

Available online at www.sciencedirect.com

Journal of Combinatorial Theory, Series B 96 (2006) 493-504

Journal of Combinatorial Theory Series B

www.elsevier.com/locate/jctb

Hamiltonicity in 3-connected claw-free graphs

Hong-Jian Lai^a, Yehong Shao^b, Mingquan Zhan^c

^a Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA ^b Department of Mathematics, Ohio University Southern Campus, Ironton, OH 45638, USA

^c Department of Mathematics, Millersville University, Millersville, PA 17551, USA

Received 26 March 2003

Available online 18 November 2005

Abstract

Kuipers and Veldman conjectured that any 3-connected claw-free graph with order ν and minimum degree $\delta \ge (\nu + 6)/10$ is Hamiltonian for ν sufficiently large. In this paper, we prove that if *H* is a 3-connected claw-free graph with sufficiently large order ν , and if $\delta(H) \ge (\nu + 5)/10$, then either *H* is Hamiltonian, or $\delta(H) = (\nu + 5)/10$ and the Ryjáček's closure cl(H) of *H* is the line graph of a graph obtained from the Petersen graph P_{10} by adding $(\nu - 15)/10$ pendant edges at each vertex of P_{10} . © 2005 Elsevier Inc. All rights reserved.

Keywords: Claw-free graphs; Hamiltonian; Collapsible graphs

1. Introduction

We use [1] for terminology and notations not defined here, and consider loopless finite simple graphs only. Let *G* be a graph. If $S \subseteq V(G)$, *G*[*S*] is the subgraph induced in *G* by *S*. The *degree* and *neighborhood* of a vertex *x* of *G* are respectively denoted by $d_G(x)$ and $N_G(x)$, and the *minimum degree*, the *independence number*, the *edge independence number*, the *connectivity* and the *edge connectivity* of *G* are denoted by $\delta(G)$, $\alpha(G)$, $\alpha'(G)$, $\kappa(G)$ and $\kappa'(G)$, respectively. An edge e = uv is called a *pendant edge* if either $d_G(u) = 1$ or $d_G(v) = 1$. We use $H \subseteq G$ to denote the fact that *H* is a subgraph of *G*. For $H \subseteq G$, $x \in V(G)$ and $A, B \subseteq V(G)$ with $A \cap$ $B = \emptyset$, denote $N_H(x) = N_G(x) \cap V(H)$, $d_H(x) = |N_H(x)|$, $N_H(A) = \bigcup_{v \in A} N_H(v)$, $[A, B]_G =$ $\{uv \in E(G) \mid u \in A, v \in B\}$, and G - A = G[V(G) - A]. When $A = \{v\}$, we use G - v for

E-mail address: mingquan.zhan@millersville.edu (M. Zhan).

^{0095-8956/\$ -} see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jctb.2005.10.003

 $G - \{v\}$. If $H \subseteq G$, then for an edge subset $X \subseteq E(G) - E(H)$, we write H + X for $G[E(H) \cup X]$. For each i = 0, 1, 2, ..., denote $D_i(G) = \{v \in V(G) \mid d_G(v) = i\}$.

A subgraph *H* of *G* is *dominating* if G - V(H) is edgeless. A vertex $v \in G$ is called a *locally* connected vertex if $G[N_G(v)]$ is connected. We denote C_n an *n*-cycle and denote O(G) the set of all vertices in *G* with odd degrees. A graph *G* is *Eulerian* if $O(G) = \emptyset$ and *G* is connected.

Let $X \subseteq E(G)$. The *contraction* G/X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. We define $G/\emptyset = G$. If K is a subgraph of G, then we write G/K for G/E(K). If K is a connected subgraph of G, and if v_K is the vertex in G/K onto which K is contracted, then K is called the *preimage* of v_K , and is denoted by $PI(v_K)$. A vertex v in a contraction of G is *nontrivial* if PI(v) has at least one edge.

The *line graph* of a graph G, denote by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent. Let H be the line graph L(G) of a graph G. The order v(H) of H is equal to the number m(G) of edges of G, and $\delta(H) = \min\{d_G(x) + d_G(y) - 2 \mid xy \in E(G)\}$. If L(G) is k-connected, then G is *essentially k-edge-connected*, which means that the only edge-cut sets of G having less than k edges are the sets of edges incident with some vertex of G. Harary and Nash-Williams showed that there is a closed relationship between a graph and its line graph concerning Hamilton cycles.

Theorem 1.1. (Harary and Nash-Williams [8]) *The line graph* H = L(G) *of a graph* G *is Hamiltonian if and only if* G *has a dominating Eulerian subgraph.*

A graph *H* is *claw-free* if it does not contain $K_{1,3}$ as an induced subgraph. In [14], Ryjáček defined the *closure cl*(*H*) of a claw-free graph *H* to be one obtained by recursively adding edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of *H*, as long as this is possible.

Theorem 1.2. (Ryjáček [14]) Let H be a claw-free graph and cl(H) its closure. Then:

- (i) cl(H) is well defined, and $\kappa(cl(H)) \ge \kappa(H)$,
- (ii) there is a triangle-free graph G such that cl(H) = L(G),
- (iii) both graphs H and cl(H) have the same circumference.

As a corollary of Theorem 1.2, a claw-free graph H is Hamiltonian if and only if cl(H) is Hamiltonian. H is said to be *closed* if H = cl(H).

Many works have been done to give sufficient conditions for a claw-free graph H to be Hamiltonian in terms of its minimum degree $\delta(H)$. These conditions depend on the connectivity $\kappa(H)$. If $\kappa(H) = 4$, Matthews and Sumner [13] conjectured that H is Hamiltonian and this conjecture is still open. When $\kappa(H) = 2$, Kuipers and Veldman [10], and independently Favaron et al. [6], proved that if H is a 2-connected claw-free graph with sufficiently large order ν , and if $\delta(H) \ge (\nu + c)/6$ (where c is a constant), then H is Hamiltonian except a member of ten well-defined families of graphs. Recently, the degree conditions [9] were further strengthened for 2-connected claw-free graphs. Kovářík et al. [9] proved that if G is a 2-connected claw-free graph of order $\nu \ge 153$ with $\delta(G) \ge (\nu + 39)/8$, then either G is Hamiltonian or the closure of G is in the five classes of graphs. When $\kappa(H) = 3$, the following have been proved and proposed.

