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a b s t r a c t

A class of constrained nonsmooth convex optimization problems, that is, piecewise
C2 convex objectives with smooth convex inequality constraints are transformed into
unconstrained nonsmooth convex programs with the help of exact penalty function. The
objective functions of these unconstrained programs are particular cases of functions with
primal–dual gradient structure which has connectionwithVU space decomposition. Then
a VU space decomposition method for solving this unconstrained program is presented.
This method is proved to converge with local superlinear rate under certain assumptions.
An illustrative example is given to show how this method works.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear programming used to be viewed, at least for computational purposes, as the minimization of a smooth
(i.e. continuously differentiable) objective function subject to finitely many equality or inequality constraints given by other
smooth functions. Many applications of optimization, however, concern objective functions that are not necessarily smooth
but of ‘‘max type’’, expressible as the pointwise maximum of certain other functions which are themselves smooth.
Consider the following constrained nonsmooth convex program:{

min f (x)
s. t. gj(x) ≤ 0, j ∈ J = {m+ 1, . . . , l},

(1.1)

where f is convex and piecewise C2, gj, j ∈ J are convex of class C2. For this program, Fanwen Meng and Gongyun Zhao
convert it into anunconstrained smooth convexprogrambyusing theMoreau–Yosida regulation in [1]. Then they investigate
the second-order properties of the Moreau–Yosida regularization. By introducing a certain qualification, they show that the
gradient of the regularized function is semismooth.
More recently, new conceptual schemes have been developed, which are based on theVU-theory introduced in [2]; see

also [3–6]. The idea is to decompose Rn into two orthogonal subspaces V andU at a point x̄ that the nonsmoothness of f is
concentrated essentially on V , and the smoothness of f appears on theU subspace. More precisely, for a given ḡ ∈ ∂ f (x̄),
where ∂ f (x̄) denotes the subdifferential of f at x̄ in the sense of convex analysis. Then Rn can be decomposed into direct sum
of two orthogonal subspaces, i.e., Rn = U ⊕ V , where V = lin(∂ f (x̄) − ḡ), andU = V⊥. They define theU-Lagrangian,
an approximation of the original function, and show that along certain manifolds it can be used to create a second-order
expansion for a nondifferentiable function. Then this theory is applied in [2,7]. However, the objective function and the
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constraint functions are convex C2 in those papers. In this paper, we consider the constrained convex program (1.1). We
convert it into an unconstrained optimization problem by using the exact penalty function. Then we show the objective
function of this unconstrained optimization problem is a particular case of functions with primal–dual gradient structure,
a notion related to the VU space decomposition. Based on the U-Lagrangian, we investigate the second-order expansion
of the objective function relative to a particular trajectory. As a result we can design a algorithm frame that makes a step in
the V space, followed by aU-Newton step in order to obtain superlinear convergence.
The rest of the paper is organized as follows. In Section 2, we transform constrained optimization problem (1.1) into

unconstrained optimization problem. Then theVU space decomposition ismade. Section 3 investigates a smooth trajectory,
along which the second-order expansion of the objective function is given. Section 4 presents a algorithm frame and its
convergence theorem. At last, we report some numerical results.

2. The VU space decomposition

In the convex program (1.1), f is piecewise C2. Specifically, for all x ∈ Rn,

f (x) ∈ {fi(x) | i ∈ I = {0, . . . ,m}},

where fi : Rn → R, i ∈ I are C2. We refer to the function fi, i ∈ I , as structure functions.
A classical example of f is themax-function f (x) = maxi∈I fi, where fi are convex of C2. However, this class is not restricted

to max-function.
The subdifferential of f at a point x ∈ Rn can be computed in terms of the gradients of the structure functions that are

active at x. More precisely,

∂ f (x) =

{
g ∈ Rn | g =

∑
i∈I(x)

αi∇fi(x), α ∈ ∆|I(x)|

}
,

where

I(x) = {i ∈ I | f (x) = fi(x)},

is the set of active indices at x, and

∆s =

{
α ∈ Rs | αi ≥ 0,

s∑
i=1

αi = 1

}
.

Let x̄ ∈ Rn be a solution of (1.1). By continuity of the structure functions, there exists a ball Bε(x̄) ⊆ Rn such that

∀ x ∈ Bε(x̄), I(x) ⊆ I(x̄).

