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Abstract

We show that the global solutions to the Navier—Stokes equatiofs iwith data invMO—1
which belong to the space defined by Koch and Tataru are stable, in the sense that they vanish at
infinity (in time), that they depend analytically on their data, and that the set of Cauchy data giving
rise to such a solution is open in tB&0O~1 topology. We then study the case of more regular data.
0 2004 Elsevier SAS. All rights reserved.

Résumé

Nous étudions les solutions globales des équations de Navier—Stokes qui appartiennent a I'espace
de Koch et Tataru et qui sonssociées & une donménitiale dand/MO~1. Nous démontrons qu'elles
s’annulent a l'infini et qu'elles dépendent de fagon analytique de leur donnée de Cauchy. Nous
prouvons également que I'ensemble des distributiong®1 qui donnent naissance & une telle
solution est ouvert dans la topologie B&O~1. Enfin, nous étudions le cates données initiales
plus réguliéres.
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1. Introduction

In the absence, at the present time, of any satisfactory result on the existence of global,
unigue and regular solutions to homogeneous incompressible Navier—Stokes equations
in the space, for a large enough class of initiataj a simpler question naturally arises:
what can be said about the topology of the set of those initial data leading to such a good
solution? In particular, is ibper? Answering affirmatively means proving a stability result,
with respect to perturbations on the Cauchy data, of the kind we are interested in here.

Of course, this question must be stated in a precise functional setting to make sense.
It has already been done in the past twenty years by different authors, giving a variety of
results on apparently different solutions. Following the illuminating description given by
Cheminin [6], there are indeed two main streams in the history of the study of the solutions
to Navier—Stokes equations, which have their origins in the works of Leray [24] on one side
(appearing in the 1930s), of Fujita and Kato [T, Weissler [30] and Kato alone [17] on
the other side (several decades later). It turns out that the study of the stability problem
followed a parallel development—adt which is not coincidental.

The first results on stability dealt with Leray weak solutions, thus in the setting of the
energy space, or rather some appropriate subspaces. We mention contributions by Beirdo
da Veiga and Secchi [2], by Wiegner [31], andBgnce, Racke, Sideris and Titi [26]. For
example, let us extract from the latter this resthle set of thoseg € H1(R®) leading to a
global weak solution: which, in addition, belongs to some spac®(]0, +oo[; L?(R3)),
with 3/p +2/g = 1and3 < p < o0, is open in theH *-topology Here the most important
hypothesis is the glolhantegrability of u. Its purpose is twofold, since it means that
have some decay property at infinity (in time), and that it satisfies what could be called an
invariant estimate. We will comment on the fioperty later, and concentrate now on the
second one.

An invariant estimate on a solutianis an estimate involving a set of norms or semi-
norms which is invariant under translation in the space, and under the rescaling law
u(t,x) — Au(r?t, rx). These transformations leave invariant the equations themselves.
That invariant estimates are fundamental in studying Navier—Stokes equations is nothing
new, and has been emphasized by Leray himself (he speaks of “formules homogénes” in
his 1934 paper), as well as by many others.(eCgffarelli, Kohn and Nirenberg, in their
celebrated paper, insisting on the role of “dimensionless quantities”). In particular, most
(partial) results on the uniqueness or on the regularity of weak solutions are based on such
estimates: well-known examples are in Serrin [27], Chemin [6] ... The same phenomenon
appears for stability results, and the above-mentioned one is very representative.

One can say that the development initiated by Fujita and Kato rests on a more radical
point of view, consisting of leaving aside the energy space and deliberately working in
a fully invariant functional setting. This has led to many results on various classes of
(always regular) solutions: the uniqueness problem has been settled by Furioli, Lemarié
and Terraneo in [12], which is certainly theain reference. The existence of solutions
has been treated by Fujita, Kato, Weissleigd; Miyakawa, Taylor, Kozono, Yamazaki,
Cannone, Planchon, Lemarié, Barraza, etc. (sebitiliography), and this series of papers
culminated in the article [19] by Koch and Tataru, which contains an optimal result.
Optimality is meant here in a precise sense, that we recall in Section 4. Let us point out,
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however, that all these results do not use the cancellation property of the nonlinear term in
Navier—Stokes equations, and are instead valid for a general class of equations.

The same change occurred for the question of stability, starting from a recent paper by
Kawanago [18], in which he proved thélte set of thoseg € L3(R®) leading to a global
solutionu e C ([0, +-oo[; L3(R®)) such that, in additionlim,_, 4 [lu(z, )| ;s = O is open
in the L3(R3)-topology This result highlights the iportance of the decay property of
which plays a crucial role in the proof. Also, Kawanago made the nice observation#hat if
fulfills an energy inequality then this decay property is true, and needs not to be assumed.
With the help of some previously known results this implies that Kawanago’s theorem
encompasses that of Ponce, Racke, Sideris and Titi we have cited above.

Later, Gallagher, Iftimie and Planchon [15,14] extended Kawanago’s result in two
respects: they considered more general invariant functional settings, and more importantly,
they discarded the hypothesin the decay of the solutioproving that it always hold.

What is remarkable in their proof is that, in the line of Kawanago’s observation, it
reintroduces the cancellation property of the nonlinear term as a key feature in the
asymptotic analysis of the solutions, even though they are not considering Leray weak
solutions. This is reminiscent of Calderén’s and Lemarié’s (independent) constructions of
weak solutions inL? spaces for 2 p < 3 [3,23]. At the end of this paper, we give a
counterexample which strongly suggests that this is not an artefact of their method, but an
essential argument.

