given the apparent link between PCDH-PC and NE features iz vitro,
we explored the value of PCDH-PC as a novel candidate marker for NE
transdifferentiation in human PCa specimens. Examination of the
hormone-treated samples for CgA and PSA expressions consistently
revealed that cancer cells expressing PCDH-PC are present in tumor foci
showing a large majority of CgA-expressing cells but with reduced
expression of PSA (Figures 4, Band C, 54, and W5A). Dual immuno-
fluorescence procedure also revealed that in these tumor areas, not all
cells exhibited the same NE characteristics such that varied levels of
NE markers were observed in the cells (Figure 5B). In adjacent benign
epithelia, we detected a few isolated cells staining positive for both CgA
and PCDH-PCllikely representing nonmalignant NE cells (Figure W55).

On further analysis of cancer foci positive for PCDH-PC, we
found positivity for the AR as well as for NSE and synaptophysin,

PCDH-PC

PSA

PCDBH-PC

PCDH-PC .~ .

AR - CK5/6

AMACR/p63 cocktail .

Figure 5. (A) Immunohistochemical analysis further validating the inverse correlation between PCDH-PC/CgA stainings and PSA expression
in tumor foci of a hormonally treated case. (B) Dual immunofluorescence in the previous index case identifies cancer cells coexpressing
PCDH-PC and CgA. The cells can express varied levels of the two proteins. (C) A positive PCDH-PC cancer focus was analyzed for expression
of synaptophysin (SYN), NSE, N-CAM (CD56), AR, basal cytokeratins 5/6, AMACR, and p63. Note the areas positive for NSE and CD56
(arrows) but negative for the other markers representing nontumoral nerves present in the prostate tissue.
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Figure 6. Acquired NE phenotype correlates with chemoresistance in LNCaP cells. (A) LNCaP, LNCaP-NE like, and LNCaP-Al derivatives
were examined for differences in cell growth. (B) Viability assay of LNCaP (white bars), LNCaP-NE-like (gray bars), and LNCaP-Al (black

bars) cells at 96 hours after treatment with docetaxel, paclitaxel,

camptothecin, or phorbol ester (TPA) relative to untreated cells.

(C) Verification of efficient PCDH-PC knockdown by gRT-PCR in LNCaP-NE-like cells pretreated 24 hours with either Accell Non-Target-
ing or PCDH11Y siRNAs and then maintained in the presence or absence of docetaxel for 48 hours. (D) Cell viability as assessed by
WST-1 assay using siRNAs treated with LNCaP-NE-like cells alone or subsequently treated with docetaxel for 8 days. (E) As in C except

using PC3 cells and 96-hour docetaxel treatment. (F) As in D except

using LNCaP-Al cells. Bars represent means + SEM of quintuplets

from one experiment representative of three independent experiments.

two established NE markers, but we consistently failed to detect
staining for CD56 (NCAM1; Figure 5C), another NE marker. Of
note, cancer areas within the different tissues analyzed (PCDH-PC
positive and negative) were consistently negative for the Ki67 antigen
(not shown). Moreover, PCDH-PC-expressing cells were negative
for the basal cytokeratins 5/6 and p63 but positive for a-methylacyl-
CoA racemase (AMACR; Figure 5C), a highly specific marker of PCa
epithelia, thus supporting a PCa origin [31].

Collectively, these observations strongly suggest PCDH-PC as a
novel early marker for transition from epithelial to NE phenotype in
PCa treated by ADT. Intriguingly however, at the castration state of

prostate adenocarcinoma, the relationship between PCDH-PC ex-
pression and NE (as assessed by CgA staining) appeared to be lost,
and although PCDH-PC immunostaining of PCa cells sometimes
coincides with staining for NE markers such as NSE (Figure W5C),
in many cases the PCDH-PC—positive contingents examined did not
show coincidental staining (not shown).

NE-like PCa Cells Are Resistant to Chemotherapeutic Agents
Several pieces of evidence suggest that PCa NE-like cells are resistant
to multple therapeutics agents [32,33]. Here, we assessed further the



770 Cross Modulation between the AR Axis and PCDH-PC

Terry et al.