For convenience, we assume that the cardinality of I(x̄) ism1 + 1 and reorder the structure functions, so that

I(x̄) = {0, . . . ,m1}.

From now on, we consider that

∀ x ∈ Bε(x̄), f (x) ∈ {fi(x) | i ∈ I(x̄)}.

Let F(x, µ)denote the exact penalty function of (1.1)with g0(x) = 0 and∇g0(x) = 0,whereµ > 0 is a penalty parameter.
More precisely,

F(x, µ) = f (x)+ µG(x),

where

G(x) = max{g0(x), gm+1(x), . . . , gl(x)}.

Call

J(x) = {j ∈ J ∪ {0} | F(x, µ) = f (x)+ µgj(x)}

the set of indices realizing the max at x.
The following assumption will be used in the rest of this paper.

Assumption A. The set

{∇fi(x̄)−∇f0(x̄)}06=i∈I(x̄) ∪ {∇gj(x̄)}j∈J(x̄),

is linearly independent.

Theorem 2.1. Suppose Assumption A holds. Then we have the following results at x̄:
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(i) the subdifferential of F(x̄, µ) has the following expression

∂F(x̄, µ) =
∑
i∈I(x̄)

αi∇fi(x̄)+
∑
j∈J(x̄)

βj∇gj(x̄),

where α ∈ ∆|I(x̄)|;βj ≥ 0, j ∈ J(x̄) and
∑
j∈J(x̄) βj ≤ µ;

(ii) let V denote the subspace generated by the subdifferential ∂F(x̄, µ). Then

V = lin{{∇fi(x̄)−∇f0(x̄)}06=i∈I(x̄) ∪ {∇gj(x̄)}j∈J(x̄)},
U = {d ∈ Rn | 〈d,∇fi(x̄)−∇f0(x̄)〉 = 〈d,∇gj(x̄)〉 = 0, 0 6= i ∈ I(x̄), j ∈ J(x̄)}.

Proof. The subdifferential of F(x, µ) at x̄ can be formulated in

∂F(x̄, µ) = ∂ f (x̄)+ µ∂G(x̄)
= ∂ f (x̄)+ µco{∇gj(x̄) | j ∈ J(x̄) ∪ {0}}

=

∑
i∈I(x̄)

αi∇fi(x̄)+ µ
∑

j∈J(x̄)∪{0}

λj∇gj(x̄),

where α ∈ ∆|I(x̄)|; λj ≥ 0, j ∈ J(x̄) ∪ {0}, and
∑
j∈J(x̄)∪{0} λj = 1.

Together with ∇g0(x̄) = 0, there exists

∂F(x̄, µ) =
∑
i∈I(x̄)

αi∇fi(x̄)+ µ

[
λ0 · 0+

∑
j∈J(x̄)

λj∇gj(x̄)

]
=

∑
i∈I(x̄)

αi∇fi(x̄)+
∑
j∈J(x̄)

βj∇gj(x̄),

where βj = µλj ≥ 0, j ∈ J(x̄) ∪ {0} and
∑
j∈J(x̄) βj = µ− β0 ≤ µ.

Let α0 = 1;αi = 0, 0 6= i ∈ I(x̄) and β0 = µ;βj = 0, j ∈ J(x̄), we have ∇f0(x̄) ∈ ∂F(x̄, µ). Then it follows from the
definition of space V that

V = lin(∂F(x̄, µ)−∇f0(x̄))
= lin{{∇fi(x̄)−∇f0(x̄)}06=i∈I(x̄) ∪ {∇gj(x̄)}j∈J(x̄)},

andU = V⊥ means that the second formula holds. The proof is completed. �

The class of F(x, µ) belongs to the PDG-structured family [5]. More precisely, F(x, µ) has a PDG structure at x̄ relative to
the set Bε(x̄)with primal functions

fi, i ∈ I(x̄); gj, j ∈ J(x̄),

and dual multiplier set

Θ =
{
α | α ∈ ∆|I(x̄)|

}
∪

{
β | βj ≥ 0, j ∈ J(x̄),

∑
j∈J(x̄)

βj ≤ µ

}
.

