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Abstract Channa punctata varieties of fish are energetic and survive in critical environment

although the molecular mechanism is not known. They were exposed to cold (4–8 �C) for

30 min, 1 h, 2 h and 4 h and the total protein contents in the liver were not significantly changed

up to 4 h of cold exposure while a significantly increased protein level in the skeletal muscle was

noted and maximal at 2 h. Groups of fish were exposed to Na2HAsO4 to examine its role on

cold-induced protein synthesis in the skeletal muscle and the increased protein in the skeletal muscle

was reduced significantly. The results appear to indicate that cold acclimation induces a metabolic

change involving cellular protein content tissue specifically and arsenic might be involved in impair-

ment of the cold-induced effect. To clarify the molecular mechanism, groups of fish exposed to cold

for 1 h and 2 h had significantly increased RNA in the skeletal muscle compared to control fish,

however, a higher level was found after 2 h of treatment and the enhanced RNA induced by cold

was almost completely prevented by Na2HAsO4. Our findings will give a new insight into the sur-

vival process of this species while toxic arsenic prevents this cellular bioprocess.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Temperature fluctuation is a common phenomenon of the
atmosphere and is involved in changes of various metabolic

functions. For example, low temperature has been recognized
as a major environmental sympathetic stimulus and is a stress-
ful event that elicits different thermogenic adaptive responses

in endotherms and exotherms. In mammals, including hu-
mans, the physiological responses involve changes in energy
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expenditure, heat production and dissipation, physical activity
and appetite (Lowel and Spiegelman, 2000). In rodents, shiv-
ering, activation of the sympathetic axis (Spiegelman and

Flier, 2001) with remarkable activity of mitochondrial uncou-
pling proteins (UCPs) (Boss et al., 2000; Golozoboubova
et al., 2001) was reported as a pivotal mechanism. The greater

the UCP concentration, the greater the capacity to uncouple
mitochondrial oxidative phosphorylation so that heat is
produced.

Channa punctatus is generally found in fresh water of haor,
bil, river in Bangladesh. They are much energetic and survive
in the critical circumstances for long time. They are the major
sources of protein in the diet for human being. It is assumed

that the higher energy content of this fish is caused by the in-
creased activity of the sympathetic nerves. Peripheral tissue
metabolism is affected by both environmental and chemical

stimuli; however, endogenous auto regulation of metabolic
processes of all species is a common biological process. Degra-
dation of biomolecules as well as biosynthesis is the character-

istics of metabolic processes. Among the peripheral tissues, the
skeletal muscle and the liver play a great role in metabolic reg-
ulation. The metabolic functions in these tissues are influenced

by both environmental and chemical stimuli. Liver glycogenol-
ysis is a metabolic process yielding energy for doing mechani-
cal work and the process is enhanced upon activation of the
sympathetic nervous system. The skeletal muscle comprises

both oxidative and glycolytic fibers and is therefore, metabol-
ically important. Both adrenergic and nor-adrenergic nerves fi-
bers are predominant in this tissue. Therefore, it is speculated

that cold exposure would have effect in the regulation of met-
abolic functions through activation of these nerves. Although
fish are exposed to various environmental stimuli, the species

wants to maintain the homeostasis of the body. Adaptive ther-
mogenesis, the dissipation of energy in the form of heat in re-
sponse to external stimuli, has been implicated in the

regulation of energy balance and body temperature. In shiver-
ing thermogenesis, because of the higher oxidative process,
generation of ATP rather than UCP is predominant and
hydrolysis of ATP yields energy useful for doing mechanical

work and for living in the atmosphere. However, the molecular
mechanism involving the adaptive response for this species is
not clarified.