Theorem 1.3. (Kuipers and Veldman [10]) *If H is a* 3-*connected claw-free simple graph with sufficiently large order* v, and if $\delta(H) \ge (v + 29)/8$, then H is Hamiltonian.

Theorem 1.4. (Favaron and Fraisse [7]) If H is a 3-connected claw-free simple graph with order v, and if $\delta(H) \ge (v + 37)/10$, then H is Hamiltonian.

Conjecture 1.5. (Kuipers and Veldman [10], see also [7]) Let H be a 3-connected claw-free simple graph of order v with $\delta(H) \ge (v + 6)/10$. If v is sufficiently large, then H is Hamiltonian.

The main purpose of this paper is to prove Conjecture 1.5. In fact, we proved a somewhat stronger result.

Theorem 1.6. If *H* is a 3-connected claw-free simple graph with $v \ge 196$, and if $\delta(H) \ge (v+5)/10$, then either *H* is Hamiltonian, or $\delta(H) = (v+5)/10$ and cl(H) is the line graph of *G* obtained from the Petersen graph P_{10} by adding (v - 15)/10 pendant edges at each vertex of P_{10} .

2. Mechanism

In [2] Catlin defined collapsible graphs. Given a subset $R \subseteq V(G)$ with |R| is even, a subgraph Γ of G is an R-subgraph if both $O(\Gamma) = R$ and $G - E(\Gamma)$ is connected. A graph G is collapsible if for any even subset R of V(G), G has an R-subgraph. Catlin showed in [2] that every vertex of G lies in a unique maximal collapsible subgraph of G. The reduction of G, denoted by G', is obtained from G by contracting all maximal collapsible subgraphs of G. A graph G is reduced if G has no nontrivial collapsible subgraphs, or equivalently, if G = G', the reduction of G. A nontrivial vertex in G' is a vertex that is the contraction image of a nontrivial connected subgraph of G. Note that if G has an O(G)-subgraph Γ , then $G - E(\Gamma)$ is a spanning Eulerian subgraph of G. Therefore, every collapsible graph has a spanning Eulerian subgraph.

Theorem 2.1. (Catlin [2]) Let G be a connected graph.

- (i) If G is reduced, then G is a simple graph and has no cycle of length less than four.
- (ii) *G* is reduced if and only if *G* has no nontrivial collapsible subgraphs.
- (iii) Let G' be the reduction of G. Then G is collapsible if and only if $G' = K_1$.

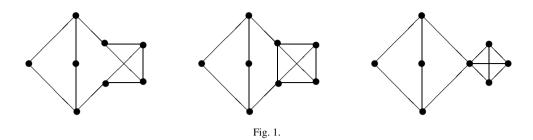
Defining F(G) to be the minimum number of additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees, we present some of the former results in the following theorems.

Theorem 2.2. *Let G be a graph. Then the following statements hold.*

- (i) (Catlin [2]) If $F(G) \leq 1$ and if G is connected, then G is collapsible if and only if the reduction of G is not a K_2 .
- (ii) (Catlin [3]) If G is reduced, then F(G) = 2|V(G)| |E(G)| 2.

Theorem 2.3. (Catlin [3]) Let $K_{3,3} - e$ denote the graph obtained from $K_{3,3}$ by removing an edge. Then $K_{3,3} - e$, K_n $(n \ge 3)$ and C_2 are collapsible.

Theorem 2.4. (Chen [4]) Let G be a reduced graph with $|V(G)| \leq 11$ vertices, and $\kappa'(G) \geq 3$. Then G is either K_1 or the Petersen graph.



Lemma 2.5. (Lai et al. [12]) Let G be a connected simple graph with $|V(G)| \leq 8$ vertices and with $D_1(G) = \emptyset$, $|D_2(G)| \leq 2$. Then either G is one of three graphs in Fig. 1, or the reduction of G is K_1 or K_2 .

Let G be a graph and let $S \subseteq V(G)$ be a vertex subset. An Eulerian subgraph H of G is called an S-Eulerian subgraph if $S \subseteq V(H)$. Let $K_{2,3}, K_{2,5}, W'_3, W'_4, L_1, L_2$ and L_3 be the labelled graphs defined in Figs. 2–4, and let $\mathcal{F} = \{K_{2,3}, K_{2,5}, W'_3, W'_4, L_1, L_2, L_3\}$. Using the labels in Figs. 2–4, for each $L \in \mathcal{F}$, we define B(L), the bad set of L, to be the vertex subset of V(L) that are labeled with the b_i 's.

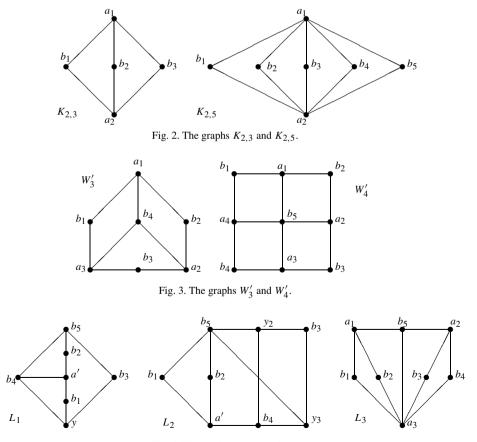


Fig. 4. The graphs L_1 , L_2 and L_3 .

Theorem 2.6. (Lai [11]) Let G be a 2-edge-connected graph and let $S \subseteq V(G)$ with $|S| \leq 5$. If G - S is edgeless, and if G does not have an S-Eulerian subgraph, then G is contractible to a member $L \in \mathcal{F}$ such that S intersects the preimage of every vertex in B(L).

Lemma 2.7. Suppose that G does not contain $K_4 - e$ as its subgraph. Then the following statements hold.