Remark 2.1. (i) Since the subspacesU andV generate the whole space Rn, every vector can be decomposed along itsVU-
components at x̄. In particular, any x ∈ Rn can be expressed as

Rn 3 x = x̄+ u⊕ v = x̄+ Ūu+ V̄v,

where V̄ = [{∇fi(x̄)−∇f0(x̄)}06=i∈I(x̄) ∪ {∇gj(x̄)}j∈J(x̄)] and Ū = V̄⊥.
(ii) For any s̄ ∈ ∂F(x̄, µ), we have

s̄ = s̄U ⊕ s̄V = ŪT s̄+ V̄ T s̄.

From Theorem 2.1(ii), theU-component of a subgradient s ∈ ∂F(x̄, µ) is the same as that of any other subgradient at x̄,
i.e., s̄U = ŪT s.

3. Smooth trajectory and second-order properties

3.1. U-Lagrangian and smooth trajectory

Given ḡ ∈ ∂F(x̄, µ), theU-Lagrangian of F can be formulated in

Lu(u; ḡV) = inf
v∈V
{F(x̄+ u⊕ v, µ)− 〈ḡV, v〉V}

= inf
v∈V
{f (x̄+ u⊕ v)+ µG(x̄+ u⊕ v)− 〈ḡV, v〉V}, (3.1)
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and the minimum set

W (u; ḡV) = Arg inf
v∈V
{f (x̄+ u⊕ v)+ µG(x̄+ u⊕ v)− 〈ḡV, v〉V}, (3.2)

in terms of [2].

Theorem 3.1. Suppose the Assumption A holds. Then for all u small enough, there exists:

(i) the nonlinear system with variables (u, v){
fi(x̄+ Ūu+ V̄v)− f0(x̄+ Ūu+ V̄v) = 0, 0 6= i ∈ I(x̄)
gj(x̄+ Ūu+ V̄v) = 0, j ∈ J(x̄),

(3.3)

has a unique solution v = v(u);
(ii) trajectory χ(u) = x̄+ u⊕ v(u) is C2, and

Jχ(u) = Ū + V̄ Jv(u),

where

Jv(u) = −(V (u)T V̄ )−1V (u)T Ū,

with

V (u) =
[
{∇fi(x)−∇f0(x)}06=i∈I(x) ∪ {∇gj(x)}j∈J(x)

]
.

In particular, χ(0) = x̄, Jv(0) = 0, and Jχ(0) = Ū;
(iii) f (χ(u)) = fi(χ(u)), i ∈ I(x̄) and G(χ(u)) = 0.

Proof. (i) Differentiating the left hand side of (3.3) with respect to v gives{
[∇fi(x̄+ Ūu+ V̄v)−∇f0(x̄+ Ūu+ V̄v)]T V̄ , 0 6= i ∈ I(x̄)
∇gj(x̄+ Ūu+ V̄v)T V̄ , j ∈ J(x̄).

This Jacobian at (u, v) = (0, 0) is V̄ T V̄ , which is nonsingular because of Assumption A. There is also a Jacobian with respect
to u, so by the implicit function theorem, there is a C1 function v(u) defined on a neighborhood of u = 0 such that v(0) = 0.
(ii) From (i), we have v(u) is C1. So the Jacobians Jv(u) and Jχ(u) exist and are continuous. Differentiating the following

system with respect to u,{
fi(χ(u))− f0(χ(u)) = 0, 0 6= i ∈ I(x̄)
gj(χ(u)) = 0, j ∈ J(x̄),

we obtain that{
[∇fi(χ(u))−∇f0(χ(u))]T J(χ(u)) = 0, 0 6= i ∈ I(x̄)
∇gj(χ(u))T J(χ(u)) = 0, j ∈ J(x̄),

or, in matrix form, V (u)T Jχ(u) = 0. Using the expression Jχ(u) = Ū + V̄ Jv(u), we have that

V (u)T (Ū + V̄ Jv(u)) = 0.

By virtue of continuity of V (u), V (u)T V̄ is nonsingular. Hence

Jv(u) = −(V (u)T V̄ )−1V (u)T Ū .