Arsenic is toxic to the living organisms. Prolonged exposure
of arsenic has detrimental effects in tissues. It may impair the
glycolysis as well as the oxidative processes (Tchounwou et al.,

2003) and causes different types of pathogenic syndromes in
rodents, fish and other organisms. Exposure of higher concen-
tration of arsenic in water may also cause severe effects in fish
and might be involved in producing cancer or other cellular ef-

fects. However, the mechanism underlying the effects of acute
arsenic exposure on the regulation of oxidative and glycolytic
processes in tissues of fish exposed to cold is not known. Ar-

senic is classified as a human carcinogen based on several epi-
demiological studies showing an association of arsenic
exposure with cancers in lung, bladder, kidney and liver

(Hughes, 2002; Tchounwou et al., 2003). Moreover, fish have
long been used as sentinels for biomonitoring of aquatic envi-
ronmental pollutants and are good indicators of arsenic toxic-

ity (Tisler and Zagorc-koncan, 2002). Both cold and toxic
arsenic make a critical environment where the fish survive,
however, the mechanism underlying the survival process is
not clarified.
2. Materials and methods

2.1. Fish

C. punctatus weighing 50–60 g were used and maintained in
normal water with ambient temperature (25.0 ± 1 �C). On

the day of experiment, different groups of fish were exposed
to cold (4–8 �C) in the cold chamber for 30 min, 1 h, 2 h and
4 h period with full aeration and with free access to water.

After cold exposure treatment, fish were quickly decapitated
and the peripheral tissues including the skeletal muscle from
the dorsal part and the liver were sampled carefully and
weighed by a digital balance (Chyo, JL-180, China) and kept

at �20 �C. Control fish were similarly used for sampling of tis-
sues except cold exposure.

2.2. Arsenic treatment

To examine the role of arsenic on the regulation of metabolic
activity involving the amount of protein and RNA in the skel-

etal muscle, groups of fish were exposed with arsenic com-
pound (100 mM Na2HAsO4. 7H2O, BDH Chemical Ltd.) in
cold for 1 h and 2 h. The respective other group of fish was

treated with only 100 mM of Na2HAsO4 for 1 h in ambient
temperature for determination of protein only. The tissues
were sampled after the treatment similarly as mentioned
above.

2.3. Assay of tissue protein content

Tissues were homogenized with pre-cooled water and were

centrifuged at 8000 rpm for 10 min. The supernatants from
each tissue homogenate were used as crude extract for assay
of protein by using 50 lL extract. The protein content in tissue

was determined by the procedure of Lowry et al. (1951).
Briefly, an alkaline solution was prepared by mixing 50 mL
of alkaline Na2CO3 solution (2% Na2CO3 in 0.1 N NaOH)
and 1.0 mL of copper–sodium potassium tartarate solution

(1 g sodium potassium tartarate and 0.5 g CuSO4. 5H2O were
dissolved in 100 mL distilled water). Fifty microliters of tissue
extract was taken in the test tube and made up to 1 mL with

distilled water. For blank, 1 mL water was used in place of tis-
sue extract. Five milliliters of alkaline solution was added to
each tube and mixed well. The tubes were allowed to stand

for 10 min at room temperature and 0.5 mL of diluted FCR
(Commercial FCR was diluted with equal volume of water)
was added and mixed well. After 30 min, the absorbance was

taken at 650 nm against the blank. The protein content in each
tissue was calculated from the standard graph of bovine albu-
min (1 mg/mL) and is expressed as g/100 g of tissue weight.

2.4. Estimation of RNA content

The RNA of skeletal muscle was estimated by the phenol–
chloroform extraction method (Joseph and David, 2001).

Briefly, equal volume of phenol:chloroform (10 mL:10 mL)
was added to homogenized skeletal muscle in a glass tube with
plastic cap and the contents mixed vigorously until an emul-

sion forms. The mixture was centrifuged at 5000 rpm for
5 min and the lower aqueous phase was transferred to another
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Figure 1 Effects of low temperature on protein level in the

skeletal muscle of fish. The fish were exposed to cold for 30 min,

1 h and 2 h and 4 h in the cold chamber. After the treatment, the

fish were immediately decapitated and sampling of tissue was

performed. Control fish were similarly used except cold exposure.