Indeed, we here elaborate on Gallagher, li&imnd Planchon paper in order to reach the
main case which is out of the scope of their results, that of Koch and Tataru solutions. For
this purpose, we abandon Littlewood—Paleytaques (a main tool in [14]) and instead use
simple real variable estimates. Since Kocld dataru construction is optimal, our result is
optimal, too, implying all the stability results previously known for these equations.

2. Statement of theresult

Spaces of scalar-valued and spaces of vedbred functions odistributions will
abusively be denoted the same way.

LetC, or sometime€,,, be the space of functionsr, x) defined o]0, +-o00[ xR3 and
valued inC3, such that

Noo (1) d:efsu(?ﬁ Ju@] ., < +oo, (1)
1>
12
1 0 1/2
Ny & sup—//‘u(t,x)|2dxdt < +oo, )
0e0 10| >

whereQ denotes the set of all cubesin R2 with sides parallel to the axes, lengthsige
and measureQ|.

Similarly, for T € 0, +ocl, let Cr be the space of functiong(z, x) defined on
10, T[xR3 and valued inC3, such that
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def
Noo,r ) S sup V1 |u()], < +oo, (3)
O<t<T
12
1 0 1/2
Ne.r (1) d:ef< sup —f/|u(t,x)|2dx dt) < +00. 4)
0eQ, 1p<VT 12l 00

Let finally Co (respectivelyCo ) be the closed subspacedn(respectivelyCr) of the
functionsu(z, x) such that

lim ,=0. 5
T’aO”u”CT (5)

We will sometimes writ&p , instead o, too.
In a recent paper [19], Koch and Tataru showed the following two statements.

(1) If uop € BMO1(R3) is small enough and divergence-free, there exists a solutio
to the integral Navier—Stokes equationsif with initial dataug (that we will denote
(NS, from now on). This means that

t
u(t) =¢€%ug— / el=9)Ap div(u ) ® u(s)) ds, (NSI),,,
0

wherelP is the Leray projector onto the divergence-free vector fields.

(2) Also, if ug is any divergence-free vector-valued distribution in the closure of the
Schwartz class iBMO~1(R3), that we will denote/MO™* in the sequel, then there
existT > 0 andu € Cp r solving the same equations ], T[xR3. Here,T depends
onug and, in particular] = +o0o whenug is small enough.

(3) Furthermore, it has been proved by one of us that any solut®do r, T < 400, of
(NSI),,, with ug € BMO™1 is unique: see [8].

Because these results ardiopal in a sense we will describe later, they are the highest
point in a chain of works initiated by Fujita and Kato, Kato, Weissler, and continued
by Taylor, Konozo, Yamazaki, Cannone, Planchon, Meyer, and many others: see the
bibliography. Regarding them as perturbation results around the zero solutibisbg,
we ask what happens when one tries to perturkegmyori given global solution to Navier—
Stokes equations.

To be more precise, we define the getof all the dataug € VMO giving rise to
a global solution of(NSl),,, belonging to(;.,Co,r, Whatever its large time behaviour
might be. Our main theorem essentially says that Koch and Tataru result, valigl£00,
extends to any suchy.

Theorem 1.

(i) If up € E and ifu is the solution attached tag, thenu € Co and
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i i) =0 ®
IETOO Jutz+9]e=0. (7)

(i) There exists > 0 such that, for everyg € BMO™1(R3) with

luo — UOHBMO*l e,

the Navier—Stokes equations with dataadmit a global solutiorv in C. Moreover,
the mapvg — v, defined from the balB(ug, ¢) in BMO™1 to the space, is analytic
at uop.

Here and in the sequel, we will say that a mapdefined from an open subsgt of
some Banach spadeé to another Banach spadg, is analytic at fo, fo € 2, when there
existse > 0 and a sequencky, k > 1, of k-linear bounded operators, each defined from
F* to F, such thatB( fo, &) C £2 and

+00
®(g0) =D (fo)+ »_ Li(g0— fo. ... 80— fo)
k=1

whenevergg € B( fo, ), the series being normally convergentinfor such ago.

3. Proof of the theorem
3.1. The main steps

Letug € E andu € (.o Co,r a global solution ofNSI),,,. We begin with proving that
u € Cp and that (6) and (7) hold true. To this end, we use a strategy which has been defined
by Gallagher, Iftimie and Planchon in [14], developing earlier ideas due to C. Calderén
[3], and later rediscovered by Lemarié [23]. Fix- 0: sinceuo € VMO there exists a
decomposition:

uo = fo+ go,

where fo € VMO ™1 N L2, while go is small enough i'VMO™! so that there existg,
solution of (NS¢, in Co, with |gllc, < e. Then the functionf = u — g satisfies the
equation:

t

£ =efAfo—/e<f*S>A1P>div(u(s) ® f(5)+ f(5) ®u(s))ds
0
t

- /e(”S)AIP’ div(f(s) ® f(s)) ds. (8)

0
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The key point is now that, sincg € L2, f will be shown to fulfill a kind of energy
inequality, which implies the following lemma.

