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Let E be a finite set of points in IWd. Then {A, E- A} is a non-Radon partition of 
E i f f  there is a hyperplane H separating A strictly from E - A. Or equivalently i f f  ,-0 
is an acyclic reorientation of (M,,(E), 0). the oriented matroid canonically deter- 
mined by E. If  (M(E), (0) is an oriented matroid without loops then the set 
NR(E, fl) = {(A, E-A): ,-B is acyclic} determines (M(E), 0). In particular the 
matroidal properties of a finite set of points in IWd are precisely the properties which 
can be formulated in non-Radon partitions terms. The Mobius function of the poset 
.01= {A: A G E, ,-I? is acyclic) and in a special case its homotopy type are com- 
puted. This paper generalizes recent results of P. Edelman (A partial order on the 
regions of aB” dissected by hyperplanes, Trans. Amer. Math. Sot. 283 (1984), no. 2, 
617631. I(‘, 1985 Academic Press, Inc. 

1. INTRODUCTION 

Radon’s theorem is one of the cornerstone theorems in combinatorial 
convexity theory. It asserts that if E is a subset of IF’, /El b d+ 2, it is 
possible to find a Radon partition in E, i.e., a partition E’v E” = E such 
that conv(E’) n conv(E”) # 0 or equivalently E’ cannot be separated from 
E” by any hyperplane (see [3, 7-9, 14-16, 223). 

Let (M(E), 0) be an oriented matroid on a set E [2, 12, 13, 17, 201. We 
call a partition’ (A, B} of E a non-Radon partition in E of the oriented 
matroid (M(E), 0) if ,-0 = =CO is an acyclic reorientation of 0. If E is a 
finite subset of UV’ then {E’, E”} is a non-Radon partition in E iff 20 is an 
acyclic reorientation of the oriented matroid (M&E), 0) of the affine 
dependencies of E over R (see [6, Theorem 2.61 for a short proof). 

The familes of the non-Radon partitions of oriented matroids arises 
naturally in the convex theory of oriented matroids [17]. An important 

’ We call {Iz(, E} a partition in E. 
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MATROIDS AND NON-RADON PARTITIONS 39 

theorem of the theory, with a large number of applications, is the following 
result of Las Vergnas (see [ 17, Theorem 3.11). 

The number of non-Radon partitions in E of an oriented matroid 
(M(E), 8) is equal to 2 - ‘. t(M; 2,0), where t(M; x, y) denotes the Tutte 
polynomial of hf. 

All the results of the oriented matroid theory can be reformulated in 
non-Radon partitions terms. Indeed the family of non-Radon partitions of 
an oriented matroid (M(E), 0) determines canonically the oriented 
matroid (see Theorem 1.1). 

The notation of Las Vergnas [2, 171 is followed with minor changes. We 
recall some definitions. If X = (X’ , X- ) and Y = ( Y + , Y - ) are two signed 
sets we say X is orthogonal to Y and we note X I Y if X n Y = 0, where X 
(resp. Y) denotes the support of X (resp. Y), or (X’ n Y + ) u 
(X-nY-)#a and (X’nY-)u(X-nY+)#@. If (M(E),(9) is an 
oriented matroid we note by S/(O) the signed span of 0; i.e., if X is a signed 
set having support contained in E then XE x(O) iff there are oriented cir- 
cuits X, ,..., X,EO such that X+ =X,+ u ... uXnf, X- =X; v ‘.. uX; 
and (Xi+ nXj-)=(X; n X,+)=0 1 <i<j<n. By the definitions x(O) is 
the set of the signed sets X of support contained in E such that XI Y for 
all YEO’. 

The following interesting theorem of Arnaldo Mandel generalizes a result 
of a previous version of this paper. 

THEOREM 1.1 ( [21 I). Let (M(E), 0) be an acyclic oriented matroid. 
Then the set of its non-Radon partitions determines canonically the oriented 
matroid. 

Proof Let NR(E, 0) = ((A, E-A): $5 acyclic} be considered as a 
family of signed sets. Then NR(E, Co) E x(0’) because if XE NR(E, 0) 
then X J- Y for all YE 0. NR(E, 0) is the set of the maximal elements of 
X(BL). Let G?(O)= {X:X&E, Xl Y, YE NR(E, 0)). From 
Proposition 1.2 x(O) = 98(O) and as 0 is the set of the minimal nonempty 
elements of G+?(O) the theorem follows. 4 

PROPOSITION 1.2 ([21]). Let (M(E), 0) be an oriented matroid. Let 
T(0’) be the set of maximal elements of x(0”). Then -X(0) is the family 
of the signed sets of support contained in E and orthogonal to the elements of 
T(0’). 