The data are ± SEM for 4–5 fish in each group.
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Figure 2 Effects of low temperature on protein content in the

liver of fish. The fish were exposed to cold for 30 min, 1 h, 2 h and

4 h in the cold chamber. After the treatment, the fish were

immediately decapitated and sampling of liver was performed.

Control fish were similarly used except cold exposure. The data are

means ± SE for four fish in each group. No significant changes of

protein with respect to control were observed.
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tube with a pipette. The above two steps were repeated using
equal volume of phenol (5 mL) and chloroform (5 mL), shaken
vigorously and the volume measured. An equal volume of

chloroform was added, the tube shaken and centrifuged at
5000 rpm for 5 min. The liquid phase was collected and an
equal volume of 95% ethanol was mixed and kept for over-

night. The precipitate was collected by centrifugation at
6000 rpm for 15 min and was washed with 15 mL of 65% eth-
anol. The precipitate containing pure RNA was dissolved with

2 mL distilled water and the amount of RNA was measured
spectrophotometrically at 260 nm and 280 nm. The reading
at 260 nm allows calculation of the concentration of nucleic
acid in the sample. An OD of 1 corresponds to approximately

40 lg/mL for single stranded RNA. The ratio between the
readings at 260 nm and OD of 280 nm (OD260/OD280) pro-
vides an estimate of the purity of the nucleic acid. Pure prep-

arations of DNA and RNA have OD260/OD280 values of 1.8
and 2.0 respectively.

2.5. Statistical analysis

Results of the experiments were expressed as mean and stan-
dard error of different groups. The differences between the

mean values were evaluated by ANOVA followed by the
paired t-test using SPSS software.

3. Results

3.1. Time course effect of low temperature on the regulation of
protein content in skeletal muscle

To examine the role of cold exposure on the regulation of tis-
sue protein, the fish were exposed to cold for 30 min, 1 h, 2 h

and 4 h in the cold chamber. For control fish kept in ambient
temperature, protein content in the skeletal muscle was
4.04 ± 0.71 g/100 g of tissue weight. After 30 min and 1 h

exposure of cold, the values were 5.13 ± 0.67 g and
6.16 ± 1.19 g/100 of tissue weight respectively. Protein con-
tents were increased significantly by 26.9% (P < 0.05) and

52.5% (P < 0.05) respectively. Fish exposed to cold for 2 h
and 4 h had 9.42 ± 1.02 g and 3.28 ± 0.35 g of protein respec-
tively in their tissues. Cold exposure stimulates the synthesis of
protein significantly by 133.2% (P < 0.01) after 2 h while the

value was reduced non significantly by 18.8% after 4 h when
compared to the tissues of control fish (Fig. 1). The increased
protein in response to cold acclimation might be involved in

the survival process for this species of fish.

3.2. Time course effect of low temperature on the regulation of
protein content in liver

As shown in Fig. 2, the average protein content in the liver of
fish exposed to cold for 30 min, 1 h, 2 h and 4 h was

10.87 ± 0.57 g, 10.20 ± 0.55 g, 10.15 ± 1.85 g and
10.41 ± 0.94 g respectively while for the control fish, the value
was 10.63 ± 0.72 g/100 g of tissue weight. No significant
changes of protein content in the liver were found up to 4 h

of cold exposure and were almost similar to the control fish.
The results demonstrate that cold exposure is involved in the
regulation of metabolic function in the liver without alteration

of tissue protein content in this species of fish.
3.3. Role of Na2HAsO4 on protein content in cold-induced
skeletal muscle