Lemma 2. With the notation above, we have

T
. 1 4
TLITOO Tf”f(t) |5y1/22 0 = 0.
1

Admitting this statement for the moment, we may conclude. Observe that, because
W1/22 is embedded iVMO™2, there exists a tim&"’ at which | f(T")[lyyo-1 < &- By
the foregoing Lemma 8g(r) persists inBMO~* and lg®)llgmo-t < Ce forall t > 0.
Thus, |u(T") lgmo-t < Ce: providede is small enough, the result of Koch and Tataru
and the uniqueness ifiy of the solutions of(NSI) apply to u(7’ + -), showing that
lu(T' + )|lc < Ce. In particular, we have/? ||u(t)||oc < Ce if t > 2T’. This proves the
desired results on the asymptotic behavious of

Consider nowvg € BMO~1: we have to show thatNSl),, has a solutiorw in C
whenevery is close enough tag. Settingw = u — v andwg = ugp — vo, this is equivalent
to solving for smalhwg the equation:

t
w(t) =e’Aw0—/e(’_s)A]P’diV(u(s)®w(s)+w(s)®u(s))ds
0

t
_/eO—S)A]Pdiv(w(s)®w(s))dS- ©)
0

We formally define the bilinear operatdrby the formula:

t

B(f,8) =/e(’_s)A]P’div(f(s)®g(s))ds.
0

The continuity of this operator on the spacds the main estimate in Koch and Tataru
paper:

Lemma 3 (Koch and Tataru estimate).
JA>0Vf.geC ||B(f.9)].<Alflclgle
Therefore, we may define @ha continuous linear operatds, ,, by:

Ly (w)=B(u,w)+ B(w, u).
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Also settingSwo = (€ 2wo);~0, We rewrite (9) as
w = Swo — Ly, (w) + B(w, w). (10)
Now, the operatoL,, , (with this particulam) has the following property:
Lemma 4. The spectrum of,,, , in C is {0}.

Again admitting momentarily this statement, we see that (10) is solvalildan Swo
small enough, i.e., fowp small enough iBBMO™1, thanks to the abstract principle for
solving quadratic nonlinear equations in Bah spaces which lies behind Koch and Tataru
result—as well as all the aforementionedethesults of the same type—that we now state
explicitly.

Lemmab. LetF be a Banach spacé, a continuous linear operator af and B a bilinear
operator, continuous orf in the sense that

IBIE  sup | B(fi9)] 5 < +oo.

IflF=lgllF=1

Then, if] + L is invertible, and for allz € F such that

1
(I +L) 'z - < : 11
” =< aima + o -
there is a solutiorw € F to the equation
w=z— L(w)+ B(w, w). (12)

Moreover, there exists for eadh> 1 a k-linear operator7} continuous orF¥ with

+o00
w=ZTk(z,---,z),
k=1

where this series converges normally under the conditldi)

The three lemmas above allow to solve (10)d@rsmall enough ilBMO ™2, as desired.
The analyticity result is a direct consequence of Lemma 5.
The strategy of proof of Theorem 1 is now explained: before going into the details and
proving Lemmas 2 and 4, we give a proof of Lemma 5 for the convenience of the reader.
Let us first assume thdt= 0 and recursively define the operatajsby:

Tl(z) =2, L
Ti@)=Y51BT1(), i j(2), k=2
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By construction eacH is the trace on the diagonal ¢t of somek-linear operatoff;
(which is not uniquely defined). Also the constaajsdefined by the recurrence relation

C1=1,
{ckannZ’;:%cjckj, k>2,

are such that
VeeF | Ti@ |z < Crllzlls.

When| B| = 1, theCy’s are the so-called Catalan nbers, which can be computed via
their generating function; by a simple reduction to this case one finds in general:

1 (2!

= s (4181

Cr IBIFt ~

1
ﬁk3/2
Hence the serie$ %} Ti(z) converges normally whetiz||= < 1/(4||B]), and is a
solution to the equatiom = z + B(w, w), by construction.

In the general case, whent- L is invertible, it suffices to notice that (12) is equivalent
to

w=(I+L) 2+ +L) " Bw,w)
and then to apply the result whén= 0. This ends the proof.
3.2. The linear operator&,,

Both Lemma 2 and Lemma 4 lie upon properties of the linear operatpssformally
defined by:

t

Lap(f)(1) = f eIAPdiv(a(s) ® f(s) + f(s) ® b(s))ds,
0

or more briefly,

Lap(f)=Bla, f) + B(f.b).

ForT €10, +o00] we will need two new functional spaces. The first one, denotefigyis
the space of the functions, defined orl0, 7[xR3, such that

1flz, difosupT(Hf(r) |+ V2| VD] ,) < +oo.
<<
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This space resembles the Leray—Hopf space of energy, which is more usually considered,
with the advantage of being easier to handle and enough for our purpose. The second one,
denoted b)C%, is the subspace @f; endowed with the norm,

def
£l = 1 ey + Nao 7 ()

where by definitionNoloﬁT(f) =SUp, -7 IV f()l]lco. We begin with stating and proving
the following:

Lemma®. Leta, b in Co,r, T < 400, with the additional property that
t_'lToo”“(’ +9)e+ o+ =0
whenT = +o00. Then
(i) L. is continuous oif7 and its spectrum i§0};
(ii) if moreoverdiva =0andb e C%, L, is also continuous o and onCl, andits
spectrum on both spaces{i3} as well.
As we already mentioned, the continuity 6f, , on Cr, uniformly with respect to

T < 400, is nothing but Koch and Tataru estimate. Let us prove that, whea €0
andb e C}, L, is continuous orCr.