Neoplasia Vol. 15, No. 7, 2013

chemoresistance spectrum of LNCaP-NE-like cells. After culturing
LNCaP cells for 15 days in androgen-depleted medium, the cells exhibit
an NE-like phenotype and reduced growth (Figure 64) concomitant with
a loss of their epithelial characteristics. Sensitivity with respect to diverse
agents was evaluated 96 hours after treatment of LNCaP-NE-like,
LNCaP, or LNCaP-AlI cells. Treatments included two taxanes, doce-
taxel and paclitaxel, as well as 12-O-tetradecanoylphorbol-13-acetate
(TPA) and camptothecin, two well-known inducers of apoptosis in
LNCaP cells [34,35]. At the indicated doses, LNCaP—NE-like cells
were overwhelmingly resistant to these drugs compared to LNCaP
or LNCaP-AI cells (Figure 6B). LNCaP-NE-like cells also showed
enhanced resistance to various cytotoxic agents commonly used in
management of various malignancies (Figure W6A4). We next wanted
to gauge the dependence of LNCaP-NE-like cells with respect to
PCDH-PC expression for their viability. To this end, LNCaP-NE-
like cells were treated for 24 hours with Accell Green Non-Targeting
siRNAs used to control effective uptake of the siRNAs (Figure W6B),
pools of Accell Non-Targeting siRNAs, or Accell siRNAs raised against
PCDH-PC transcripts, then cultured for 8 days in hormone-deprived
medium supplemented or not with docetaxel (10 nM). PCDH-PC
silencing was found to be efficient in these conditions (Figure 6C).
In the presence of docetaxel, LNCaP-NE cells that had been preincu-
bated with the PCDH-PC siRNAs showed a significant decrease in cell
viability (relative to cells exposed to NT siRNA in the presence or ab-
sence of docetaxel), whereas in the absence of docetaxel, PCDH-PC
siRNA treatment had limited effect (Figure 6D). Moreover, the effect
was not seen when similar treatments were applied to the chemo-
sensitive PC3 PCa lineage (Figure 6E), which lacks PCDH-PC or
LNCaP-AI that expresses low amounts of PCDH-PC (Figure 6F).
Subsequent analyses showed that attenuating PCDH-PC expression
similarly sensitized LNCaP-NE-like cells to TPA and camptothecin
(Figure W6, C and D). These data argue for a chemoprotective role
for PCDH-PC in LNCaP-NE-like cells.

Discussion

The androgen/AR axis remains active in the majority of CRPCs. How-
ever, as prostate tumors develop resistance to treatment, NE differen-
tiation has been proposed as a mechanism for hormonal escape or AR
independence [4,10-12,36-38]. Yet, the impact of NE differentiation
on the clinical outcome, the mechanisms by which NE differentiation
emerges after ADT, and the consequence of targeting these cell popula-
tions remain uncertain. The current study significantly expands our
understanding of NE differentiation in PCa and qualifies PCDH-PC
as a surrogate marker for human PCa cell subpopulations experiencing
NE transdifferentiation under hormonal treatment.

With respect to progression toward a castration-resistant phenotype,
results obtained from LNCaP cultures grown in androgen-reduced
medium support a model in which AR function is attenuated in a first
phase following ADT, concomitantly with the acquisition of NE fea-
tures by PCa cells. /n situ, we found evidence that high PCDH-PC
expression also parallels CgA and other NE markers in clusters of tumor
cells from neoadjuvant hormonally treated PCa. The fact that normal
NE cells are considered as post-mitotic [39], coupled with data show-
ing that the proliferating rate of PCa cells is relatively low in primary
prostate tumors [40], strongly suggests that NE-like clusters revealed in
this study originated from the NE transdifferentiation of preexisting
epithelial-looking PCa cells. Thus, we propose that in clinical setting,
overexpression of PCDH-PC and concomitant induction of NE trans-

differentiation by a fraction of PCa cells in early response to hormonal
treatment reflects one route for PCa cells to adapt and survive in a low
androgen environment.

In a second step, AR may be reactivated [5,41,42] to promote
proliferation in conjunction with partial or total loss of NE features
along with reappearance of significant amounts of PSA as observed in
LNCaP-AI cells. Further studies are warranted to decrypt the mecha-
nisms involved in reactivation of AR in these cells.