Groups of fish were used to examine the role of arsenic on the

changes of protein in the skeletal muscle. The protein content
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Figure 4 Effects of cold acclimation on RNA content of the

skeletal muscle of fish. The fish were exposed to cold for 1 h and

2 h. After the treatment, the fish were immediately decapitated and

sampling of tissue was performed. The tissues were analyzed for

RNA. Control fish were similarly used except cold exposure. The

data are means ± SE for three fish in each group.
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Figure 3 Effects of Na2HAsO4 (100 mM) on protein level in the

skeletal muscle of fish. The groups of fish were treated with arsenic

solution and kept for 1 h in the cold. The respective controls were

treated with arsenic only while other fish were exposed to cold for

1 h. Control fish were similarly used except cold exposure. The

data are means ± SE for 4–5 fish in each group.
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of arsenic-treated fish for 1 h was 4.12 ± 0.70 g whereas for

control and cold exposed fish for 1 h, the values were
4.04 ± 0.71 g and 6.16 ± 1.19 g/100 g of tissue weight respec-
tively. The amount of protein (shown in Fig. 3) in response to

cold was increased significantly (P < 0.05) compared to con-
trol while the value was found to be reduced (33.1%,
P < 0.1) by Na2HAsO4 when compared to cold exposed fish.

Groups of fish were exposed to cold with arsenic solution and
the protein content in the skeletal muscle was 9.32 ± 0.47 g/
100 g of tissue. The protein content in the presence of arsenic

in cold was found to be increased significantly when compared
to the arsenic treated- (126.2%, P < 0.05) and control
(130.7%, P < 0.05) fish. The results appear to indicate that ar-
senic might be involved in reducing the cold induced protein

synthesis in the skeletal muscle, however, both the chemical
and environmental stresses seemed to cause the synthesis of
stress proteins to survive in that circumstances.

3.4. Time course effect of low temperature on the regulation of

RNA content in skeletal muscle

To clarify the molecular mechanism of enhancing protein in
the skeletal muscle, groups of fish were exposed to cold for
1 h and 2 h and we examined the changes of RNA level in this

tissue. As shown in Fig. 4, the amount of RNA in response to
cold for 1 h and 2 h was 70.08 ± 9.05 and 132.70 ± 26.75 lg/g
of tissue respectively while for the control, the value was
57.61 ± 5.08 lg/g of tissue. A significant 21.6% (P < 0.05)

and 130.3% (P < 0.01) enhanced RNA in the skeletal muscle
was found after 1 h and 2 h respectively when compared to the
tissue of control fish. However, higher activity was observed

after 2 h of cold. Cold exposure stimulates RNA content time
dependently up to 2 h. The changes of RNA content in tissue
in response to cold might be involved in the regulation of skel-

etal muscle metabolic functions. The alteration of RNA in this
tissue is an index for characterization of the sensitivity to the
environmental temperature and might be involved in the adap-

tive response for survival in the atmosphere for this species of
fish.

3.5. Role of Na2HAsO4 on RNA content and RNA/protein ratio
in cold-induced skeletal muscle

The amount of RNA in response to 100 mM Na2HAsO4 in
cold for 1 h was 40.56 ± 5.24 lg/g of tissue whereas for con-

trol and the cold exposed fish, the values were 57.61 ± 5.08
and 70.08 ± 9.05 lg/g of tissue respectively (Table 1). The re-
sults demonstrated that the RNA contents had been signifi-

cantly reduced (42.1%, P < 0.05) by Na2HAsO4 compared
to respective cold exposed group and also to control (29.6%,
P < 0.05). For 2 h exposure in cold, arsenic causes

41.15 ± 0.80 lg RNA and fish exposed to cold for 2 h had
132.70 ± 26.75 lg, therefore, the amount of RNA was re-
duced by 28.6% significantly (P < 0.05) by arsenic treatment
when compared to control and respective cold exposed group

(69.0%) (P < 0.05), however, higher efficiency was observed
in 2 h treatment. The result shows clearly that arsenic might
be a potent inhibitor on cold induced RNA synthesis in the

skeletal muscle and may act through inhibition of the sympa-
thetic nervous system.