Take f in £7. TheL? estimate forL, »(f) is straightforward:

1 1
t—s\/E

< C(Noo,T(a) + Noo,T(b))”f”ET-

t
|Lao ()], < C(Noo,7(@) + Noo,7 (b)) / | £, ds
0

For theW1-2 estimate, we use thatis divergence-free and writé ¢lenoting any first-order
partial derivative):

t/2

ILap(f)(1) = f 9! VAP div(a(s) ® f(s) + f(s) ® b(s)) ds
0

t
+ f 9e" AP ((a(s) - V) f(9) + (f(s) - VIb(s)) ds
t/2
t
+ / de"IAP((div £ (5))b(s)) ds. (13)

t/2
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We may now estimate:

t/2
1 1
10Lab(f)(®)|, < C(Noo,7(@) + Noo.1 (b)) / :xﬂf(s)llzds
0

+ C(Noo,7 (@) + N3, 7 (D))

t 1 1 1
X f ﬁ<$||vf(s)||2+ ;Hﬂs)Hz) ds

t/2

t
+CN (b)f t 1 [div £ (s)].,d
e——— ) A)

oot NG 2

t/2
<C 1
NG
We thus have obtained that, ,(f) € L7, with

(Noo,7(@) + Noo. 7 () + N, 7 D)1 fll -

1Las (D)l < C(Noo,7(@) + Noo,7(B) + N 7B i -

There is a useful variant of this estimate, based on the relation

to be used in (13), witkk € [1/2, 1] to be chosen. It gives:

1
l0Las (D), < C7;<In —

1-«
+c,/TN§O,T(b)||f||cT,

)(Noo,ﬂa) + Noo ®) 11 £l

and therefore

1
ILab(Dlz, < C{ <In - Ol)(zvoo,T(a) + Neo,7 (b)) + V1 — aNio,T(b)}ufncT.

(14)

The last continuity property we have to prove, namely that,of onC%, is obtained in
a similar way. Letf € C%: we already know thak, ,(f) € Cr. To estimatd|d L, 5 (f) oo,
we start from (13); the second and third integrals in the right-hand member are estimated
in L asinL? by:
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t
c(Noo,T(a)JrNgoT(b))/¢<i||v,f(s)ll +}||f(s)|| )ds
s /2 \/m ﬁ 9] s [e%e]
t

11,
+CN00,T(b)fﬁﬁ”dlvf(s)”oods

t/2

1 1
< C;(Noo,r(a) + Noo, 7 (D) + Noo,T(b))”f”C%'

We used here the classical fact that any operator of the ®¢m)e'*, where P(D) is

a pseudo-differential operator of convolution type and of degree0, is bounded on
L with norm proportional ta—/2. For the remaining integral in (13) we need the more
precise fact that such an openai®a convolution with a functio%fT/zi/f(ﬁ), whereyr

is smooth and decays like| 3~ at infinity. Thus, for allx € R3, we have:

t/2

f 9! VAP div(a(s) ® f(s) + f(s) ® b(s))(x) ds
0

t/2
5 1
<X @rk) g [ [ (il e ren]|dye

keZ? 0 yeB(x+/k,Cv/7)
1
< C(NC,T(a) + NC,T(b))NC,T(f)?'
Finally, we have obtained thdt, ,(f) € C% with the estimate,
[ Lab(f) ||c; <C(llalle, + IIbllc%)llfllc%- (15)

As before, we could have replacet® by ar, « € [1/2, 1], in the above calculations. We
let the reader verify that this would have given the following:

1 1
”La,b(f) ”C% < C{ <— In

) (el + 1blle,) + VI=@ N -6y,

(16)
Let us now show that the spectrumiof , onCr, on Ly and onC% is {0}. We may only

consider the casé = +oo, extendingz andb by 0 on[T, +oco[ xR? if T is finite. Recall
that we assume:

t_'lTooH“(“L‘)HcWL |6+ =0. (17)
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Leta #0, g € C (respectivelyC, CL.), and consider the equation:

M —Lap(f)=2¢. (18)
We have to show it has a unique solutiorCifrespectivelyC.., CL.): sinceL, , depends
linearly ona andb, it is enough to prove it wheh = 1.
We are going to construct a global solution to (18) from finitely many local solutions
obtained on appropriate time intervals. Let us begin with the following observation, whose
proof is left to the reader.

Lemma7.LetO< 7 <t <+4ooanda =a(t +-,-), defined o0, ¢’ — t[xR3. Then

- [t . / t
Ney—(a) < In;Noo(a), Noor—i(a) < 1—?Noo(a).