Enigmatically, the relationship between PCDH-PC and NE differ-
entiation was not evident in CRPC specimens. This could reflect the
multifaceted role of PCDH-PC in the more advanced stages of PCa
with functions that may occur independently of NE differentiation.
Alternatively, this could be indicative of various subtypes of NE differ-
entiation (from well differentiated to poorly differentiated) in tumors
with varied proliferative activity and expressing various levels of NE
markers [43,44]. In that respect, it will be important to examine the
role of PCDH-PC in the setting of small cell carcinoma of prostate,
a rare poorly differentiated NE PCa associated with poor prognosis
and poor response to therapies [45]. It is also tempting to speculate that
AR plays a crucial role in this potential molecular switch as AR is con-
sistently implicated in the growth of castrate-resistant tumors [41,46].
We have shown here that PCDH-PC expression inhibits AR activity.
However, this inhibition appeared to be incomplete in the sense that it
is likely restricted to the ligand-dependent activity of AR. Although we
already know that PI3K/Akt activity may be an important mediator of
this effect, the precise mechanism through which PCDH-PC regulates
the ligand-dependent AR activity has yet to be fully determined.

If confirmed, this regulation could also indicate that among castrate-
resistant tumors, those overexpressing PCDH-PC might progress to
the favor of tumor clones dependent on a ligand-independent activity
of AR [46-48].

Our experimental data consistently revealed that androgen exposure
inhibits PCDH-PC expression in LNCaP cells, although it is unlikely
that androgens completely switch off PCDH-PC expression. Likewise,
the contribution of other recurrent alterations found in PCa, such as
TMPRSS2-ERG gene fusion or loss of PTEN, known to perturb AR
signaling, should be considered [49,50].

Another interesting observation is that the NE status of LNCaP cells
correlates with resistance to a wide range of chemotherapeutic agents
including docetaxel, the current standard for metastatic CRPC. One
could suggest that those resistances are likely linked to the reduced
growth rate of LNCaP-NE-like cells. Indeed, from a clinical per-
spective, the observation that NE transdifferentiation could confer a
multidrug-resistant phenotype allowing a cell to remain arrested until
it can reacquire the ability to proliferate could make that process a
formidable tumor promoter at any stage of PCa progression. Interest-
ingly, by targeting NE-like PCa cells using RNA interference against
PCDH-PC, it was possible to sensitize cells to chemohormonal treat-
ment. Together with prior work identifying PCDH-PC as an anti-
apoptotic factor in PCa cells [13], this qualifies PCDH-PC as a
general survival factor in PCa cells and provides a biologic rationale
for further assessment of targeting malignant NE-like cells.

Although not emphasized here, in neoadjuvant hormonally treated
tumors, we found many instances with NE-like PCa (PCDH-PC",
CgA*, PSA") cells adjacent to malignant epithelial-like (PCDH-PC",
CgA~, PSA”) cells, thus continuing to use the androgen/AR axis despite
ADT (Figure 4). Clearly, the manifestation of these mixed populations
gives reason to further examine whether these phenotypically distinct
cell populations may cooperate to promote transition toward castration



Neoplasia Vol. 15, No. 7, 2013

Cross Modulation between the AR Axis and PCDH-PC

Terryetal. 771

resistance [8,51], which would either help support or refute a rationale
of treating both adenocarcinoma and NE components.
In summary, our study provides support for the likelihood of

transdifferentiation model of PCa cells to explain the emergence of
NE differentiation in human PCa following ADT. We substantiate
PCDH-PC, a human male-specific protocadherin, as a critical factor in
this process that appears to be regulated by cross modulation between
PCDH-PC and AR. Along this line, our data revealed novel paradigms
linking the AR axis and NE transdifferentiation in PCa cells with ap-
parent implications for the emergence of chemohormonal resistance.
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Supplemental Experimental Procedures

Table W1. List of Primary Antibodies Used.