RNA and protein concentrations as well as RNA:protein

ratios (milligrams of RNA per gram protein), as traditional
indicators of the in vivo capacity of protein synthesis, were
measured in tissues of control and cold-acclimated C. punctata,

for an evaluation of effects of long-term acclimation and evo-
lutionary cold adaptation. The RNA:protein ratio for control
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Figure 5 Effects of Na2HAsO4 (100 mM) on RNA:protein ratio

in the skeletal muscle of fish exposed to cold for 1 h and 2 h. The

control fish were used similarly except cold exposure. The data are

means ± SE for three fish in each group.

Table 1 Effects of Na2HAsO4 (100 mM) on RNA content of the skeletal muscle of fish. The fish were exposed to cold with arsenic

solution for 1 h and 2 h. Other groups of fish were exposed to cold for 1 h and 2 h only. After the treatment, the fish were immediately

decapitated and sampling of tissue was performed. The tissues were analyzed for RNA. Control fish were similarly used except cold

exposure. Purity of RNA from the skeletal muscle of different groups of fish was shown.

Control Cold (1 h) Cold (2 h) Na2HAsO4 + cold (1 h) Na2HAsO4 + cold (2 h)

RNA content (lg/g of tissue) 57.61 ± 5.08 70.08 ± 9.05A 132.70 ± 26.75B 40.56 ± 5.24C 41.15 ± 0.80D

Purity (%) 83.41 ± 3.31 92.62 ± 2.54 88.39 ± 4.10 80.38 ± 5.82 86.42 ± 0.74

The data are means ± SE for three fish in each group.
A P< 0.05.
B P< 0.01 versus control for 1 h and 2 h respectively.
C P< 0.05 versus cold (1 h).
D P< 0.05 versus cold (2 h).
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was 1.425 ± 0.15 while for cold exposed fish for 1 h and 2 h,

the ratios were 1.137 ± 0.12 and 1.408 ± 0.13 respectively.
On the other hand, the ratios for arsenic in cold exposed tis-
sues for 1 h and 2 h were 0.435 ± 0.12 and 0.586 ± 0.05

respectively (Fig. 5). The results demonstrated that the
RNA:protein ratios had been significantly influenced by Na2-
HAsO4 as well as in cold compared to the cold exposed group.

4. Discussion

Protein synthesis is energetically expensive, accounting for 11–

42% of basal metabolism in a range of ecto- and endotherms
and is therefore a major component of overall animal energet-
ics (Houlihan et al., 1995). The continual synthesis and degra-

dation of proteins is not only vital for tissue maintenance and
animal growth but is also important in allowing animals to
adapt to changing environmental conditions, to replace dena-
tured or damaged proteins, to mobilize amino acids and to

allow metabolic regulation (Hawkins, 1991). In our study, fish
exposed to cold had increased protein in their tissues particu-

larly skeletal muscles. However, this might be mediated like-
wise by the sympathetic nervous system, since skeletal
muscles have been recognized to be supplied with noradrener-
gic sympathetic axons that are distributed to the muscle spin-

dles and extrafusal muscle fibers (Barker and Saito, 1981).
Moreover, the skeletal muscles are thermogenic in nature. Re-
cent investigation reveals that the thermogenesis in the skeletal

muscle is caused by the higher expression of UCP-3 protein
(Min et al., 2000). Cold exposure is the major sympathetic
stimulus regulating metabolic functions. The thermogenesis

caused by the higher expression of UCP-3 in the skeletal mus-
cle particularly in cold environment is referred to as the non-
shivering thermogenesis linked to the generation of heat
directly (Duchamp and Barre, 1993). It is assumed that the in-

creased protein in response to cold might be a survival factor
for this species during environmental low temperature.

Liver is the major organ involved in metabolic regulation.