Let § > 0 be a small parameter, to be fixed in a short while. We deduce from the
preceding lemma, (17) and the fact thab € Co, the existence of an integdr andN + 1
overlapping intervalg; = 1, t;[, with 10 =0, 1), = 400 andz; < t}fl if 1 <j<N,such
that ’

Viel0 N} lajle, , +Ibjle, , <6, (19)
J J

where by definition;; = a(t; +-,-), 0 <t <1’ —1t;, and similarly forb;. Then, Koch and
Tataru estimate implies that, férchosen small enough, we have:

Vj€{0,...,N}VT <8 |La;p,llc, <1/2
Similarly, we may and do choose at fitsin (14) and (16) close enough to 1 so that
CV1—aNL . (b) <1/4,

thens so as to obtain:
Vji€(0,...,N}VT <8 Loy, llc, <1/2 (20)
Vje{0,....N}VT <68 ILajp;llcr < 1/2. (21)
We are now in position to solve Eq. (18) (recall that 1). We begin with the case

whereg € L.
Restricting (18) talo = 10, #5[ and using (20), we obtain a uniqye e L,é such that

Vielo fo(r) = Lagbe(f0) (1) = g(1).
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Thus, by constructionL g »,(fo)(f1) € L2. Again using (20), there exists a unique
fie L,;_,, such that for all- € 10, 74 — 1],

F1(0) = Lay by (1) (7) = g(t1 + ©) + €2 Lag 1o (fO) (12). (22)

We define the functionfy on IoU I1 by f1 = fo on I, fi(t) = fi(r — 1) on I1: that
this definition is consistent follows from the fact thaf(r1 + t) is a solution of (22) on
10, #5, — r1[, while this solution is unique by (20). It is not difficult to check thyate Eti'

We iterate this constructioN — 1 times, definingfz, e, fN, with
fzeﬁté, e, fN—leﬁtz/vfl’ SN € Loo-

Then, the functionf = fy is a solution of (18). Its uniqueness follows from its
construction.

The case where € C is solved in a similar way, the only point needing to be precised
being the following persistence result.

Lemmas8. If a,b, f € Cr,thenL, ,(f)() € BMO™1 for eachr € 10, T'[, uniformly with
respect ta.

Proving it reduces to show th&t(a, f)(t) € BMO 1, and thisis a consequence—since
P mapsL> to BMO—of the following:

t

f "%, (s) ® f(s)ds
0

3C >0V €0, T[ <C. (23)

o0

Indeed, on the one hand we have:

t

fe“*sma(s) ® f(s)ds
t/2

t
< o1l o] a

o0 t/2
< CNoo,T(a)Noo,T(f)-

On the other hand, if € R3 is fixed, we have:
t/2

/e('_s)A|a(s)®f(s)|(x)ds
0

t/2
C
< 372 //e*|x*Y\2/(4t)|a(S,y)||f(s, y)|dyds
0
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t/2
1
<C Z e—\k\Z/lom/ / |a(s, y)||f(s, )’)| dy ds

keZ? 0 yeB(x+ik.Cy)
< CNC,T(a)NC,T(f)'

We therefore have proved (23) and Lemma 8. This allows to solve (18gkactly as we
did in Leo.

Finally, solving (18) inCL, is just a repetition of the same arguments. We skip the
details, and finish there the proof of Lemma 6.

A first application of this lemma is thepof of Lemma 4. Recall that, by hypothesis,
is a solution of(NS)),,, in Co, which satisfies (7). ButNSI),,, rewrites as

u=Sug— Ly o),

with Sug = (€2up);~0 belonging tocgQ andu being divergence-free: thanks to Lemma 6,
we may apply the following simple observation (left to the reader).

Lemma 9. Let &1 and &> be two Banach spaces, a linear operator continuous on both,
with both spectral radii in0, 1[. ThenI + L is invertible on€1 N &7.

Thusu belongs taCl , too; we invoke again Lemma 6, this time with= b = u, to get
the desired result.
The proof of Lemma 2 is a little more involved, as we shall now see.

3.3. The energy estimate

We consider the solutiorf of (8): we know that it is in[);.yCo,r, and also that
fo € VMO~ n L2. We first prove the following:

Lemmal0. f € (y.oLr7-
Proof. The proof starts with rewriting (8) as

f +L14,g(f) = SfO

with Sfo = (€2 fo):~0. Sinceu, f, g, andSfp are all elements df ;- Co. 7, the equation
above also holds into this space. BecagigeCl , as we will show, Lemma 6 implies that
L., has a null spectral radius on every spégeandLr. We getthatf € Lr forall T > 0
on applying Lemma 9.

The reason why belongs toaCl, is now to be explained. Recall thiagllc, ., < & and
thatg solves(NSIg,, i.e., that

g+ Lgo0(g) = Sgo.

Provideds is small enough, Koch and Tataru estimate and (15) ensure that
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ILgollc, <1 and [Lgollcy <1.

Thus Lemma 9 works again: sin6go belongs taCl , the same is true fqg. This ends the
proof.

Following [7] (see also [9]), we infer from (8) thatis a weak solution of the differential
equation,

aa—f—Af+1P>div(u®f+f®g)=o.

In particular, thanks to the preceding lemma we have for everyiO< T’ < +o00

T T

[irarpzf [lvrofa=-2[ [wwe rm)-vroa
T T

2

T/
—fo(f(t)®g(t))-Vf(t)dt+/|f(T)
T

where all the integrals above are defined in the sense of Lebesgue. Recall jratl *°
and divu(z) = 0: the cancellation property specific to Navier—Stokes equations gives us

V>0 /(u(t)@f(t))-Vf(t):O. (24)

We thus have:

T’ T’
/If(T/)|2+2//|Vf(t)|2dt<flf(T)|2+2//|f(t)®g(t)||Vf(t)|dt
T T

T/
d
< [lraP+oveo [LrolIvrol,
T

Since|gll¢c < &, we obtain:

