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a b s t r a c t

Parity has played a role in partition identities from the beginning.
In his recent paper, George Andrews investigated a variety of parity
questions in partition identities. At the end of his paper, he then
listed 15 open problems. The purpose of this paper is to provide
solutions to the first three problems from his list, which are related
to the Göllnitz–Gordon identities and their generalizations.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Parity has played a role in additive number theory, in particular partition identities, from the
beginning. In his recent paper [4], Andrews made a thorough study of parity questions arising from
partition identities.

Most likely, the first theorem in the history of partitions is Euler’s famous discovery that the
number of partitions of a positive integer n into distinct parts equals the number of partitions of n
into odd parts. Equivalently in terms of generating functions, for |q| < 1, [3, p. 5, Eq. (1.2.5)]

∞∏
n=1

(1 + qn) =

∞∏
n=1

1
1 − q2n−1

.

Euler’s partition identity involves the parity of integers.
Gordon [7,8] and Göllnitz [5,6] independently considered parity as follows:

Theorem 1.1 (First Göllnitz–Gordon Identity). The number of partitions of n into distinct non-consecutive
parts with no even parts differing by exactly 2 equals the number of partitions of n into parts ≡ 1, 4, or
7 (mod 8).

The famous Rogers–Ramanujan identities do not immediately involve parity. However, several
results related to the Rogers–Ramanujan identities concern parity. In particular, many q-series
identities from Ramanujan’s Lost Notebook raise parity questions.

E-mail addresses: sunkim2@illinois.edu (S. Kim), yee@math.psu.edu (A.J. Yee).

0195-6698/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2010.10.006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82259928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ejc.2010.10.006
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
mailto:sunkim2@illinois.edu
mailto:yee@math.psu.edu
http://dx.doi.org/10.1016/j.ejc.2010.10.006


S. Kim, A.J. Yee / European Journal of Combinatorics 32 (2011) 288–293 289

These examples initiated the thorough examination of parity in partition identities by Andrews [4].
At the end of his paper [4], he listed 15 open problems, most of which ask for combinatorial and
bijective proofs.

The purpose of this paper is to provide solutions to the first three problems of Andrews, which
involve the celebrated Rogers–Ramanujan–Gordon Theorem [1,8].

Theorem 1.2 (Rogers–Ramanujan–Gordon Identities). For 1 ≤ a ≤ k, let Bk,a(n) be the number of
partitions of n of the form

b1 + b2 + · · · + bj,

where bi ≥ bi+1, bi − bi+k−1 ≥ 2, and at most a − 1 of the bi are equal to 1. Let Ak,a be the number of
partitions of n into parts ≢ 0, ±a (mod 2k + 1). Then for all n ≥ 0,

Ak,a(n) = Bk,a(n).

We now add parity restrictions.

Theorem 1.3 (Andrews). Suppose k ≥ a ≥ 1 are integers with k ≡ a (mod 2). Let Wk,a(n) denote the
number of those partitions enumerated by Bk,a(n) with the added restriction that even parts appear an
even number of times. If k and a are both even, let Gk,a(n) denote the number of partitions of n in which
no odd part is repeated and no even part ≡ 0, ±a (mod 2k+2). If k and a are both odd, let Gk,a(n) denote
the number of partitions of n into parts that are neither ≡ 2 (mod 4) nor ≡ 0, ±a (mod 2k + 2). Then
for all n ≥ 0,

Wk,a(n) = Gk,a(n).

It follows from comparison of Theorem 1.3 with the Göllnitz–Gordon identity in Theorem 1.1 that
W3,3(n) is equal to the number of partitions of n into parts that differ by at least 2 and by more than 2
if the parts are even. Finding a bijective proof of this partition identity is the first problem in the list
of Andrews [4]. The second problem is to show bijectively that W3,1(n) is equal to the number of
partitions of n into parts (each > 1) that differ by at least 2 and by more than 2 if the parts are even.

A generalization of the Göllnitz–Gordon identities, the first of which is stated in Theorem 1.1,
has been accomplished by Andrews [2] in the same manner that the Rogers–Ramanujan–Gordon
identities stated in Theorem 1.2 generalize the celebrated Rogers–Ramanujan identities.

Theorem 1.4 (Andrews). Let a and k be integers with 0 < a ≤ k. Let Ck,a(n) be the number of partitions
of n into parts which are neither ≡ 2 (mod 4) nor ≡ 0, ±(2a − 1) (mod 4k). Let Dk,a(n) denote the
number of partitions of n of the form n =

∑
i≥1 fii with f1 + f2 ≤ a − 1 and for all i ≥ 1,

f2i−1 ≤ 1 and f2i + f2i+1 + f2i+2 ≤ k − 1,

where fi denotes the number of appearances of i in the partition. Then Ck,a(n) = Dk,a(n).