The stored glycogen in the liver is influenced by the activation
of the sympathetic nervous system induced by cold exposure
(Thomas and George, 1975). The energy output from the liver

responsible for doing mechanical work is caused by the activa-
tion of glycogenolysis process. Although UCP-2 is expressed in
this tissue, however, cold exposure did not alter protein con-

tent in this tissue. It might be possible that the mechanism
involving the triggering response to the synthesis of protein
in the liver is different from other tissues. Kent et al. (1988)
found that there was no change in either total liver DNA con-

tent or protein concentration per gram weight, following accli-
mation of channel catfish to a reduction in temperature.
Therefore, their findings made a good illustration to support

the result.
Arsenic is a potent carcinogenic toxic compound and causes

impairment of several metabolic functions. The reduced pro-

tein content in the skeletal muscle in response to Na2HAsO4

might be due to the impairment of the sympathetic nervous
system of these tissues since cold exposure stimulates the nerve
activity. However, fish exposed with arsenic in cold show a sig-

nificantly increased protein in these tissues, therefore, it is as-
sumed that in these diverse adverse environments, fish want
to survive by causing the synthesis of adaptive proteins and

cold induced sympathetic nerve activity plays the dominant
role than the arsenic exposure. The mechanism of the synthesis
of protein in skeletal muscles of the variety of C. punctatus ex-

posed to low temperature was clarified in the present study. In
the skeletal muscle, cold acclimation significantly enhanced
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RNA content time dependently and the value was maximal at
2 h, however, reduced to control level after treatment with
Na2HAsO4. Therefore, it is generally accepted that the in-

creased protein might be due to the higher synthesis of RNA
in the cells and arsenic is involved in interaction and impair-
ment of the synthesis. Recent findings demonstrated that inhi-

bition of germination, plant root growth and cell division
during mitosis had been noticed at higher concentrations of ar-
senic (Mumthas et al., 2010), therefore, the experimental re-

sults correspond to their findings. Elevated RNA in cold
adapted fish may therefore be the result of enhanced RNA sta-
bility resulting from low RNA turnover rates and may not re-
flect enhanced energy costs. Elevated levels of mRNA and

protein synthesis in turn, would support short diffusion path-
ways for newly synthesized protein to their final usage sites.
Moreover, the increased protein synthesis could be due to the

increased sympathetic nerve activity since cold exposure elic-
its the activation of sympathetic nervous system. Cold accli-
mation has been involved in inducing aerobic oxidative and

glycolytic processes and since skeletal muscles are composed
of both oxidative and glycolytic fibers, the increased protein
may take part in the cellular metabolic process during cold

acclimation. Enhanced capacities of the protein synthesis
apparatus especially in the cold resemble high enzyme capac-
ities of aerobic metabolism, which are cold compensated too,
despite reduced standard and maximum metabolic rates.

Such excess capacities in metabolic and protein synthesis
functions may be relevant to rapid adjustment of metabolic
and functional equilibria and for full metabolic flexibility in

response to external and internal stimuli in the permanent
cold. The extremely high capacity of the protein synthesis
system in the white muscle strongly supports these

conclusions.
Enabling of the protein synthesis machinery to function at

very low operating temperatures in vivo has been suggested to

be brought about by elevated tissue RNA:protein ratios (mil-
ligrams of RNA per gram protein). Accordingly, this parame-
ter is commonly used as an indirect measure of the in vivo
protein synthesis capacity of a tissue (Waterlow et al., 1978;

Sugden and Fuller, 1991). Increased RNA:protein ratios have
been found upon cold acclimation in various tissues of fish and
has been interpreted to reflect cold compensation of RNA

translational activities (KRNA in vivo, defined as grams of pro-
tein synthesized in vivo per gram RNA per day, also known as
RNA translational efficiency) (Goolish et al., 1984; Foster

et al., 1993). The increase in RNA:protein ratios reflected by
increased RNA levels in cold has been suggested to counteract
a thermally induced reduction in RNA translational efficiency
in vivo.
5. Conclusion

In summary, these tissues are metabolically important for en-
ergy consumption and energy expenditure. Central stimulation
by cold exposure regulates peripheral metabolism probably by

changing their protein concentration. The diverse metabolite
regulation in response to low temperature is an index for the
survival of these species and is a useful biological process.

The increased protein synthesis in tissue in response to cold
is correlated to the transcriptional level and arsenic plays a
critical role in the impairment of this biological process.
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