Proof Let ,%9(O)= (X: XL E, X 1 Y for all YE T(CI’)}. By the 
definitions x(O) Ed. We prove the equality -X(6’)=?8(0) by induc- 
tion on (El. 

If E= {e} the equality is trivial Suppose that the equality holds for 
(E’( <n and let JE( =n. It is easy to prove that x((O/A)\B) = (X-A: 
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XE %x(O) and X n B = a} (see [2] Proposition 5.5). If M(E) has a loop e 
then for all YE T(U’), e 4 Y. By inductive hypothesis W(o/e) = %-(0/e) and 
then necessarily g’(O) = x(0). Suppose M(E) has no loops. Let XE &?( 0) 
and let e be an element of E-X or if X = E an element such that 
(X-e) I Y for all YE T(0’je). Then by the inductive hypothesis (A’- e) E 
%(O\e). In this case (X-e) -L Y for all YE 0l because ( Y-e)E31/‘(fii/e) 
and necessarily XE x( 0) because X n Y # {e ). Suppose now XE 98( fi ), 
X = E and for every e there is Y, E r(O’) such that (X- e) is not 
orthogonal to (Y-e). We can suppose X+ = E by reorientation if 
necessary of 0. Then for every e we can suppose Y,? = E - {e}, Y; = {e}. 
Suppose Lo has a positive circuit 2. Then necessarily Z = E, 2 = X and 
X~3tr(Cfl). If Lo has not a positive circuit then (E, 0)~ T(O’). But this 
hypothesis is not possible because (E, 0) is not orthogonal to X and the 
proposition holds. 1 

This paper was suggested by the work of Paul H. Edelman concerning a 
partial order on the regions of R” dissected by hyperplanes [lo]. It is not 
difficult to attach Edelman’s study to the more general topics proposed 
above. Indeed iet &@ = {H, , H2,..., H,) be a set of hyperplanes in R” such 
that fly= 1 H, = (0). Let E= {A,, hz,..., A,,,) be a set of vectors of IR” normal 
to the hyperplanes 2 (i.e., H, = {K (x, hi) =Oj, 1 Q ifm). Let M(E) be 
the matroid on E determined by linear dependence over R (i.e., (hi,,..., h,} 
is an independent set of A4 iff hi,,..., h,, are linearly independent vectors of 
IJF). The matroid M(E) has a canonical orientation 0: If C = (hi, ,..., h,} is 
a circuit of M(E) and x5=, A,h,,=O, then C=(C’, C-) with C’ = 
{h,,: i,>O}, c- = {h,,: A,<O> is a signed circuit of 0; or equivalently if 
H = {hi, ,..., h:,} is a hyperplane of M then h and h’, h, h’ E E-H, have the 
same sign in the signed cocircuit C of support E - H if and only if they are 
on the same side of the vector subspace of IF, of dimension n - 1, spanned 
by {h;, ,..., hi,}. 

It is a standard result of matroid theory that the number of connected 
n-cells (or regions) of 9 = Iw” - U i = 1 Hi is t( M; 2,0), where t( M; x, y ) is the 
Tutte polynomial of the matroid M (see Zaslavsky [25]). More precisely let 
R, be a fixed region of 9 which, without loss of generality, we assume to 
have the property that for all XE R, and hi, 1 <i< m, (hi, x) < 0. By a 
classical result on linear inequalities (see [23, Theorem 22.11) for any set 
A, A E E, exactly one of the following alternatives holds: 

(i) there is a vector XE [w” such that (x, hi) > 0 if hip A and 
(x,h,)tO ifhieE-A; 

(ii) there are nonnegative real numbers A,,..., I,, not all zero, such that 
x,,+- A Alhi- Ch,6A Jib, = 0 (i.e., the orientation ,-0 has a positive circuit). 