- (i) If |V(G)| = 3, then $|E(G)| \leq 3$.
- (ii) If |V(G)| = 4, then $|E(G)| \le 4$.
- (iii) If |V(G)| = 5, then $|E(G)| \le 6$.
- (iv) If |V(G)| = 6, then $|E(G)| \le 9$.
- (v) |If|V(G)| = 7, then $|E(G)| \leq 12$.

Proof. If |V(G)| = 3, then $|E(G)| \leq 3$. If |V(G)| = 4, then $|E(G)| \leq 4$ since *G* does not contain $K_4 - e$ as its subgraph. Thus let $5 \leq |V(G)| \leq 7$. If *G* has more edges, then $|E(G)| > |V(G)|^2/4$ and, by Turán's theorem, *G* contains a triangle *T*. Denote R = G - T. Then $2 \leq |V(R)| \leq 4$, and $|N_T(y)| \leq 1$ for any $y \in V(R)$ (otherwise we have a $K_4 - e$), which implies that $|[T, R]_G| \leq |V(R)|$. So we have

$$|E(G)| = |E(T)| + |[T, R]_G| + |E(R)| \le |V(T)| + |V(R)| + |E(R)|$$
$$= |V(G)| + |E(R)|.$$

If |V(R)| = 2, then clearly $|E(R)| \le 1$ and for $3 \le |V(R)| \le 4$ we have $|E(R)| \le |V(R)|$ by (i) or (ii), respectively. Hence the lemma follows. \Box

Lemma 2.8. Suppose that G is a 2-edge-connected graph with at most 10 vertices, and that G does not contain $K_4 - e$ as a subgraph. If $|E(G)| \ge 17$, then G is collapsible.

Proof. Note that if *H* is a simple collapsible subgraph of *G* with |V(H)| = 4, then *H* must contain $K_4 - e$ as a subgraph. We have the following:

If *H* is a simple collapsible subgraph of *G*, then $|V(H)| \ge 3$ and $|V(H)| \ne 4$. (1)

Let G' be the reduction of G. Note that G is collapsible if and only if $G' = K_1$. Suppose, by contradiction, that $G' \neq K_1$. Then $\kappa'(G') \ge 2$ and $4 \le |V(G')| \le 10$. By Theorem 2.2(i), $F(G') \ge 2$. Let $V(G') = \{v_1, v_2, \dots, v_s\}$ and $H_i = PI(v_i)$ $(i = 1, 2, \dots, s)$ with $|V(H_1)| \ge$ $|V(H_2)| \ge \dots \ge |V(H_s)|$. As $|V(G')| \ge 4$, $|V(H_1)| \le 7$. If V(G) = V(G'), then $|E(G')| \ge 17$, and so $F(G') = 2|V(G')| - |E(G')| - 2 \le 2 \cdot 10 - 17 - 2 = 1$, a contradiction.

If $6 \le |V(H_1)| \le 7$, then $|V(H_2)| = \cdots = |V(H_s)| = 1$ by (1). Thus

$$|V(G')| = |V(G)| - |V(H_1)| + 1 \leq \begin{cases} 10 - 6 + 1 = 5, & \text{if } |V(H_1)| = 6, \\ 10 - 7 + 1 = 4, & \text{if } |V(H_1)| = 7. \end{cases}$$

By Lemma 2.7, we have

$$|E(G')| \ge 17 - |E(H_1)| \ge \begin{cases} 17 - 9 = 8, & \text{if } |V(H_1)| = 6, \\ 17 - 12 = 5, & \text{if } |V(H_1)| = 7. \end{cases}$$

Then, $|E(G')| > |V(G')|^2/4$. By the Turán's theorem, G' contains a triangle, a contradiction.

If
$$|V(H_1)| = 5$$
, then $|V(H_3)| = \dots = |V(H_s)| = 1$ and $|V(H_2)| = 1$ or 3. Thus
 $|V(G')| = |V(G)| - |V(H_1)| - |V(H_2)| + 2 \le \begin{cases} 6, & \text{if } |V(H_2)| = 1, \\ 4, & \text{if } |V(H_2)| = 3. \end{cases}$

By Lemma 2.7, we have

$$E(G') \ge 17 - |E(H_1)| - |E(H_2)| \ge \begin{cases} 17 - 6 = 11, & \text{if } |V(H_2)| = 1, \\ 17 - 6 - 3 = 8, & \text{if } |V(H_2)| = 3. \end{cases}$$

Thus, $|E(G')| > |V(G')|^2/4$. By the Turán's theorem, G' contains a triangle, a contradiction. If $|V(H_1)| = 3$, let $|V(H_1)| = \cdots = |V(H_t)| = 3$ and $|V(H_{t+1})| = \cdots = |V(H_s)| = 1$. Then $|E(G')| \ge 17 - 3t$ and $V(G') \le 10 - 2t$. Thus $F(G') = 2|V(G')| - |E(G')| - 2 \le 2(10 - 2t) - (17 - 3t) - 2 = 1 - t \le 1$, a contradiction. \Box

Lemma 2.9. If G is collapsible, then for any pair of vertices $u, v \in V(G)$, G has a spanning (u, v)-trail.

Proof. Let $R = (O(G) \cup \{u, v\}) \setminus (O(G) \cap \{u, v\})$. Then |R| is even. Let Γ_R be an *R*-subgraph of *G*. Then $G - E(\Gamma_R)$ is a spanning (u, v)-trail of *G*. \Box

3. Proof of Theorem 1.6

The proof of Theorem 1.6 needs the following theorem and lemma.

Theorem 3.1. (Chen et al. [5]) Let G be a 3-edge-connected graph and let $S \subseteq V(G)$ be a vertex subset such that $|S| \leq 12$. Then either G has an Eulerian subgraph C such that $S \subseteq V(C)$, or G can be contracted to the Petersen graph in such a way that the preimage of each vertex of the Petersen graph contains at least one vertex in S.