Furthermore, V (u) is C1 because fi, i ∈ I(x̄); gj, j ∈ J(x̄) is C2, then Jv(u) is C1. Thus χ(u) and v(u) is C2. From the definition
of the VU spaces, we have V⊥U. Hence V̄ T Ū = 0. So Jv(0) = 0 and Jχ(0) = Ū .
The conclusion of (iii) can be obtained in terms of (i) and the definitions of G(x) and χ(u). �

3.2. Second-order expansion

Theorem 3.2. Given ḡ ∈ ∂F(x̄, µ), we have

Lu(u; ḡV) = fi(χ(u))− 〈ḡV, v(u)〉V, i ∈ I(x̄).

Proof. According to (3.1) and Theorem 3.1, we get

Lu(u; ḡV) = f (χ(u))+ µG(χ(u))− 〈ḡV, v(u)〉V
= fi(χ(u))− 〈ḡV, v(u)〉V, i ∈ I(x̄). �
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Lemma 3.1 ([8]). Given ḡ ∈ ∂F(x̄, µ), the system with {αi(u)}i∈I(x̄), {βj(u)}j∈J(x̄)∪{0},

V̄ T
[∑
i∈I(x̄)

αi(u)∇fi(χ(u))+
∑
j∈J(x̄)

βj(u)∇gj(χ(u))− ḡ

]
= 0∑

i∈I(x̄)

αi(u) = 1∑
j∈J(x̄)∪{0}

βj(u) = µ,

has a unique solution. In particular, αi(0) = ᾱi, i ∈ I(x̄) and βj(0) = β̄j, j ∈ J(x̄) ∪ {0}.

Theorem 3.3. Given ḡ ∈ ∂F(x̄, µ) and suppose Assumption A holds. Then for u small enough, the following assertions are true:
(i) the gradient of Lu is given by

∇Lu(u; ḡV) = ŪTg(u),

where

g(u) =
∑
i∈I(x̄)

αi(u)∇fi(χ(u))+
∑
j∈J(x̄)

βj(u)∇gj(χ(u)).

In particular, when u = 0, we have

∇Lu(0; ḡV) = ŪTg(0) = ŪT ḡ,

where

g(0) =
∑
i∈I(x̄)

ᾱi∇fi(x̄)+
∑
j∈J(x̄)

β̄j∇gj(x̄);

(ii) the Hessian of Lu is given by

∇
2Lu(u; ḡV) = Jχ(u)TM(u)Jχ(u),

where

M(u) =
∑
i∈I(x̄)

αi(u)∇2fi(χ(u))+
∑
j∈J(x̄)

βj(u)∇2gj(χ(u)).

In particular, when u = 0, we have

∇
2Lu(0; ḡV) = ŪTM(0)Ū,

where

M(0) =
∑
i∈I(x̄)

ᾱi∇
2fi(x̄)+

∑
j∈J(x̄)

β̄j∇
2gj(x̄).

Proof. (i) Using the chain rule to differentiate the following system with respect to u,{
Lu(u; ḡV) = fi(χ(u))− 〈ḡV, v(u)〉V, i ∈ I(x̄)
gj(χ(u)) = 0, j ∈ J(x̄),

we obtain{
∇Lu(u; ḡV) = Jχ(u)T∇fi(χ(u))− Jv(u)T V̄ T ḡ, i ∈ I(x̄)
Jχ(u)T∇gj(χ(u)) = 0, j ∈ J(x̄).

Multiplying each equation by the appropriate αi(u) and βj(u) respectively, summing the results, and using the fact that∑
i∈I(x̄) αi(u) = 1 yields

∇Lu(u; ḡV) = Jχ(u)Tg(u)− Jv(u)T V̄ T ḡ,

where

g(u) =
∑
i∈I(x̄)

αi(u)∇fi(χ(u))+
∑
j∈J(x̄)

βj(u)∇gj(χ(u)).

Using the transpose of the expression of Jχ(u), we get

∇Lu(u; ḡ) = ŪTg(u)− Jv(u)T V̄ T (g(u)− ḡ),

which together with (6.11) in [6] yields the desired result.
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If u = 0, v(0) = 0 and χ(0) = x̄. By Remark 2.1(ii), we have

∇Lu(0; ḡV) = ŪTg(0) = ŪT ḡ,

where

g(0) =
∑
i∈I(x̄)

ᾱi∇fi(x̄)+
∑
j∈J(x̄)

β̄j∇gj(x̄).