These considerations prove the following proposition of Las Vergnas: 
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PROPOSITION 1.3 ( [ 181). Let X = (H, , Hz ,..., H,,,} be a set of hyper- 
planes in R” such that fly! I Hi = (0 1. Let E= { hI ,..., h, ) be a set of vectors 
of Iw” such that Hi = {x: (x, hi) = 0), 1 d i < m, and suppose there is a 
region R0 of 9 = BY’ - Uy! j H, such that for x E R, and hi E E (x, hi) -C 0. 
Let (M,,,(E), 0) be the oriented matroid on E determined by linear depen- 
dence over [w. Then the map 4: 9 + d, where 4(R)= (hi: (hi, x) >O, 
XE R} and d is the set (A: A GE, n8 is an acyclic reorientation of O} is an 
one-to-one map. 

We remark that Paul Edelman considers also noncentral arrangements 
of hyperplanes (i.e., such that fiis, Hi = @). But this point of view is only 
apparently more general from the matroidal viewpoint. Indeed let (H,r 
C;=, a,ix.i=biJl.i.m be a noncentral arrangement of hyperplanes of R” 
and let HIrC1=,a~x,-bixn+l=O, l<i<m, Hk+lzx,+,=O. Let 
(M,,,(E), 0) be the oriented matroid on E= {h, = (alI ,..., a,,, -b,) ,..., 
h, = (a,, ,..., am, -b,,J, h, + , = (0,O ,..., 0, - 1)) determined by linear 
dependence over R. Let R,, be a fixed (not necessarily bounded) region of 
9 = R” - UT= 1 Hi which, without loss of generality, we assume to have the 
property that for all x E R0 and hiE E ((x, l), hi) < 0. Then ,$I is acyclic 
and A,+, $ A iff there is a vector y E KY” such that ((y, 1 ), 12,) > 0 if hi E A 
and ((u, l), hi) < 0 if hiE E- A (see [23, Theorem 22.1)); i.e., iff the vec- 
tor y E R” satisfies the inequalities (y, (ail,..., a,,)) > bi if hiE A and 

( .V, tail 5...> 
a,,)) < bi if hie E- (A u {h,+ 1 }). These considerations are 

incorporated into the following version of Proposition 1.3: 

PROPOSITION 1.3’. Let ~={Hi~~aijxj=bi}l~i~m be a set of hyper- 
planesin [W”such that nlGiGmHi=O. Let E=(hI=(a,, ,..., al,,,, -b,) ,..., 

hmh,+~= (O,..., 0, - 1)) and suppose there is a region R0 of B = KY’- 
UT=, H,such thatforxER,, (h,,x)<O, 1 <i<m. Let (M,,,(E), 0) be the 
oriented matroid on E determined by linear dependence over [w. Then the map 
qkC2-+&‘, where q3(R)={hi:(h,,x)>0,x~R} and sZ’={A:ASE- 
{h, + , ) and ,0 is an acyclic reorientation of O} is an one-to-one map. 

Finally we remark that if the generalizations to oriented matroids of 
Edelman’s results tend to become quite technical our proofs are certainly 
more straightforward. 

2. THE MAIN THEOREMS 

The set of faces of an acyclic oriented matroid (M(E), 0), also called 
matroid polytope, ordered by inclusion constitutes a lattice denoted here 
by P(M). The lattice P(M) has the Jordan-Hiilder chain property with 
height function p,,,, (see [ 17, Theorem 1.11). We remark that we consider 
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Qr and E faces of P(M), and given F, G E P(M), F < G,- then the interval 
[F, G] of P(M) is isomorphic to P( M(G)/F). 

Theorem 2.1 is a fundamental result of oriented matroid theory because 
it is equivalent to the Euler relation to matroid polytopes (see 
Theorem 2.1’). We remark that the equivalence of Theorems 2.1 and 2.1’ 
actually holds in any lattice with the Jordan-Holder property as pointed 
out by Lindstrom (see [ 19, Theorem 2)). This result is also implicit in 
Rota [24]. 

THEOREM 2.1 ([5]). Let P(M) be the lattice of the faces of a matroid 
polytope (M(E), 0). Let u be the Mobius function of the lattice P(M). Then 
for all FE P(M) u(@, F) = ( - 1 )P(F’. 

THEOREM 2.1’ ([S, 11, 13, 201). Let P(M) be the lattice of the faces of a 
matroid polytope, fi(M) be the number of faces of P(M) with rank i. Then 
the lattice P(M) satisfies the Euler relation, i.e., 

rank M 

iTo (-l)ifi(M)=o. 

The following variant of Euler’s relation is technically the most impor- 
tant result of this paper. 