By comparing Theorems 1.3 and 1.4, we see that

W2k−1,2a−1(n) = Dk,a(n). (1.1)

In the third problem of Andrews, it is asked to prove (1.1) bijectively. Here, we emphasize that the first
two problems of Andrews’ list are special cases of (1.1), when k = 2 and a = 1, 2. Thus it would be
sufficient to solve only the third problem. However, we can establish more direct bijections for those
two simpler cases. So, in Section 2, we first prove combinatorially that

1. W3,3(n) is equal to the number of partitions of n into parts that differ by at least 2 and by more
than 2 if the parts are even, namelyW3,3(n) = D2,2(n), and

2. W3,1(n) is equal to the number of partitions of n into parts (each > 1) that differ by at least 2 and
by more than 2 if the parts are even, namelyW3,1(n) = D2,1(n).
In Section 3, by applying a similar idea inductively, we prove the generalization combinatorially.

3. W2k−1,2a−1(n) = Dk,a(n).
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2. Problems 1 and 2

We first consider the first problem of Andrews.

Theorem 2.1. For any positive integer n,

W3,3(n) = D2,2(n).

Proof. Let π = (π1, . . . , πm) with πi ≤ πi+1, be a partition counted by W3,3(n). By the definition of
W3,3(n), we see that each part can be repeated at most twice and all the even parts appear exactly
twice. We represent the partition π by an array with two rows (counted from bottom to top), where
the first and second rows consist of the first and second copies of the parts, respectively and each
column has the same parts. For instance, if π = (2, 2, 4, 4, 7, 9, 14, 14, 23, 23, 33) is counted by
W3,3(135), then we write π as follows.

2 4 14 23
2 4 7 9 14 23 33

We note that since πi+2 − πi ≥ 2 and even parts appear twice, the parts appearing only in the first
row are odd and the parts from the first row differ by at least 2. Let (τ1, . . . , τl) be the parts appearing
in the first row. For each iwith 1 ≤ i ≤ l, subtract 2i−1 from τi and add the parts in the same column.
In the above example, we have (τ1, . . . , τl) = (2, 4, 7, 9, 14, 23, 33), and we obtain

2 4 14 23
1 1 2 2 5 12 20

3 5 2 2 19 35 20

We note that the sums of two parts from the same column are odd and the parts appearing only in the
first row are even. Besides, since the parts from the second row differ by at least 2, all the odd parts
in the resulting partition are distinct. Finally, we rearrange the parts in weakly increasing order and
add 2i − 1 to the ith part for each 1 ≤ i ≤ l. Then, the parts of the resulting partition differ by at least
two and even parts differ by more than 2. Hence, the resulting partition is counted by D2,2(n). In the
example, we obtain

2 2 3 5 19 20 35
1 3 5 7 9 11 13

3 5 8 12 28 31 48

and we see that (3, 5, 8, 12, 28, 31, 48) is counted by D2,2(135).
Now, we show that the process is reversible. Let σ = (σ1, . . . , σl) with σi ≤ σi+1, be a partition

counted by D2,2(n). We first subtract 2i − 1 from σi to obtain σ ′. Since the even parts of σ differ
by at least 4, σ ′ has distinct odd parts. For example, if σ = (3, 5, 8, 12, 28, 31, 48), then σ ′

=

(2, 2, 3, 5, 19, 20, 35). Now, we rearrange the parts of σ ′ to obtain w = (w1, . . . , wl) as follows.
In order to select wi from the parts of σ ′, we consider the remaining parts of σ ′ after removing
w1, . . . , wi−1 from σ ′, and choose the smallest odd and even parts among them, say σ ′

o and σ ′
e ,

respectively. If (σ ′
o − (2i− 1))/2 ≤ σ ′

e , then let wi = σ ′
o, and otherwise, let wi = σ ′

e . We continue this
process until we determine all of w1, . . . , wl (if we use all of the odd parts or even parts of σ ′, then
just arrange the remaining parts in weakly increasing order). In the same example, we have σ ′

o = 3
and σ ′

e = 2. Since (3 − 1)/2 ≤ 2, we have w1 = 3. For w2, we have σ ′
o = 5 and σ ′

e = 2. Since
(5 − 3)/2 ≤ 2, we have w2 = 5. Similarly, since σ ′

o = 19, σ ′
e = 2 and (19 − 5)/2 > 2, we have

w3 = 2. By continuing this, we have w = (3, 5, 2, 2, 19, 35, 20).
Now, if wi is odd, then we split it into two parts (wi + (2i − 1))/2 and (wi − (2i − 1))/2, whose

difference is 2i − 1. We write w as an array with two rows (counted from bottom to top), where the
first and second rows of ith column are (wi − (2i − 1))/2 and (wi + (2i − 1))/2 if wi is odd, and if wi
is even, then place it in the first row of the ith column. Thus, in the example we have