Lemma 3.2. (Favaron and Fraisse [7]) Let *S* be a set of vertices of a graph *G* contained in an Eulerian subgraph of *G* and let *C* be a maximal Eulerian subgraph of *G* containing *S*. Assume that some component *A* of G - V(C) is not an isolated vertex and is related to *C* by at least *r* edges. Then:

- (i) G contains a matching T of r + 1 edges such that at most 2r edges of G are adjacent to two distinct edges of T.
- (ii) The number m(G) of edges of G is related to the minimum degree δ(H) of the line graph H of G by m(G) ≥ (r + 1)δ(H) − r + 1.

Portion of the proof of Theorem 1.6 (the treatment to deal with Claims 1 and 2) is a modification of Favaron and Fraisse's proof for Theorem 1 in [7], with Theorem 3.1 being utilized in our proof.

Proof of Theorem 1.6. By Theorem 1.2, the graph *H* is Hamiltonian if and only if its closure cl(H) is Hamiltonian. As v(cl(H)) = v(H), $\delta(cl(H)) \ge \delta(H)$, and cl(H) is 3-connected, the graph cl(H) satisfies the same hypotheses as *H*. Hence it suffices to prove Theorem 1.6 for closed claw-free graphs.

By Theorem 1.2, we may assume that *H* is the line graph of a triangle-free graph *G* (i.e., H = L(G)), and suppose that *H* is 3-connected and satisfies $\delta(H) \ge (\nu(H) + 5)/10$. Assume by contradiction that neither of the conclusions of Theorem 1.6 holds. By Theorem 1.1, *G* does

not contain a dominating Eulerian graph. Let $B = \{v \in V(G) \mid d_G(v) = 1, 2\}$. Since H is 3-connected, the sum of degrees of the two ends of each edge in G is at least 5 and thus the set B is independent. Let $X_0 = N_G(B)$. We name the vertices of X_0 as x_1, x_2, \ldots, x_p in the following way. Assume the vertices x_1, \ldots, x_i are already defined or else put i = 0. Let y_{i+1} denote a vertex of B which is adjacent to some vertex of $X_0 - \{x_1, \ldots, x_i\}$. Either y_{i+1} has exactly one neighbor in $X_0 - \{x_1, \ldots, x_i\}$ and we name it x_{i+1} , or y_{i+1} has exactly two neighbors in $X_0 - \{x_1, \ldots, x_i\}$ and we name them x_{i+1} and x_{i+2} and put $y_{i+2} = y_{i+1}$. Let $Y_0 = \{y_1, \ldots, y_p\}$. We note that if $1 \le i < j \le p$, then $y_i y_j \notin E(G)$ and $y_i x_j \notin E(G)$, except for the edges $y_i x_{i+1}$ when $y_i = y_{i+1}$; and that the components of the subgraph induced by the edges $x_i y_i$, $1 \le i \le p$, are paths of length 1 or 2.

Consider now a matching *M* of *G* formed by q - p edges $x_i y_i$ of *G*, $p + 1 \le i \le q$, considered in this order and such that

- (i) the sets $X_0, Y_0, X = \{x_{p+1}, \dots, x_q\}$ and $Y = \{y_{p+1}, \dots, y_q\}$ are pairwise disjoint, (ii) for $n+1 \le i \le i \le q$, $y_i, y_j, y_i \in F(G)$
- (ii) for $p + 1 \leq i < j \leq q$, $y_i y_j$, $y_i x_j \notin E(G)$.

We choose this matching as large as possible subject to the conditions (i) and (ii). Note that by the definition of X_0 and Y_0 , the whole set B is disjoint from $X \cup Y$ and that property (ii) holds for any i and j with $1 \le i < j \le q$.

Let *J* be the set of indices *j* between p + 1 and *q* such that y_j is adjacent to some vertex $z \notin X_0 \cup Y_0 \cup X \cup Y$ with $y_k z \notin E(G)$ for $1 \leq k < j$. For each $j \in J$ we choose such a vertex z_j and we put $I = \{p + 1, ..., q\} - J$. Let $X_I = \{x_i \in X \mid i \in I\}, X_J = \{x_i \in X \mid i \in J\}, Y_I = \{y_i \in Y \mid i \in I\}$ and $Y_J = \{y_i \in Y \mid i \in J\}$.

Claim 1. (Favaron and Fraisse [7]) *The set* $S = X_0 \cup X_I \cup Y_J$ *is not contained in any Eulerian subgraph of G*.

Proof. Suppose Claim 1 is false and let *C* be a maximal Eulerian subgraph of *G* containing $S = X_0 \cup X_I \cup Y_J$ and R = V(G) - V(C). By the assumption that *G* has no dominating Eulerian subgraph, at least one component *A* of *G*[*R*] is not a single vertex. This component *A* is disjoint from Y_0 since the vertices of Y_0 are isolated in *G*[*R*].

Suppose first that every vertex of *A* has a neighbor in *C*. Then, if uv is an edge of *A* and if *s* denotes the number of edges between *A* and *C*, $s \ge d_C(u) + d_C(v) + |A| - 2$. Since *G* is triangle-free, $d_A(u) + d_A(v) \le |A|$ and thus $d_G(u) + d_G(v) = d_C(u) + d_C(v) + d_A(u) + d_A(v) \le d_C(u) + d_C(v) + |A|$. Hence $s \ge d_G(u) + d_G(v) - 2 \ge \delta(H)$. Apply Lemma 3.2 with $r = \delta(H)$ to conclude that the number of edges of *G* satisfies $m(G) \ge \delta^2(H) + 1$. Since $\delta(H) \ge (v(H) + 5)/10$, then $m(G) = v(H) \le 10\delta(H) - 5$, and so $\delta^2(H) + 1 \le 10\delta(H) - 5$, contrary to the hypothesis that $v(H) \ge 196$.

Therefore A contains a vertex z such that $N_G(z) \subseteq A$. Then $z \notin X_0 \cup Y_0 \cup X \cup Y$ and the neighbors of z are all in $Y_I \cup X_J \cup (R - (Y_0 \cup Y_I \cup X_J))$.