THEOREM 2.2. Let (M(E), 0) be an acyclic oriented matroid and ,-0 be 
an acyclic reorientation of In with A # fa, E, Then the following equivalent 
identities hold: 

c 
rank F _ (-1) -0, (2.3) 

FEPCM) 
FnA=(a 

c rank F _ t-11 -0, (2.4) 
FE /‘(MI 

FrlAf0 

where P(M) denotes the lattice qf the faces of the matroid polytope 
(WE), 0). 

LEMMA 2.5 ( [ 171). Let (M(E), 0) be an acyclic oriented matroid and p 
be an extreme point of 0. Then F is a face of (M, O)/{p} iff Fu {p) is u 
face of (M, 0). 

LEMMA 2.6 ([4, 201). Let (M(E), 0) be an acyclic oriented matroid and 
,-0 be an acyclic reorientation of 0. Then there is an order a,, a2,..,, a,, of the 
points of A such that for every i, 1 < i < n, (al....,,,,iO is an acyclic reorientation 
OfO. 
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Proof of Theorem 2.2. We remark that the equivalence of the conditions 
(2.3) and (2.4) is a clear consequence of the Euler relation (see 
Theorem 2.1’). We now prove (2.3). For every X, XE E, let X’ = Xn {p: p 
extreme point of (M(E), 0)) and let L = (F: F is a face of M(E) and 
FnA=@},L’={F’:F’isafaceofM(E’)andF’nA’=@}.ThenL2:L’, 
F + F’ because pMucE,(F) = pwcs) (8”). Indeed the extreme points of a face F 
of M(E) are also extreme points of M(E) and there is a base of F con- 
stituted by extreme points (see [ 171). Then, without loss of generality we 
assume that all the points of (M(E), 0) are extreme points. We proceed by 
induction on (A 1. Suppose A = { p}. From Theorem 2.1’ and Lemma 2.5 we 
have 

FE;M) ( - 1 ynkF = 0, F~;w,(-l)““k~= - c (-l)ra”kF=O 
FE P(MIp) 

PEF 

and the identity (2.3) is true. Suppose Theorem 2.2 holds for all B, JBI < it 
and let IA I = n. From Lemma 2.6 there is an order a, ,..., a, of the points of 
A such that ial ,..., (1.-, } 0 = 0’ is an acyclic orientation. 

As ,$9 and 8’ are acyclic orientations a, is an extreme point of 0’ (see 
[17]). Moreover, from the induction hypothesis we have 

c C-1) rankF=o and c (-lykF=o. 
FE P(M) FEP(MIo,) 

Fn {q,...,u.-*} =0 Fn{a ,,.... c1-,}=0 

From Lemma 2.5 the last identity is equivalent to 

c rankf _ (-1) -0. 
FE P(M) 

Fn {o,,“::~‘,} =0 

But, as 

Fc;M) (-lYankF= c ( - 1 )rankF 
FE P(M) 

FnA=0 Fn(q,..,a,-,:=a 

- 
c C-1) 

rankF=o 

FE P(M) 
0”EF 

Fn {a~.....an-,} =0 

we have concluded the proof of (2.3). 1 

Remark 2.7. The converse of Theorem 2.2 is not true. Indeed let 
(M,d { l,..., 4}), 0) be the oriented matroid of the atline dependencies on 
(l,..., 4) over R determined by Fig. 1. Then for A = (2) the equalities (2.3) 
and (2.4) hold but mL0 is not an acyclic reorientation of 0. 1 
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1 2 3 

FIGURE 1 

Corollary 2.9 is an application of Theorem 2.2 to convex polytopes. 
Theorem 2.8 is a necessary auxiliary result implicit in [ 171 (see [6] for a 
short proof ). 

THEOREM 2.8. Let E be a finite set of Rd and (MAP(E), 0) be the orien- 
ted matroid of affine dependencies of E over R. Then the following two 
statements are equivalent: 

(i) AO is an acyclic reorientation of 0; 

(ii) there is a hyperplane H separating A strictly from E-A. 

COROLLARY 2.9 ([ 15, Chap. 8, Sect. 5, Exercise 2). Let P be a d-dimen- 
sional convex polytope and F be a facet of P. Denote by f;(P; F) the number 
of i-faces of P that are disjoint ,from F. Then I::,‘( - l)( fi( P; F) = 1. 