-
/|f(T/)|2+2//|Vf(t)|2dt
T
- T’ 1/2
</|f(T)|2+6g,/InT7 sup Hf(f)||2<//|vf(t)|2dt) ) (25)
T<i<T! J
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We now set; = €k, k e N. From (25) we first deduce that, for &Il € [#, tr+1], we have:

g2
/If(T’>|2</|f(rk)|2+§ sup |73,

SISl

whence ife < 1/3

sup ||f<t>||§<2/|f<rk>|2

U ST+l

and then

/|f(lk+1)|2< (1+982)/|f(tk)|2~

This implies
Vi1 /|f(t)|2<Ct“, (26)

wherea = In(1 + 9¢2).
Returning to (25), we now have:

Te+1

[ [lvsoras< [lraire sw [rofcare),
Tk

e <t<tet1

which gives, for alll’ > 1,

T

//|Vf(t)|2dt <CTC. (27)

1

SinceW1/22 js the interpolation space midway betwehand W12, we obtain from
the inequalities (26) and (27),

T
VT > 1 /”f(t)”;,l/zz dr <CT?.
1

Thus, Lemma 2 holds as soonas small enough, and Theorem 1 is completely proved.

Remark. The same energy estimate, with essentially the same proof, appears in [14].
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4. Stability of moreregular solutions
4.1. The optimality of Koch and Tataru result

It is time to go back to Koch and Tataru resahd explain in what sense it is optimal.
Other results to which it is to be compared were all obtained, through the abstract principle
we described in Lemma 5, in the following situation. One is given a Banach space
F, which will contain the data:g, and another one into which the solutianwill be
constructed, denoted hb¥. Both have the property of being critical, i.e., invariant under
the transformations canonically associated to the Navier—Stokes equations:

VA >0V¥xoeR®  |auo(h - —x0)|, = lluolr, (H1)
VA>0VxoeR? [au(r? i —x0)| z = llull 7. (H2)

Moreover, the heat semigroup maps continuousinto F: there exists a constag@tsuch
that

[ Suollx < Clluoll F (H3)
for everyup € F.
Then, in order to give a meaning to the bilinear foBn it is always assumed that
the spaceF is continuously embedded into the spdcf.e[o, +o00[ xR®)—by definition the
latter is the space of all the functionslefined or{0, +oo[ x R3 which are square integrable

on any compact of0, +oo[ xR3. As Koch and Tataru have pointed out, this leads to the
existence of a constant such that

1 1/2
VfeF (//|f(t,x)|2dxdt) <ClfllF,

0 Qo
where Qg is the unit cubd0, 1[3. By (H2), the above inequality implies in turn,

2
)

1 1/2
sup _ff|f(t,x)|2dxdt <ClIflF.
oeo\ 1917

or in other words

Ne(f) <ClfliF (H4)

for every f € F. We let the reader check that this inequality allows to defing, g), for
f, g € F, as atempered distribution.
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The last hypothesis to be assumed, and the most relevant one, is the contirRiiy of
F:

sup | B(f. )]z <+oo. (H5)
IflFz=lgllF=1

When the hypothesigd 1)-(H5) are fulfilled, Lemma 5 applies straightforwardly and
gives the existence of a global solutionfto Navier—Stokes equationslSl),,,, for data
uo small enough inf.

If, in addition, the spacé is such that

T”LnOllSuollfT =0 (H6)

for everyug € F, whereFr is the space of the restrictions[@ 7[xR3 of elements ofF,
then a local existence result for any datarins available, too.

For instance this scheme is applicablgte- W1/22 1.3, Lorentz spaces aboVe® (the
closure ofS in) B‘;,{’q, sp=—14+3/p, 1< p <00, 1< g < oo, among others: see [11,17,
16,28,20,4,1,22,23].

Now the optimality of Koch and Tataru result lies in the fact that, whenéd&) and
(H4) hold, we must have:

N¢(Sug) < Clluollr

for everyug € F, and that the finiteness of,. (Suo) is equivalent ta:g being inBMO™2.
Hence any spacé’ to which the above-described sche is applicable must embed in
BMO™1, while Koch and Tataru showed how to apply the schengM®©? itself.

Regarding the local results, let us mention that the condittpa VMO™1, which we
have assumed, is slightly more demanding th&r) alone. However, this is a natural
hypothesis, since it says thag belongs to the closure of the Schwartz clas8MO ™2,
and as a matter of fact, our proof of the sliépresult does not wik under the hypothesis
(H6).

4.2. A general principle ensuring regularity and stability

It is therefore a natural question to ask what happens when thexgdtalongs to a
Banach spac& embedded iVMO™1, for example toW1/22, to L3, or to the closure of
in Bf,’fq, sp=—1+3/p, p < oco. There are two questions to consider: first the regularity
of the solution, then its stability.

The regularity of a given solution in Co associated to a datg belonging to a strict
subspace o/MO~! has already been studied, at least for small enaughsee [13].
Closely related works are [25] and [5]. Apart from leaving the restriction on the size of
uo and replacing it by the hypothesis € Co, what we are going to prove is not original.

The stability problem has been considered by Gallagher, Iftimie and Planchon in [14],
and we will slightly improve their result, measuring the size of the allowed perturbation in
the topology oBMO~! instead of other stronger topologies.
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It turns out that such regularity and stability results may be derived from a general
principle that we now state. We recall that, by Theorenkldenotes the set of all the
Cauchy data itvMO™? giving rise to a global solution aiNSI) in Co.