If z has a neighbor in Y_I , let i be the least index such that $y_i \in Y_i$ and $zy_i \in E(G)$. Since z has no neighbor in Y_J , $zy_k \notin E(G)$ for all k < i, in contradiction to the definition of I. Hence z has no neighbor in Y_I , and thus in Y.

If z has a neighbor in X_J , let x_j be the vertex of $N_G(z) \cap X_J$ with the largest index. Consider the ordered sets $X' = \{x_{p+1}, \ldots, x_{j-1}, x_j, z_j, x_{j+1}, \ldots, x_q\}$ and $Y' = \{y_{p+1}, \ldots, y_{j-1}, z, y_j, y_{j+1}, \ldots, y_q\}$. Then the vertex z is adjacent neither to any x_k with k > j (by the definition of x_j), nor to any vertex of Y (as said above). The vertex z_j is not adjacent to any vertex y_k with k < j by the choice of z_j . If $zz_j \notin E(G)$, then the sets X' and Y' define a matching M' which satisfies (i) and (ii), and thus which contradicts the maximality of M. If $zz_j \in E(G)$, then the Eulerian subgraph $G[(E(C) - E(C')) \cup (E(C') - E(C))]$, with $C' = y_j z_j z_x y_j$, satisfies $V(C) \cap V(C') = \{y_j\}$ since z has no neighbor in C, and thus contradicts the maximality of C. Hence $N_G(z) \cap X_J = \emptyset$ and z has no neighbor in X.

Finally if z has a neighbor t in $R - (Y_0 \cup Y_I \cup X_J)$, then the matching M'' corresponding to the ordered sets $X'' = \{t, x_{p+1}, \dots, x_q\}$ and $Y'' = \{z, y_{p+1}, \dots, y_q\}$ satisfies the conditions (i) and (ii) since z has no neighbor in $X \cup Y$. This contradicts the maximality of M and achieves the proof of Claim 1. \Box

Claim 2. (Favaron and Fraisse [7]) G must be contracted to the Petersen graph.

Proof. By contradiction. Suppose that G cannot be contracted to the Petersen graph. Let G^1 be the graph or multigraph obtained from G by deleting the vertices of degree 1 or 2 and replacing each path ayb where $d_G(y) = 2$ by the edge ab. Since G is essentially 3-edge-connected, G^1 is 3-edge-connected. Moreover, for each Eulerian subgraph C of G^1 , there is a corresponding Eulerian subgraph of G containing V(C). Since $S \cap B = \emptyset$, the set S is contained in $V(G^1)$. Since S is not contained in any Eulerian subgraph of G by Claim 1, S is not contained in any Eulerian subgraph of G^1 . By Theorem 3.1, $|S| \ge 13$. Let $F = \{x_i \, y_i \mid 1 \le i \le 13\}, P = \{x_i \mid 1 \le i \le 13\}$ and $Q = \{y_i \mid 1 \le i \le 13\}$. We suppose that F consists of l paths of length 2 with $0 \le l \le 6$ and 13 - 2l edges of a matching. Then |P| = 13 and |Q| = 13 - l. We know that Q is independent, that $y_i x_i \notin E(G) - F$ for any $y_i \in Q$ and $x_i \in P$ with $1 \leq i < j \leq 13$, and that G is triangle-free. Hence, two different edges of F are joined by at most one edge of G which is of type $x_i x_i$ or $x_i y_i$ with $1 \le i < j \le 13$. More precisely, we can give an upper bound on the number μ of edges of G which are adjacent to two different edges of F. For a given value of l, this number can be maximum if the l paths of F occur with smaller indices than those of the 13 - 2l edges of the matching. This is due to the fact that the l vertices y_i belonging to paths of length 2 have degree 2 and thus they cannot be adjacent by an edge not in F to any vertex x_i with i < j. When this condition is fulfilled, there are at most l^2 edges between the vertices x_1, x_2, \ldots, x_{2l} (since the number of edges of a triangle-free graph of order 2l is at most $(2l)^2/4$), 2l(13-2l) edges of type $x_i y_j$ between the sets $\{x_1, x_2, \dots, x_{2l}\}$ and $\{y_{2l+1}, y_{2l+2}, \dots, y_{13}\}$, and (13-2l)(13-2l-1)/2 edges of type $x_i x_i$ or $x_i y_i$ with i < j between the vertices of the set $\{x_{2l+1}, \ldots, x_{13}, y_{2l+1}, \ldots, y_{13}\}$. Then

$$\mu \leq l^2 + 2l(13 - 2l) + \frac{(13 - 2l)(13 - 2l - 1)}{2} = l - l^2 + 78.$$

Counting the edges of G - F adjacent to some edge of F, we find at least $(13 - 2l)\delta(H)$ edges adjacent to an edge of a matching of F and $2l(\delta(H) - 1)$ edges adjacent to an edge of a path of length 2 (since each vertex y_i on such a path has degree 2 in G). At most $l - l^2 + 78$ of these edges have their two endvertices in $P \cup Q$ and are thus counted twice. Hence $m(G) \ge (13 - 2l)\delta(H) + 2l(\delta(H) - 1) - (l - l^2 + 78) + 13$, that is $\nu(H) = m(G) \ge 13\delta(H) + l^2 - 3l - 65 \ge 13\delta(H) - 67 \ge 10\delta(H) - 4$ since l is an integer between 0 and 6 and $\nu(H) \ge 196$. This contradicts the hypothesis that $\delta(H) \ge (\nu(H) + 5)/10$, and so Claim 2 must hold. \Box

By Claim 2, *G* can be contracted to the Petersen graph P_{10} . Let v_1, v_2, \ldots, v_{10} be the ten vertices of the Petersen graph P_{10} , and W_i be the preimage of v_i $(i = 1, 2, \ldots, 10)$. Denote $SV = \{v \in V(G) \mid d_G(v) \ge 12\}$. Since $d_G(u) + d_G(v) - 2 \ge \delta(H) \ge 21$ for every edge $e = uv \in E(G)$, we have either $d_G(u) \ge 12$ or $d_G(v) \ge 12$. So we have

for every edge $e = uv \in E(G)$, either $u \in SV$ or $v \in SV$. (2)

Moreover, if $u, v \notin SV$, then $uv \notin E(G)$. By the hypothesis of Theorem 1.6 that H is 3-connected, we have

G is essentially 3-edge-connected.