(ii) Differentiating (i) respect to u, we obtain

∇
2Lu(u; ḡV) = ŪTM(u)Jχ(u)+ ŪT

[∑
i∈I(x̄)

αi(u)∇fi(χ(u))Jαj(u)+
∑
j∈J(x̄)

βj(u)∇gj(χ(u))Jβj(u)

]
,

where

M(u) =
∑
i∈I(x̄)

αi(u)∇2fi(χ(u))+
∑
j∈J(x̄)

βj(u)∇2gj(χ(u)).

It follows from the proof of Theorem 6.3 in [6] that∑
i∈I(x̄)

αi(u)∇fi(χ(u))Jαj(u)+
∑
j∈J(x̄)

βj(u)∇gj(χ(u))Jβj(u) = −V (u)(V̄ V (u))−1V̄ TM(u)Jχ(u).

Then

∇
2Lu(u; ḡV) = ŪTM(u)Jχ(u)− ŪTV (u)(V̄ V (u))−1V̄ TM(u)Jχ(u)

= ŪTM(u)Jχ(u)+ Jv(u)T V̄ TM(u)Jχ(u)
= [ŪT + Jv(u)T V̄ T ]M(u)Jχ(u)
= Jχ(u)TM(u)Jχ(u),

when u = 0,

∇
2Lu(0; ḡV) = ŪTM(0)Ū,

where

M(0) =
∑
i∈I(x̄)

ᾱi∇
2fi(x̄)+

∑
j∈J(x̄)

β̄j∇
2gj(x̄). �

Theorem 3.4. Suppose Assumption A holds and ḡ ∈ ∂F(x̄, µ). Then for u small enough, there holds the second-order expansion
of f along the trajectory χ(u) = x̄+ u⊕ v(u),

f (χ(u)) = f (x̄)+ 〈ḡ, u⊕ v(u)〉 +
1
2
uT∇2Lu(0; ḡV)u+ o(‖u‖2U).

Proof. From the definition of Lu and the fact G(χ(u)) = 0, we have

Lu(u; ḡV) = f (χ(u))+ µG(χ(u))− 〈ḡV, v(u)〉V
= f (χ(u))− 〈ḡV, v(u)〉V .

Since Lu ∈ C2, we get

Lu(u; ḡV) = Lu(0; ḡV)+ 〈∇Lu(0; ḡV), u〉U +
1
2
uT∇2Lu(0; ḡV)u+ o(‖u‖2U)

= f (x̄)+ 〈ḡU, u〉U +
1
2
uT∇2Lu(0; ḡV)u+ o(‖u‖2U).

Therefore,

f (χ(u)) = f (x̄)+ 〈ḡU, u〉U + 〈ḡV, v(u)〉V +
1
2
uT∇2Lu(0; ḡV)u+ o(‖u‖2U)

= f (x̄)+ 〈ḡ, u⊕ v(u)〉 +
1
2
uT∇2Lu(0; ḡV)u+ o(‖u‖2U). �

4. Algorithm and convergence

Suppose 0 ∈ ∂F(x̄, µ), we give a algorithm frame which can solve (1.1). This algorithm makes a step in the V subspace,
followed by aU-Newton step in order to obtain superlinear convergence.
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Algorithm 4.1. Step 0 Initialization. Given ε > 0. Choose a starting point x(0) close to x̄ enough, and a subgradient
g̃(0) ∈ ∂F(x(0), µ), set k = 0.

Step 1 Stop if

‖g̃(k)‖ ≤ ε. (4.1)

Step 2 Find the active index set.
Step 3 Construct VU decomposition at x̄, i. e., Rn = U⊕ V . Compute

∇
2Lu(0; 0) = ŪTM(0)Ū,

where

M(0) =
∑
i∈I(x̄)

ᾱi∇
2fi(x̄)+

∑
j∈J(x̄)

β̄j∇
2gj(x̄).

Step 4 Perform V-Step. Compute

δ
(k)
V ∈ Argmin{F(x

(k)
+ 0⊕ δV) : δV ∈ V}.

Set x̃(k) = x(k) + 0⊕ δ(k)V .

Step 5 PerformU-Step. Compute δ(k)U from the system

ŪTM(0)ŪδU + ŪT g̃(k) = 0, (4.2)

where∑
i∈I(x̄)

αi(u)∇fi(x̃(k))+
∑
j∈J(x̄)

βj(u)∇gj(x̃(k)) = g̃(k) ∈ ∂F(x̃(k), µ)

is such that V̄ T g̃(k) = 0. Compute x(k+1) = x̃(k) + δ(k)U ⊕ 0 = x
(k)
+ δ

(k)
U ⊕ δ

(k)
V .