2 4 14 23
1 1 2 2 5 12 20
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Finally, we add 2i − 1 to the ith part in the first row. Then, the columns with two parts will have
the same parts. Since the parts in the first row differ by at least two and the parts appearing only in
the first row are odd, the resulting partition is counted by W3,3(n). From the example, we obtain the
following array.

2 4 14 23
2 4 7 9 14 23 33

Note that the resulting partition is (2, 2, 4, 4, 7, 9, 14, 14, 23, 23, 33), which is counted by
W3,3(135). �

Next, we consider the second problem.

Theorem 2.2. For any positive integer n,

W3,1(n) = D2,1(n).

Proof. By the definition, 1 is not allowed in any partitions counted by W3,1(n), and both 1 and 2
are not allowed in any partitions counted by D2,1(n). Thus, in the proof of Theorem 2.1, we add the
constraints that the parts of π are larger than 1; the remainder of the proof is the same. Let τ be the
parts appearing in the first row of the two line array representation of π , and let τ ′ be the sequence
of integers obtained after subtracting 2i− 1 from each τi and adding the parts in columns. Since each
τi is larger than 1 and the τi differ by at least 2, τ ′

i ≥ 2. Thus rearranging the parts of τ ′ and adding
back 2i − 1 to the ith part of the resulting sequence gives a sequence of integers larger than 2. This
completes the proof. �

3. Problem 3

Theorem 3.1. Let k ≥ 2 be an integer. Then, for any positive integer n,

W2k−1,2k−1(n) = Dk,k(n).

Proof. By Theorem2.1, it suffices to prove the casewhen k > 2. Letπ = (π1, . . . , πm)withπi ≤ πi+1,
be a partition counted byW2k−1,2k−1(n). By the definition ofW2k−1,2k−1(n), we see that each part can
be repeated at most 2k− 2 times and each even part appears an even number of times. We represent
the partition π by an array with two rows (counted from left to right and bottom to top), where the
parts of each column are the same. For example, let

π = (2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 7, 10, 10, 12, 12, 13, 13, 14, 14, 15, 17, 20, 20, 25),

which is counted by W5,5(244). Then we write π as follows.

2 3 4 5 7 10 12 13 14 20
2 3 4 5 7 7 10 12 13 14 15 17 20 25

We now add the parts in the same column. In the example, we obtain

4 6 8 10 14 7 20 24 26 28 15 17 40 25

We consider the even parts (τ1, . . . , τl). By the definition ofW2k−1,2k−1(n), we see that τi+k−1−τi > 2.
Let τc be the largest τi such that τi+k−2 − τi ≤ 2. Let v be the smallest odd part to the right of τc .
If τc + 1 < v, then we stop. If τc + 1 ≥ v, then we subtract 2 from v and put it right before τc ,
and add 2 to τc and rearrange the τi for i ≥ c in weakly increasing order. So, we have the parts
(ν − 2, τc+1, . . . , τc+k−2, τc + 2). In the example, τc = 26 and v = 15. Since τc + 1 ≥ v, the array
becomes

4 6 8 10 14 7 20 24 13 28 28 17 40 25
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Here, note that if we let ν ′
= ν − 2 and τ ′

c = τc + 2, then

τ ′

c/2 − ν ′
≤ 1, (3.1)

since ν − τc/2 ≥ 2.
By an abuse of notation, we denote by τc the largest τi for i ≥ c such that τi+k−2 − τi ≤ 2 and let

v be the smallest odd part to the right of τc . We repeat the same process until there is no odd part to
the right of τc or τc + 1 < v. By performing the process with τc = 28 and v = 17, we obtain

4 6 8 10 14 7 20 24 13 15 28 30 40 25

We then obtain

4 6 8 10 14 7 20 24 13 15 23 30 30 40

Let τc be the second largest τi such that τi+k−2 − τi ≤ 2. We repeat the entire process with τc . We
continue this process running through all such τi with τi+k−2 − τi ≤ 2 from largest to smallest. In the
example, we obtain

4 6 5 10 10 14 20 24 13 15 23 30 30 40

and then we have

3 6 6 10 10 14 20 24 13 15 23 30 30 40

Finally, we rearrange the parts in weakly increasing order to form a partition σ . In the example,
σ = (3, 6, 6, 10, 10, 13, 14, 15, 20, 23, 24, 30, 30, 40), which is counted by D3,3(244).