Generation of Monoclonal Antibodies Specific for PCDH-PC ~ Anibody Source Assay
BALBc mice were immunized with a recombinant PCDH-PC  PCDH-PC Noncommercial* (HB 0337 SSA) HC
expressed from an Escherichia coli (BL21-CodonPlus competent cells; EﬁACR (P5045) + 065 ﬁak" ?Cl""; ER‘pRS)(R - igg
. . + P enarint lagﬂOSﬂCS uﬂgls, rance;
Stratagene, Paris, France) transformed with a pET3a-PCDH-PC ex- (PIN cocktail) polyclonal
pression construct. After four repeats of immunization, mice spleno-  Chromogranin A Dako (polyclonal) IHC
cytes were fused using polyethylene glycol with X63 myeloma cells ~ TUBB3 Covance (Emeryville, CA; clone TUJ1) IHC
d in h hi . in-th d lecti di AR Dako (clone AR441) IHC
and grown in hypoxanthine-aminopterin-thymidine selection medium  ¢p Dako (clone BBS/NC/VI-H14) HC
to generate hybrldomas After limit dilution, supernatants from hybl‘ld— Synaptophysin Biogenex (San Ramon, CA; Snp88) IHC
oma clones were screened for efficient detection of PCDH-PC using 8112;66 ga}i" Eci"“e ;)253/?63)134) EE
. . ako (clone
an ELISA procedure wherein recombinant PCDH-PC was coated on SCARA4L WEB
Immulon flat-bottom microtiter plates. Immunocytochemistry detec-  NSE Millipore (Molsheim, France; MAB324) WB
tion of PCDH-PC in the LNCaP-PCDH-PC was performed and com- ,I;iA galllws fpolly_clOIiTéil) . VA pobelond) XVVE
. A t ell Signaling Technology (Danvers, ; polyclona
pared to vector-transfected LNCaP cells to verify the specificity of the ospho-Ake ($473) Cel Signaling Technology (polyclonal) WB
antibodies (Figure W3 C). One hybridoma cell line designed “HB 0337 Gsk-3p SC-9166 WB
SSA” was selected for in situ detection of human PCDH-PC and  Phospho-GSK-3p (59) Cell Signaling Technology (polyclonal) WB
. . . Bcl-2 Sigma (clone Bcl-2 100) WB
deposited under No. 1-3561 to the Collection Nationale de Cultures B-Actin Siima (AC-15) WB
de Microorganismes, Institut Pasteur (Paris, France). p53 Dako (DO-7) WB
THC indicates immunohistochemistry.
*Available upon request.
Table W2. List of Primers Used.
Gene Accession No. Primer qPCR Primer (5-3")
HMBS NM_001024382 Forward CCATCATCCTGGCAACAGCT
HMBS NM_001024382 Reverse GCATTCCTCAGGGTGCAGG
RPLPO NM_001002 Forward GGCGACCTGGAAGTCCAACT
RPLPO NM_001002 Reverse CCATCAGCACCACAGCCTTC
PPIA NM_021130 Forward ACCGTGTTCTTCGACATTGC
PPIA NM_021130 Reverse GGCATGAATATTGTGGAGGC
PCDHI1Y (alias PCDH-PC) NM_032971 Forward AATTGGGTAACTACACCTACTA
PCDHI1Y (alias PCDH-PC) NM_032971 Reverse CTCGAAGGTTGTCACTGGATA
TUBB3 NM_006086 Forward GCCTCTTCTCACAAGTACGTG
TUBB3 NM_006086 Reverse CCCCACTCTGACCAAAGATGAA
MYC NM_002467 Forward CTTCTCTCCGTCCTCGGATT
MYC NM_002467 Reverse CTCTGACCTTTTGCCAGGAG
KLK2 NM_005551 Forward GCTGCCCATTGCCTAAAGAAG
KLK2 NM_005551 Reverse TGGGAAGCTGTGGCTGACA
KLK3 NM_001648 Forward GAGCACCCCTATCAACCCCCTATT
KLK3 NM_001648 Reverse AGCAACCCTGGACCTCACACCTAA
NSE NM_001975 Forward CTGGCTAAATACAACCAGCTCA
NSE NM_001975 Reverse CACAGCACACTGGGATTACG
SHH NM_000193 Forward GGTATGCTCGGGACTGGCG
SHH NM_000193 Reverse CAGCCTGTCCGCTCCGGTGT
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Figure W1. (A) Estimation of relative protein expression from Western blots. Densitometry of the Western blot bands for NSE, PSA, and
TP53 was performed using ImageJ, and ratios of target gene to 3-actin were calculated. (B) Analysis for SHH mRNA expression in LNCAP
cells cultured in androgen-free media. Bars represent means = SEM of two independent experiments. (C) Growth rates of LNCAP and
LNCaP-Al over an 8-day period in standard medium and androgen-free media, respectively.
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Figure W2. (A) LNCaP cells were maintained for 10 days in 10% CS-FBS media supplemented with DHT, estradiol (E,), or progesterone
at 10 nM, and PCDH-PC levels were inspected by qRT-PCR. (B) Left: Morphology of LNCaP cells grown in 10% FBS in the presence of
antiandrogen bicalutamide (20 uM) or vehicle (DMSO) for 7 days. Right: Morphology of LNCaP cells in medium containing 10% CS-FBS
supplemented or not with 2 nM DHT for 7 days. Scale bar, 75 um.
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Figure W3. (A) PCDH-PC mRNA expression levels by gqRT-PCR following transient transfection of cultures of LNCaP cells extracted at
the indicated time. Data from the transfection of the empty vector were used for normalization. (B) gRT-PCR comparison of PCDH-PC
mMRNA expression levels in LNCaP, LNCaP-Al, vector, and PCDH-PC stably transfected LNCaP cells. (C) Immunocytochemistry with
anti-PCDH-PC (clone HB 0337 SSA) detecting PCDH-PC in LNCaP-PCDH-PC cells but not in LNCAP-pcDNAS cells maintained in