COROLLARY 2.10. Let (M(E), 0) be an acyclic oriented matroid, let 
S! = {A: A 5 E, #O is acyclic} and suppose d ordered by inclusion. Then 

rank A 

PC0, A)= b-” 
tf A isafaceof(M(E), O), 

otherwise, 

where u denotes the Mobius function of ai 

Proof: We proceed by induction on (A(. If A = @ then ~(0, 0) = 1. 
Suppose Corollary 2.10 is true for all A’, (A’\ <n and let [Al = n. If A = E 
then by the induction hypothesis ~~(~~(0, E) =pJ@, E) and by 
Theorem 2.1 ~~~~~(0, E) = ( - 1 )rankE. Suppose now A # E. From the 
definition of Mobius function and the induction hypothesis ~~(0, A) = 
-L P(M).F 4 A( - 1 YankF-. As E - A # 0, E, by the identity 2.3 relative to 
E-A we have CFtP,MI,FrA(-l) ra”kF= 0. Then if A is a face p,.JIzf, A) = 
~p~~~(0,Ab-W”~~ and if it is not then we have necessarily 
PL.JIZI, A)=O. I 

COROLLARY 2.11. Let (M(E), 0) be an acyclic oriented matroid and p an 
extreme point of (M, 0). Let zzt4’ = {A: A z E - ( p > and $3 is acyclic) and 
.suppose .r-P’ ordered by inclusion. Then 
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rank,4 
if A is afuce of(M(E), O), 

otherwise, 

where p denotes the Miibius function of ~2’. 

Proof. Since SZ” is an ideal of the poset d = {A: A s E and ,iO is 
acyclic) we conclude that p,(@, A) = ~.~(a, A) and Corollary 2.11 is a 
result of Corollary 2.10. 1 

We remark that from Proposition 1.3’ and Corollary 2.11 we can deduce, 
by simple interpretation of the definitions, Theorem 1.8 and Corollary 1.10 
of Edelman [lo]. 

COROLLARY 2.12. Let (M(E), 0) be an acyclic oriented matroid, let 
d = {A: A E E and ,@ is acyclic} and suppose d is ordered by inclusion. 
Then for A, BE d 

rank(B - A 1 if AcBandB-Aisafaceof(M,,-O), 
otherwise. 

Proof: Let 0’ = &I, d’ = {C: &I is acyclic}. From the definitions d’ = 
{X A A: XE sZ}. Moreover if A E B the interval [A, B] of the poset AZ? is 
isomorphic to the interval [a, B-A] of the poset d’ where X-, X- A. 
Then p&(A, B) = p,,(@, B-A) and Corollary 2.12 is a consequence of 
Corollary 2.10. 1 

More information concerning the poset d can be obtained considering 
the order complex d(d); i.e., the abstract simplicial complex whose vertices 
are the elements of ZZZ - { 0, E) and whose simplicies are the chains A, < 
A, < . < Ak in ~2 - (0, E}. Let Id(d)/ be the geometric realization of 
d(d). The following theorem generalizes a result of Edelman (see [ 10, 
Theorem 2.71). 

THEOREM 2.13. Let (M(E), 0) be an acyclic oriented matroid of rank r 
and suppose that 0 has r extreme points. Then 1 A(d)) has the homotopy type 
of the (r - 2)-dimensional sphere. 

Lemma 2.14 is attributed by Bjorner [l] to Quillen (see [l] for an 
elementary proof). 

LEMMA 2.14 ( [ 1 I). Let A be a geometric simplicial complex covered by a 
family of subcomplexes (Ai)i,,. Assume that every finite intersection A, n 
A,,n .‘. n A, is either empty or contractible. Then A has the same homotopy 
type as the nerve N of the covering. 

Proqf of Theorem 2.13. Let a, ,..., a, be the extreme points of 0. For 
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every i, 1 d i < r, let di be the abstract simplicial complex whose vertices 
are the elements of SQ, = {A: A ES?‘, ai E A, A # E} and whdse simplicies are 
the chains A, < A 1 < . . . < Ak in 4. Then A is covered by the family of 
subcomplexes ( Aj)l G iS r. For every I, I g { l,..., T} the flat Fj of M spanned 
by the elements {u,}~~, is a face of 0 and F,E&. Then nit, Ai= (A: 
AE~, FicA)=St{Fj}; i.e., ~i~,~Ai~ is a cone with peak Fi and thus it is 
contractible. Then from Lemma 2.14 1 Al has the same homotopy type of 
the nerve N of the covering ( lAil)1 < l<,. As it is clear that N is the sim- 
plicial complex of the faces of a (r L-l)-simplex our theorem follows. 1 
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