(3)

Let $W \in \{W_i \mid 1 \le i \le 10\}$. Note that *G* is contracted to P_{10} . Then $|N_W(V(G) - V(W))| = 3$. If for any two vertices $w_1, w_2 \in N_W(V(G) - V(W))$, there is a dominating (w_1, w_2) -trail in *W*, then say *W* is *dominatiable*.

Claim 3. Let W' be a graph obtained from W by deleting the vertices of degree 1. If $E(W') \neq \emptyset$, then W' is 2-edge-connected. Therefore W' contains some cycle.

Proof. Since *G* is contracted to the P_{10} and *W* is the preimage of some vertex v_i , we may assume that $[V(W), V(G) - V(W)]_G = \{e_1, e_2, e_3\}$, where e_1, e_2, e_3 are edges adjacent to v_i in P_{10} . Suppose that *W'* contains a cut-edge $e = z_1 z_2$. Then *e* is also a cut-edge of *W*. Let (U_1, V_1) be the partition of V(W) such that $[U_1, V_1]_W = \{e\}$ and $z_1 \in U_1$ and $z_2 \in V_1$. Since $z_1, z_2 \in V(W')$, we have $d_W(z_1) \ge 2$ and $d_W(z_2) \ge 2$. Thus $E(G[U_1]) \ne \emptyset$ and $E(G[V_1]) \ne \emptyset$. Note that $[V(W), V(G) - V(W)]_G = \{e_1, e_2, e_3\}$. We may assume that the number of edges joining U_1 and V(G) - V(W) is 1, say e_1 . Then $\{e_1, e\}$ is an essential edge-cut in *G*, contrary to (3). So Claim 3 holds. \Box

Claim 4. If $\alpha'(W) = 1$, then $W = K_{1,p}$ for some $p \ge 1$. Therefore all three edges in $[V(W), V(G) - V(W)]_G$ must be incident with the vertex of $K_{1,p}$ with degree p, and so H_1 is dominatiable.

Proof. Since *W* is a connected triangle-free graph and $\alpha'(W) = 1$, *G* is acyclic. By Claim 3 and $\alpha'(W) = 1$, $W = K_{1,p}$ for some $p \ge 1$. \Box

Claim 5. Suppose that $\alpha'(W) = t \in \{2, 3, 4, 5\}$ and $\{u_1a_1, u_2a_2, ..., u_ta_t\}$ is a matching in W. Suppose that $u_i \in SV$ (i = 1, 2, ..., t). Then $V(W) \cap SV = \{u_1, u_2, ..., u_t\}$ and $E(W - \{u_1, u_2, ..., u_t\}) = \emptyset$.

Proof. Let $A = \{u_1, \ldots, u_t, a_1, \ldots, a_t\}$, $A_1 = A - u_i$ and $A_2 = A - a_i$. As $\alpha'(W) = t$, $E(W - A) = \emptyset$. Note that G is triangle-free and $SV = \{v \in V(G) \mid d_G(v) \ge 12\}$. For each $z \in V(W) - A$, $d_W(z) \le 5$ and so $d_G(z) \le 8$. Thus $z \notin SV$.

Since *G* does not contain a triangle and $\alpha'(W) = t \leq 5$, by $d_G(u_i) \geq 12$, we have $N_W(u_i) - A_1 \neq \emptyset$. Thus $N_W(a_i) \subseteq A_2$ (otherwise, $\{u_1a_1, \dots, u_{i-1}a_{i-1}, u_{i+1}a_{i+1}, \dots, u_ta_t, u_iu, a_ia\}$ is a matching of *W*, where $u \in N_W(u_i) - A_1$ and $a \in N_W(a_i) - A_2$, contrary to the assumption that $\alpha'(W) = t$). Since *G* is triangle-free, we have $d_W(a_i) \leq 5$, and so $d_G(a_i) \leq 8$. Thus $a_i \notin SV$. Therefore $SV \cap V(W) = \{u_1, u_2, \dots, u_t\}$, and $E(W - \{u_1, u_2, \dots, u_t\}) = \emptyset$. \Box

Claim 6. If $\alpha'(W) = t \in \{2, 3, 4\}$, then W is dominatiable.

Proof. Suppose that $\alpha'(W) = t$ and $\{u_1a_1, \ldots, u_ta_t\}$ is a matching in W. Without loss of generality, we assume that $u_i \in SV$ $(i = 1, 2, \ldots, t)$ by (2). By Claim 5, $SV \cap V(W) = \{u_1, u_2, \ldots, u_t\}$, and $E(W - \{u_1, u_2, \ldots, u_t\}) = \emptyset$. Let $w_1, w_2, w_3 \in N_W(V(G) - V(W))$ and $w_1z_1, w_2z_2, z_3w_3 \in [V(W), V(G) - V(W)]_G$. If $w_1 = w_2$ and $d_W(w_1) = 1$, then $\{z_3w_3, w_1x\}$ is an essential edge-cut in G for some $x \in N_W(w_1)$, contrary to (3). So we have $d_W(w_1) \ge 2$ if $w_1 = w_2$.

Suppose, by contradiction, that W does not have a dominating (w_1, w_2) -trail. If $w_1 \neq w_2$, we let $K_1 = W + \{w_1w, w_2w\}$, where w is a new vertex; if $w_1 = w_2$, we let $K_1 = W$ and $w = w_1$. Let $K = K_1 - D_1(K_1)$. Then $u_1, \ldots, u_t, w \in V(K)$, and K is 2-edge-connected by Claim 3. Let $S = \{u_1, \ldots, u_t\} \cup \{w\}$. Then K - S is edgeless, and K does not have an S-Eulerian subgraph. By Theorem 2.6, K is contracted to a member $L \in \mathcal{F}$ (see Figs. 2–4) such that S intersects the preimage of every vertex in B(L). Note that for each $L \in \mathcal{F}, d_L(b_i) = 2$ (i = 1, 2, 3) and the set of degree 2 vertices is independent. Without loss of generality, we assume that the preimages of b_1, b_2 do not contain w.