10% FBS containing media.
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Figure W4. Immunostaining of PCDH-PC in adult normal prostate
glands. (A) A faint staining was sometimes detected in the basal

cells of adult prostate from young subjects.



Table W3. PCDH-PC Expression and Clinicopathologic Characteristics of 222 Evaluable Patients
Who Were Treated with Radical Prostatectomy.

PCDH-PC
(Score 0 or 1)

PCDH-PC
(Score 2 or 3)

No. of patients

Age at diagnosis median, years (range)
Diagnostic PSA median, ng/ml (range)

Variable
Diagnostic PSA value
0-9.9
10-20
>20
Gleason score
<7
=7
>7
Tumor stage
pT2
pT3
pT4
Biologic recurrence
No
Yes
Surgical margins
Negative
Positive
Seminal vesicle (SV) status
SV free
SV invaded
Positive lymph node

197
65 (50-75)
9.0 (1.35-99)

113 (58)
57 (29)
26 (13)

110 (56)
49 (25)
37 (19)

126 (64)
61 31)
9 )

142 (74)
51 (26)

156 (81)
37 (19)

161 (83)
32 (17)
10 (5)

n (%)

25
65 (54-74)
8.63 (4.75-84)

15 (60)
6 (24)
4 (16)

11 (44)
5 (22)
9 (36)

15 (60)
8 (32)
2 (8)

19 (76)
6 (24)

18 (72)
7 (28)

21 (84)
4 (16)
2 (8)

P>

P>

P>

P>

P>

P>

.05

.05

.05

.05

.05

.05

.05
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Figure W5. (A) Another case of prostatic adenocarcinoma following 6 months of ADT (LH-RH agonist therapy). All the tumor cells display
NE differentiation as evidenced by intense chromogranin A cytoplasmic immunostaining and coexpress PCDH-PC with a moderate to
intense cytoplasmic immunostaining. (B) Detection of CgA (in red) and PCDH-PC (in green) expression by dual immunofluorescence in a
benign gland. Coexpression (in yellow) is detected in a lonely cell present within the benign epithelia of an atrophic gland. (C) PCDH-PC
expression coinciding with NSE expression in PCa cells of a CRPC.
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Figure W6. Acquired NE phenotype correlates with chemoresistance in LNCaP cells. (A) MTT viability assay of LNCaP (white bars),
LNCaP-NE-like (gray bars), and LNCaP-Al (black bars) cells at 96 hours after treatment with different agents at the indicated doses.
(B) Immunofluorescence staining of LNCaP-NE-like cells treated with Accell Green Non-Targeting siRNAs shows effective uptake of
the siRNAs by the cells. (C) WST-1 cell viability assay using siRNAs treated with LNCaP-NE-like cells alone or subsequently treated with
TPA for 96 hours. (D) As in C except replacing TPA by camptothecin at the indicated dose.