Lemma 11. Let F be a Banach space, continuously embedded in VM@et F be
another Banach space such th@?3) holds. Assume that, for any two global solutions
u, v of (NSI) in Cg associated to datag, vo € F N E, the operatorL,, , is continuous on
F and has spectrurfD}. Letug € F N E, andu the solution of{NSI),,, in Co. Then

(i) uer,;

(i) there existg > 0 such that anyyg € F satisfying|luo — vollgyo-1 < € gives rise to a
global solutiorw € F of (NSI),,. Moreover, the mapo — v, from F N Bgy -1 (uo, &)
to F, is analytic atug.

The most natural example of spageis that of all the functions (¢, x) continuously
valued in F for + > 0 and such that lim, || f()||F = 0, which we denote by
Co([0, +o0o[; F). In this case and for particular choices Bf the point (i) has already
been proved by Gallagher, Iftimie and Planchon, as well as a weaker version of the point
(ii) (the admitted perturbationsy — vg being measured in the norm &%). However other
choices ofF will be useful.

Remark. The spaceF into which we embed our solutions does not necessarily fulfill
the hypothesigH4), and therefore may not be appropriate ttefiningthe solutions

and gettinguniquenessThis is why it might be necessary to introduce another space:
Gallagher, Iftimie and Planchon choose one of the spdces(\;_qL" (10, T[, B;‘,,q),
s=—-1+3/p+2/r,2<r <2/(1-3/p); we take(;.yCo,r, Which is a canonical
choice in our context. The two classes of ¢mlns thereby defined are in fact the same: a
sketch of the argument is that any solution/iris in (., Co,r by the discussion in the
previous subsection and by uniqueness, and conversely any solufigpipCo, 7 is in L

by Theorem 1, Lemma 11 above, applied to the case of Besov spaces (see Theorem 12),
and Theorem 2.1 in [14]. The reader will find the detailed comparison in [8], as well as the
comparison with still another seemingly diféat class of solutions proposed in [14]. We
end here this discussion and turn to the proof of the lemma.

The point (i) is based on an idea we already used several times. We(W8tg,, as
u + Ly, 0(u) = Suo,
and apply Lemma 9: this givese F. If now |lup — vollgyo-1 < &, Wheree is the same
as in point (ii) of Theorem 1, we obtain a global solutiof (NSI),, in Co on applying
Theorem 1, which belongs t6 by the preceding argument. Finally= u — v is such that

w + Ly »(w) = Swo,

which implies
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w=Y (=DFLE (Swo).

k=1

this series converging normally ifi by hypothesis. This shows the analyticity result, and
ends the proof.

4.3. Application

We will not exhaustively describe the various spaces which were considered in the
literature and to which Lemma 11 applies, but rather restrict ourselves to the following
three casesF = WY/22, F = L% and F = (the closure ofS in) B,/,, 3/2 < p < 0,
sp=—1+3/p,1<qg < oo.! Remark that the first case is included in the third one.

Theorem 12. Letug € F N E, whereF is one of the spaces listed above, anthe the
solution of(NSI),,, in Co. Then

ue Co([O, +00[; F)

and there exists > 0 depending omg such that everyg € F with [lug — vollgyo-1 < €
belongs taF, the associated solution beingdy ([0, +oo[; F). Moreover the mapg — v,
from F N Bgy,o-1(uo, &) t0 Co([0, +o0[; F), is analytic atug.

Several arguments in the proof of this theorem are merely repetitions of what we have
already done. We will therefore be allusive sometimes. In particular we will neglect the
time-localised estimates, only writing their global versions.

The caseF = L2 is the simplest. We apply Lemma 11 wiffi= Co([0, +oo[; L3).

Letu, v be two global solutions ofNSI) in Co, associated to datay, vo € L3N E, and
consider the operatdr, , acting onL3-valued functions. The proof is based on the simple
inequality (where O< s < 1):

”e(t—s)A]P)diV(u(s) R+ f)® U(S)) HB

1 1
< C(Noo,t(”)+Noo,t(v))ﬁ$” f(s)||3. (28)

This implies thatL, ,(f) is continuously valued i3, with
| Luw ()@ |3 < C(Noo.t () + Noo s (v)) sUp || £(5)]5- (29)

Note thatL, ,(f) is continuous even at= 0, with L, ,(f)(0) = 0, sincex andv belong
to Co by hypothesis. If moreover lim, 1« || f (t)||l3 = 0, then for O< T < ¢ we have thanks
to the estimate (28),

1 Here, the restriction on the lower value pfis not essential, and the case<p < 3/2 could be treated as
well.
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T
”Lu,v(f)(t)”s < C(Noo(u) + Noo(v) (\/: sup ||f(s)||3 + SUpr(S)“(S),
t—T ozs<1 s>T
and therefore
Jim Lo ()] 3=0.

This shows thaL, , (f) € Co([0, +oo[; L3).

Finally, that the spectrum af, , on Co([0, +o0l; L3) is {0} can be obtained through
(29), along the same lines as in the proof of Lemma 6: we let the details to the reader.
Let us now consider thdt is (the closure o8 in) B‘;,{’q, 3/2<p<o0,sp,=—14+3/p,

1< g < o0. We choose in this case

F = Co([0, +00[; F) N E2p,

whereé&y,, is by definition the space of all functions such thatf (1) € L2P for almost
everyr > 0, and

supt(l_s/(zf’))/2||f(t) Hzp < +o00,
>0

with

i (1-3/(2p))/2 _
lim (A3E2] )], =0,

t——+00

Again, letu, v be two global solutions afNSI) in Co, associated to data, vo € FN E,
and consider the operatdr, ,. We first concentrate on its behaviour on the spége
alone, and start by proving that, ffe £,,, thenL,, , f € &), with the estimate

ILuw fllgy, < C(Noo() + Noo )11 f Iy, - (30)
Indeed we have as in (28),
[~ 2P div(u(s) ® f(5) + f(5) ©@v())] 5,
< C(Noo () + Noo)) (t — 8) V257 HH3/ED | £,
which leads to
|Luo 0] 5, < C(Noo@) + Noo @)1 llgy, 1~ H2H¥EP.