By the choice of τc , we note that consecutive even integers 2i, 2i + 2 in σ can occur at most k − 1
times. Furthermore, since we subtracted 2 from v if τc + 1 ≥ v, the number of consecutive integers
2i, 2i+1, 2i+2 cannot exceed k−1. Therefore, we see that σ is indeed a partition counted by Dk,k(n).

Now, we show that the process is reversible. For a partition σ = (σ1, . . . , σl) with σi ≤ σi+1,
counted by Dk,k(n), let τ be the partition consisting of only even parts of σ . Then, by the definition
of Dk,k(n), we have τi+k−1 − τi > 2. Let τc be the smallest τi such that τi − τi−k+2 ≤ 2, and
let v be the largest odd part to the left of τc . If τc/2 − 1 > v, then we stop. If τc/2 − 1 ≤ v,
then we add 2 to v and put it right after τc , and subtract 2 from τc and rearrange the τi for i ≤ c
in weakly increasing order. So, we have (τc − 2, τc−k+2, . . . , τc−1, ν + 2). For example, if σ =

(3, 6, 6, 10, 10, 13, 14, 15, 20, 23, 24, 30, 30, 40), then τc = 6 and v = 3. Since τc/2 − 1 ≤ v, we
obtain

4 6 5 10 10 13 14 15 20 23 24 30 30 40

We note that if ν ′
= ν + 2 and τ ′

c = τc − 2, then

τ ′

c + 1 ≥ ν ′, (3.2)

since τc ≥ ν + 3.
By an abuse of notation, we denote by τc the smallest τi for i ≤ c such that τi − τi−k+2 ≤ 2 and let

v be the largest odd part to the left of τc . We repeat the process until we run out of the odd parts to
the left of τc or τc/2− 1 > v. In the example, τc = 6 and there are no odd parts to its left, so we stop.
Let τc be the second smallest τi such that τi − τi−k+2 ≤ 2. We repeat the entire process with τc . In the
example, τc = 10 and v = 5. Since τc/2 − 1 ≤ v, we obtain

4 6 8 10 7 13 14 15 20 23 24 30 30 40

We continue this process through all such τi with τi − τi−k+2 ≤ 2 from smallest to largest. In the
example, we obtain

4 6 8 10 7 13 14 15 20 24 28 30 25 40

and then we have

4 6 8 10 7 13 14 20 24 28 28 17 25 40
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Finally, we obtain

4 6 8 10 7 14 20 24 26 28 15 17 25 40

We split each even part of the resulting array into halves and rearrange them with the odd parts in
weakly increasing order to form a partition π . In the example,

π = (2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 7, 10, 10, 12, 12, 13, 13, 14, 14, 15, 17, 20, 20, 25).

By the choice of τc , two consecutive integers i, i + 1 obtained by splitting even parts can occur at
most 2k − 2 times. Furthermore, since we subtracted 2 from τc and added 2 to v if τc/2 − 1 ≤ v, two
consecutive integers i, i + 1 can occur in π at most 2k − 2 times. Therefore, π is a partition counted
by W2k−1,2k−1(n).

Each step of this process is indeed the inverse of themap from partitions counted byW2k−1,2k−1(n)
to partitions counted by Dk−1,k−1(n). We started with the largest τc and the smallest v to its right.
Meanwhile, in the reverse process, we chose the smallest τc and the largest v to its left. The criteria
for the processmatch condition (3.2) and the criteria for the inverse processmatch condition (3.1). �

We now consider the general case.

Theorem 3.2. Let k ≥ a ≥ 1 be integers. Then, for any positive integer n,

W2k−1,2a−1(n) = Dk,a(n).

Proof. By the definitions, at most 2a − 2 of the parts are equal to 1 in any partitions counted by
W2k−1,2a−1(n), and at most a − 1 of the parts are equal to 1 or 2 in any partitions counted by Dk,a(n).
Thus, in the proof of Theorem 3.1, we add the constraints that 1 can occur at most 2a − 2 times in π .
Then, we can see that the number of 1 and 2 in σ cannot exceed a − 1. The remaining portion of the
proof is the same, so we omit the details. �

Remark. The bijection for Problem 3 can be specialized to the solution of Problems 1 and 2 when
k = 2.
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