Note that $[V(W), V(G) - V(W)]_G = \{w_1z_1, w_2z_2, z_3w_3\}$. Suppose that $w \in V(L)$. Then $w_1, w_2 \in V(L)$. If $w_1 \neq w_2$, then $d_L(w) = 2$. Thus $w_1, w_2 \notin \{b_1, b_2\}$. If $w_1 = w_2$, then $w_1 = w_2 = w$. Thus $w_1, w_2 \notin \{b_1, b_2\}$ still hold. Since either $w_3 \notin V(PI(b_1))$ or $w_3 \notin V(PI(b_2))$, we may assume that $w_3 \notin V(PI(b_1))$. Thus $[V(PI(b_1)), V(G) - V(W)]_G = \emptyset$ and the set of two edges adjacent to $V(PI(b_1))$ is an essential edge-cut of G, contrary to (3). So $w \notin V(L)$. We assume that the preimage of some $b_i (\notin \{b_1, b_2\})$ contains w. Thus $w_1, w_2 \notin V(PI(b_i))$ (i = 1, 2). Therefore either $|[V(PI(b_1)), V(G) - V(W)]_G| = 0$ or $|[V(PI(b_2)), V(G) - V(W)]_G| = 0$. Without loss of generality, we assume that $|[V(PI(b_1)), V(G) - V(W)]_G| = 0$. Then the set of two edges adjacent to $V(PI(b_1))$ is an essential edge-cut of G, contrary to (3). \Box

Claim 7. If $\alpha'(W) = t \ge 1$, then $|E(W)| \ge t\delta(H) + 2t - t^2 - 3$.

Proof. Let $\{u_1v_1, \ldots, u_tv_t\}$ be a matching in W. Then $E(W - \{u_1, \ldots, u_t, v_1, \ldots, v_t\}) = \emptyset$, and for any pair of u_iv_i, u_jv_j $(i \neq j), |[\{u_i, v_i\}, \{u_j, v_j\}]_W| \leq 2$ since W does not contain a triangle. Since for $\sum_{v \in V(W)} d_W(v)$, the edges of u_iv_i and the edges in $[\{u_i, v_i\}, \{u_j, v_j\}]_W$ are counted twice, and since $|[V(W), V(G) - V(W)]_G| = 3$, we have

$$\begin{aligned} \left| E(W) \right| &= \sum_{v \in V(W)} d_W(v) - \left| \{ u_1 v_1, u_2 v_2, \dots, u_t v_t \} \right| - \sum_{i \neq j} \left| \left[\{ u_i, v_i \}, \{ u_j, v_j \} \right]_W \right| \\ &\geqslant \left(\sum_{v \in V(W)} d_G(v) - 3 \right) - t - 2 \binom{t}{2}. \end{aligned}$$

Since $\delta(H) \leq d_G(u_i) + d_G(v_i) - 2$ for each $u_i v_i$, we have

$$|E(W)| \ge t(\delta(H)+2) - 3 - t - 2\binom{t}{2} = t\delta(H) + 2t - t^2 - 3.$$

Now we finish the proof of Theorem 1.6. Let $|\{v_i | v_i \text{ is a trivial vertex in } P_{10}\}| = s$. By (2), the set of all trivial vertices in P_{10} is independent. Since $\alpha(P_{10}) = 4$, we have $0 \le s \le 4$. If s = 0, then each v_i is a nontrivial vertex. Thus $|E(W_i)| \ge \delta(H) - 2$ by Claim 7. Therefore

$$m(G) = \sum_{i=1}^{10} |E(W_i)| + 15 \ge 10(\delta(H) - 2) + 15 = 10\delta(H) - 5.$$

By the hypothesis of Theorem 1.6, we have

$$\delta(H) = \frac{\nu(H) + 5}{10}, \qquad |E(W_i)| = \delta(H) - 2,$$

 $\alpha'(W_i) = 1$ and $W_i = K_{1,p}$, where $p = \delta(H) - 2 = (\nu(H) - 15)/10$.

If $s \ge 1$, without loss of generality, we assume that v_1 is trivial. Since $P_{10} - v_1$ has a spanning cycle, there exists a W_i , say W_{10} , such that $\alpha'(W_{10}) \ge 5$ by Claims 4 and 6. If $s \le 3$, then

$$m(G) = \sum_{i=1}^{10} |E(W_i)| + 15 \ge (10 - s - 1)(\delta(H) - 2) + (5\delta(H) - 18) + 15$$

$$\ge 6(\delta(H) - 2) + 5\delta(H) - 3 = 11\delta(H) - 15 \ge 10\delta(H) - 4.$$

Thus $\delta(H) \leq (\nu(H) + 4)/10$, a contradiction. So s = 4. By Claims 3, 6 and $\delta(H) \geq (\nu(H) + 5)/10$, $\alpha'(W_{10}) = 5$. If there exists some W_j $(j \neq 10)$ such that $\alpha'(W_j) \geq 2$, then

$$m(G) = \sum_{i=1}^{10} |E(W_i)| + 15 \ge |E(W_{10})| + |E(W_j)| + 4(\delta(H) - 2) + 15$$

= $(5\delta(H) - 18) + (2\delta(H) - 3) + 4\delta(H) + 7 = 11\delta(H) - 17 \ge 10\delta(H) + 4,$

a contradiction. So the number of W_i with $\alpha'(W_i) = 1$ is 5. Without loss of generality, we assume that $\alpha'(W_i) = 1$ (i = 5, 6, 7, 8, 9) and $\alpha'(W_{10}) = 5$. Let $\{e_1 f_1, e_2 f_2, e_3 f_3, e_4 f_4, e_5 f_5\}$ be a matching of W_{10} and $B = \{e_1, ..., e_5, f_1, ..., f_5\}$ and $Z = W_{10}[B]$. By (2), we assume that $e_i \in SV$ (i = 1, 2, ..., 5). By Claim 5, $SV \cap V(W_{10}) = \{e_1, e_2, ..., e_5\}$, and $E(W_{10} - \{e_1, e_2, ..., e_5\}) = \emptyset$.