This easily implies the continuity of, , on &,. That its spectrum is reduced {6} is
deduced from (30) as in Lemma 6 once more.

From this first step, Lemma 11 and the well-known fact tBag € £», whenever
uo € F, we deduce the following:
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Lemma 13. Letug € F N E, whereF is (the closure ofS in) B,”,, andu be the solution
of (NSI,, in Co. Thenu € &, and there exists > 0 depending on:g such that every
vo € F with |lug — vollgmo-1 < € belongs toE, the associated solutionbeing in&;,,.

We may therefore assume thak &;,, and choose > 0 such that € &, as well,
whenevet|ug — vollgyo-t < &-

The next step is the following continuity result on the bilinear operator

Lemmal4. Let3/2<p <oocandf, g€ &p. ThenB(f, g)(1) € B;’jl for everyr > 0, and

|B(f. &) )]

B SClflgy,lIgle,, -
We take a sequenc@););cz of Littlewood—Paley operators; by this we mean that

Aj= V¥ (—4/ A), wherey is an infinitely differentiable function defined d@, +oo[ and
supported orj1/4, 4], satisfying the identity

> oy(@g) =1

JEZ

for everys > 0. We recall that we may—and do—define the norm on the Besov sli;ﬁ,;e
by the following (see [29]):

1, = 12771250l
We have by standard arguments
|Ajet4pdiv], < C2/(1+4/ @ —5) "

Thusif f, g € &2, we get:

t
|4;B(f.)D], <Cllfle, l8lle,, / 21144t —s)) TsTHY @ g,
0
Summing oveyj € Z, this inequality gives:

13
|BU.&)D] g, <ClSlgy, gl / (t —5) Y@ IC ds < C|l f iy, 18l -
P,
0

which ends the proof of the lemma. B B
bRgturning to the operatdk, ,, and sinceB;’ﬁ’1 is included intoB;’fq for everyq, we
obtain:

| Luw (N @]

B;’?q < C(”””ﬁ'zp + ”v”52p)”f”‘€2p‘
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We leave to the reader the fact that , f is continuously valued im?f,fq fort € [0, +o0[,
vanishing at 0 and at infinity.
We thus have obtained the continuitybf , on F, with the estimate:

ILuw fllF < C(llulley, + Noo@) + Vllgy, + Noo ) fllg,, -

Together with (30), this implies:

122 0 £ ] 7 < C(lulley, + Noo @) + vy, + Noo(v)
x (Noo (1) + Noo @) | f Il 7.

The important term in this inequality is the fact@¥., (1) + N (v)), which allows to
argue as in Lemma 6 to prove that the spectrum@j is {0}, hence the same fdr, ,.
This finishes the proof of Theorem 12.

Remark. We owe to the referee the idea of introducing the sigagen the case of Besov
spaces, which leads to quite a simple proof. However, it is possible to work in the space
Co([0, +o0[; F) alone, as we did in a first version of this paper, but at the expense of more
elaborated arguments. We just quote here without proving it the result we had obtained,
which might be of independent interestu, v € Co, the operatorL,, , is continuous and

has spectrun0} on Co([0, +oo[; F), whereF is as above

5. A further comment by way of conclusion

Our proof of Theorem 1 relies on the cancellation property of the trilinear form
associated to the Navier—Stokes equations, since it is this property which allowed us to
obtain the energy estimate (see (24)). This is in contrast with the many constructions of
solutions (global or local) due to Koch, Tataru and their predecessors: these are not based
on the cancellation property, and remain valid for a more general class of equations and
systems. Therefore, one wonders whetherdfability of global solutions is essentially
linked to the cancellation property or not.

An answer will be provided by considering the following system in dimension 1 with

unknownu = (u1, us):
dui " _ 2 2y
o U= _(”2\/ uf+us),
duy "__ 2 2y
o T U= (“1\/”1+”2) .

This example is inspired from another oné,aosimilar form but designed for another
purpose, cited in [21] and attributed to E. Heinze. Though the non-linearity is not given by a
bilinear term, the solutions of this system obey the same invariance lawg{4¢e(H 2))

as the solutions of Navier—Stokes equations. Indeed, a suitable adaptation of Lemma 5
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gives the same existence results. However, a simple computation shows that the initial data
(valued inR?)

ug(x) = a(sinx, cOSx)
with 0 < a < 1 gives rise to the global solution

u(t, x) =a(t)(sinx, cosx),

(2 ))

Thus the solution obtained far= 1 is not stable, and does not tend to 0 at infinity.

Inthe light of this example, we think that the cancellation property is an essential feature
for the stability results in Navier—Stokes equations to hold, because it is the key to the
asymptotic behaviour of the solutions. What remains valid for a larger class of equations,
however, is that any global solution tending to @ as +oo in an appropriate topology is
stable.

where
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