Step 6 Update. Set k = k+ 1, and return to Step 1.

Theorem 4.1. Suppose 0 ∈ ri ∂F(x̄, µ),∇2Lu(0; 0) � 0. Then the iteration points {x(k)}∞k=1 generated by the algorithm converge
and satisfy

‖x(k+1) − x̄‖ = o(‖x(k) − x̄‖).

Proof. Let u(k) = (x(k) − x̄)U, v(k) = (x(k) − x̄)V + δ
(k)
V . Then x̄+ u

(k)
⊕ v(k) = x(k) + 0⊕ δV , and

δ
(k)
V ∈ Argmin{F(x

(k)
+ 0⊕ δV) : δV ∈ V}

= Argmin{F(x̄+ u(k) ⊕ v(k)) : δV ∈ V}.

Hence, v(k) ∈ W (u(k); 0). It follows from Corollary 3.5 in [2] that

‖(x(k+1) − x̄)V‖ = ‖(x̃(k) − x̄)V‖ = o‖(x(k) − x̄)U‖ = o‖(x(k) − x̄)‖. (4.3)

Since ∇2Lu(0; 0) exists and ∇Lu(0; 0) = 0, we have

∇Lu(u(k); 0) = ŪT g̃(k)

= 0+∇2Lu(0; 0)u(k) + o(‖u(k)‖U).

By virtue of (4.2),wehave∇2Lu(0; 0)(u(k)+δ
(k)
U ) = o(‖u

(k)
‖U). It follows from thehypothesis∇2Lu(0; 0) � 0 that∇2Lu(0; 0)

is invertible and hence ‖u(k) + δ(k)U ‖ = o(‖u
(k)
‖U). In consequence, one has

(x(k+1) − x̄)U = (x(k+1) − x̃(k))U + (x̃(k) − x(k))U + (x(k) − x̄)U
= u(k) + δ(k)U .

Then

‖(x(k+1) − x̄)U‖ = o(‖u(k)‖U) = o(‖x(k) − x̄‖). (4.4)

The proof is completed by combining (4.3) and (4.4). �
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Table 1
Problem data.

Problem dim dim-V dim-U x̄ f x̄ x(0)

NS2 2 1 1 (0.2 0.8) 0.8 (10,−20)
NS3-U3 3 0 3 (0.288462−2.788462 10) 1.217825 (100, 34,−90)
NS3-U2 3 1 2 (−0.858059−1.641941 10) −1.641941 (100, 33,−90)
NS3-U1 3 2 1 (−1.75−0.75 10) 2.5625 (100, 33,−100)
NS3-U0 3 3 0 (−1.75−0.75 10) 3.0625 (101, 33,−100)

5. An illustrative numerical example

Now we report numerical result to illustrate Algorithm 4.1 for solving (1.1). Our numerical experiment is carried out in
Matlab 7.1 running on a PC Intel Pentium IV of 1.70 GHz CPU and 256 MB memory.
We consider the following constrained problem:{

min f (x)
s. t. Ax− b ≤ 0,

where A is l× n finite matrix and b is an l× 1 vector. The objective functions of all test examples are of the form

f = max
j∈J
fj,

where J is finite and each fj is C2 on Rn.
For our runs we used the following examples:

• NS2: the objective function is given in [9], defined for x ∈ Rn by

F2d(x) := max
{
1
2
(x21 + x

2
2)− x2, x2

}
and A =

(
−1 −1
1 −1.5

)
, b = (−1,−1)T .

• NS3-Uv: the objective functions are given in [9], four functions of three variables, where v = 3, 2, 1, 0 denotes the
corresponding dimension of theU subspace. Given e := (0, 1, 1)T and four parameter vectors βv ∈ R4, for x ∈ R3

F3d− Uv(x) := max
{
1
2
(x21 + x

2
2 + 0.1x

2
3)− e

T x− βv1 , x
2
1 − 3x1 − β

v
2 , x2 − β

v
3 , x2 − β

v
4

}
,

where β3 := (−5.5, 10, 11, 20), β2 := (−5, 10, 0, 10), β1 := (0, 10, 0, 0) and β0 := (0.5,−2, 0, 0). In these

examples, we set A =
(
1 1 1
1 1 0
1 0 −1

)
and b = (10,−2.5,−2.5)T for all v = 3, 2, 1, 0.