If $|E(Z)| \leq 16$, then

$$|E(W_{10})| = \sum_{v \in B} d_G(v) - |E(Z)| - 3 \ge 5(\delta(H) + 2) - 16 - 3 = 5\delta(H) - 9.$$

Thus

$$m(G) = \sum_{i=5}^{9} |E(W_i)| + |E(W_{10})| + 15 \ge 5(\delta(H) - 2) + (5\delta(H) - 9) + 15$$

= 10\delta(H) - 4,

and so $\delta(H) \leq (\nu(H) + 4)/10$, a contradiction. So we have

$$\left|E(Z)\right| \geqslant 17.\tag{4}$$

If Z is collapsible, then $W_{10} - D_1(W_{10})$ is collapsible by Theorem 2.3. Thus for any pair of vertices $u, v \in W_{10} - D_1(W_{10})$, $W_{10} - D_1(W_{10})$ has a spanning (u, v)-trail by Lemma 2.9. Then for any pair of vertices $u, v \in V(W_{10})$, W_{10} has a dominating (u, v)-trail, and so W_{10} is dominatiable. Since each W_i (i = 1, 2, 3, 4) is a trivial graph, since each W_i (i = 5, 6, ..., 9) is dominatiable, and since $P_{10} - v_1$ has a spanning cycle, G has a dominating Eulerian subgraph, a contradiction. So Z is not collapsible. Moreover,

 $W_{10} - D_1(W_{10})$ is not collapsible.

Therefore Z is not 2-edge-connected by Lemma 2.8.

Let $K \subseteq Z$ with |V(K)| = 8. Suppose that $|E(K)| \ge 14$. Then K is 2-edge-connected by Lemma 2.7. If $|D_2(K)| \ge 2$, then $|E(K)| \le 2 + 2 + 9 = 13$ by Lemma 2.7(iv), a contradiction.

(5)

504

So $|D_2(K)| \leq 1$. By Lemma 2.5 and by the fact that *G* is triangle-free, *K* is collapsible. By Claim 3 and Theorem 2.3, $M_{10} - D_1(M_{10})$ is collapsible, contrary to (5). So

$$\left|E(K)\right| \leqslant 13.\tag{6}$$

Suppose that Z is not connected and Z_1 is a component of Z. Then $|V(Z_1)| \in \{2, 4, 6, 8\}$. By Lemma 2.7(ii), (iv) and (4), $|V(Z_1)|$ is either 2 or 8. We may assume that $|V(Z_1)| = 2$ and $Z_2 = Z - V(Z_1)$. Then $|E(Z_1)| = 1$, $|V(Z_2)| = 8$ and $|E(Z_2)| \ge 16$, contrary to (6). So Z is connected. Let X be a cut-edge of Z and Z_3 , Z_4 be components of Z - X with $|V(Z_3)| \le$ $|V(Z_4)|$. By Lemma 2.7 and (4), $|V(Z_3)|$ is either 1 or 2. If $|V(Z_3)| = 2$, then $|E(Z_4)| \ge 17 - 2 =$ 15, contrary to (6). So $|V(Z_3)| = 1$, $|V(Z_4)| = 9$, $|[V(Z_3), V(Z_4)]_Z| = 1$ and $|E(Z_4)| \ge 16$.

By (6) and Lemma 2.7, Z_4 is 3-edge-connected. Let Z'_4 be the reduction of Z_4 . Then Z'_4 is still 3-edge-connected and $|V(Z'_4)| \leq 9$. Thus $Z'_4 = K_1$ by Theorem 2.4, that is, Z_4 is collapsible. By Claim 3 and Theorem 2.3, $W_{10} - D_1(W_{10})$ is collapsible, contrary to (5). \Box

Acknowledgments

The authors thank the referees for their careful reading of the paper and their useful suggestions.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan/Elsevier, London/New York, 1976.
- [2] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29-44.
- [3] P.A. Catlin, Supereulerian graph, collapsible graphs and 4-cycles, Congr. Numer. 56 (1987) 223–246.
- [4] Z.H. Chen, Supereulerian graphs and the Petersen graph, J. Combin. Math. Combin. Comput. 9 (1991) 79-89.
- [5] Z.-H. Chen, H.-J. Lai, X. Li, D. Li, J. Mao, Eulerian subgraphs in 3-edge-connected graphs and Hamiltonian line graphs, J. Graph Theory 42 (4) (2003) 308–319.
- [6] O. Favaron, E. Flandrin, H. Li, Z. Ryjáček, Cliques covering and degree conditions for hamiltonicity in claw-free graphs, Discrete Math. 236 (2001) 65–80.
- [7] O. Favaron, P. Fraisse, Hamiltonicity and minimum degree in 3-connected claw-free graphs, J. Combin. Theory Ser. B 82 (2001) 297–305.
- [8] F. Harary, C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701–709.
- [9] O. Kovářík, M. Mulač, Z. Ryjáček, A note on degree conditions for hamiltonicity in 2-connected claw-free graphs, Discrete Math. 244 (2002) 253–268.
- [10] E.J. Kuipers, H.J. Veldman, Recognizing claw-free Hamiltonian graphs with large minimum degree, Memorandum 1437, University of Twente, 1998, submitted for publication.
- [11] H.-J. Lai, Eulerian subgraphs containing given vertices and Hamiltonian line graphs, Discrete Math. 178 (1998) 93–107.
- [12] H.-J. Lai, D. Li, M. Zhan, Eulerian subgraphs and Hamilton-connected line graphs, Discrete Appl. Math. 145 (2005) 422–428.
- [13] M.M. Matthews, D.P. Sumner, Hamiltonian results in $K_{1,3}$ -free graphs, J. Graph Theory 8 (1984) 139–146.
- [14] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217–224.