In the implementation, we use a bundle technique to generate V-step. Each subgradient g we use a gradient of fji(x) =
f (x). As for theM(0) at x, one can refer to [9].
The parameters have valuesµ = 100 and ε = 1.0×10−6. Optimality is declaredwhen stopping criterion (4.1) is satisfied.
In Table 1, we show some relevant data for the problems described above including the dimension of the problem (dim),

the dimension of V space (dim-V) and U space (dim-U), the optimal solutions x̄ and optimal function values f x̄ and the
starting points x(0). The optimal solutions and optimal function values are calculated.
We show the exhibitions for the proposed algorithm compared with bundle algorithm in Table 2, where VU indicates

solving the related program by VU decomposition Algorithm 4.1 proposed in this paper while Bundle indicates solving the
program by Bundle subroutine. #f /g denotes the number of function and subgradient evaluations, and x is the calculated
solution. The solutions x in bold, such as (−22.21 19.71−19.71), means these solutions are not feasible. x−x̄ is the difference
of x and the optimal solution x̄ and fx− f x̄ is the difference between the function value at x and the optimal function value
f x̄.
It can be seen from Table 2 that the proposed VU decomposition algorithm costs much less function and subgradient

evaluations than the Bundle algorithm. What is more, we obtained more accurate solutions by the proposed algorithm. The
exhibition in NS2 problem is subtle: the function and subgradient evaluation number of the proposed VU decomposition
algorithm is more. The reason is that in this case, U-step is not executed when the iteration points approach the optimal
solution.
This favorable results demonstrate that it is worthwhile to continue development of the space decomposition method

for the constrained program.

6. Conclusions

In this paper, we use VU space decomposition theory to deal with constrained nonsmooth convex programs. With the
help of exact penalty function,we transform the constrainednonsmooth convex programs into anunconstrainednonsmooth
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Table 2
Numerical results of VU decomposition algorithm.

VU Bundle

#f /g 246 33
x (0.199 0.801) (0.200 0.800)

NS2 x− x̄ (−5.728e−4 5.728e−4) (4.774e−15−4.330e−15)
fx− f x̄ 5.73E−04 1.13E−12

#f /g 55 807
x (−1.720−0.750 10.000) (−25.949 20.432−20.804)

NS3-U3 x− x̄ (−1.296e−6 1.296e−6 1.251e−12) (−2.420e+1 2.118e+1−3.080e+1)
fx− f x̄ 1.68E−12 7.38E+02

#f /g 60 824
x (−1.750−0.750 10.000) (−22.21 19.71−19.71)

NS3-U2 x− x̄ (−1.834e−5 1.834e−5−1.776e−15) (−2.046e+1 2.046e+1−2.971e+1)
fx− f x̄ 3.36E−10 5.47E+02

#f /g 89 918
x (−0.858−1.642 10.000) (−14.280 11.780−11.780)

NS3-U1 x− x̄ (0.000e+0 0.000e+0 0.000e+0) (−1.342e+1 1.342e+1−2.178e+1)
fx− f x̄ 0.00E+0 2.38E+2

#f /g 80 1411
x (0.288−2.788 10.000) (−20.54 16.75−19.89)

NS3-U0 x− x̄ (0.000e+0 0.000e+0 0.000e+0) (−2.083e+1 1.954e+1−2.990e+1)
fx− f x̄ 0.000e+0 6.698e+2

convex programs. Then theVU-theory is applied and a space decomposition algorithm is obtained. Thismethod can operate
well in practice for the programs of the form (1.1) and is proved to convergent with local superlinear rate under certain
assumptions. We compare the proposed Algorithm 4.1 with the Bundle algorithm and find that the proposed algorithm
generatedmore accurate solutions and cost less function and subgradient evaluations. In addition, we find that the function
and subgradient evaluation number of Algorithm 4.1 is more in NS2 problem. The reason is that, in this case theU-step is
not executed when the iteration points approach the optimal solution. And this will be a subject of future work.
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