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A minimax search plan is developed for locating the maximum of a uni- 
modal function with a sequence of blocks of simultaneous evaluations of the 
derivative of the function. The search strategy permits any number of blocks 
and any number of experiments in each block. Further, any time delay is per- 
missible where the time delay is the number of blocks placed after the m-th 
block but before the results of the m-th block become known. The proposed 
variable block search plan is optimal in the sense that for a required final interval 
of uncertainty, known to contain the point where the function attains its maxi- 
mum, and for any given value for time delay and the number of experiments in 
each block, it has the largest possible initial interval. A method of optimizing the 
number of experiments per block is given. An extension to non-linear pro- 
gramming algorithms is given. 

1. INTRODUCTION 

Situations often occur in which it is desired to search for the optimum 
of a one-dimensional unimodal function by placing sequences of simul- 
taneous measurements (blocks) on the domain of the function. Often 
the physical system is such that a time delay occurs between the placement 
of a block of experiments and the time when the result becomes known. 
Let the time deZay be T if the (m + 7)-th block is placed before the result 
of the m-th block becomes known, but after the result of the (m - 1)-st 
block is known. If the blocks consist of one experiment measuring the 
value of the function, then, if T = 0, Fibonacci search [6, 81 is the mini- 
max technique while, if T = 1 or 7 = 2, [2] gives the minimax strategy. 
If each block consists of k function evaluation experiments, with 7 = 0, 
the minimax strategy is given in [l, 51, while [3] extends this to allow any 
number of experiments to be placed in each block. 
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The present paper gives the minimax search strategy to determine the 
optimum of a unimodal function if the blocks are composed of any number 
of experiments evaluating the derivative of the function (or equivalently, 
if the zero of a monotone function is sought and experiments evaluate the 
function itself). 

A discussion is given of how to choose the optimal number of experi- 
ments to place in each block, given certain constraints that must be 
satisfied. 

2. DEFINITIONS 

Without loss of generality, assume a maximum is being sought. 
Let f(x) be a unimodal function on the interval [0, 4 with f(x*) = 

max{f(x) : 0 < x < d}. For any x, < xb , f(x) is unimodul if xb < x* 
implies f(x,) < f(xb) and x* < x, implies f(x,) > f(x& 

Define a time scale t which starts at 0 and is incremented by 1 with the 
passage of each time period. The start of the j-th time period is at time 
t = j,, ; other times in this period are t = j. 

A derivative block consists of a group of experiments, each experiment 
evaluating the derivativef’(x), placed simultaneously on [0, d] at the start 
of a time period. For brevity, we shall henceforth use “block” to mean 
“derivative block.” Let ki > 0 be the number of experiments in the j-th 
block placed at time t = j,, . 

Let the time deluy be 7 if the (m + 7)-th block is placed before the result 
of the m-th block is known, but after the result of the (m - I)-st block is 
known. In other words, the result of the (m - I)-st block becomes known 
atthetimet=m+~-1. 

Let x~,~ denote the position of the i-th experiment in the j-th block, 
with the ordering such that x+~,~ < xi,j . N is the total number of biocks 
to be placed, K the total number of experiments. Then K = $, kj . 

Let kN = (k, ,..., kN). 
Let Z, = max{x,,i :f’(xi,?) > 0, i = l,..., kj ; j = l,..., n - T>, 

rn = min{xfSj : f’(xi,J < 0, i = l,..., kj ; j = l,..., n - T}. 

Let /, = 0, r,, = d. 
(If the search is for the zero of a monotone decreasing function, replace 
f’h) bf(xi,J.) 

The interval of uncertainty at time n is U,, = [Z, , r,]. Clearly x* E U, , 
n=O >..., N + T and all further experiments should be placed in this 
interval. U, > U, > ... 2 Un+7. UN+ is the final interval of uncertainty. 

The fact that the locations I, and r, depend on the unknown function f 
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can be indicated by writing &(f) and m(f). Let the longest possible final 
interval, considering all unimodal fimctionsf, be denoted by z: 

z = mfax(rdf) - LO)). 

Let the information at time n + 7 be 

I n+7 = {x1.1 ,-... xkl,l ,.-.Y Xk,+,,nt~ 7 f’(xlJ)~--~ f’(Xk,.n)>* 

A policy gn+7tl(lntl) specifies the placement of the (n + 7 + I)-st 
block; 

A search strategy S(d, z, Q-, kN) on [0, d] is composed of N sequential 
policies (g, ,..., gN} so that r,(f) - In(f)) < z. Policy g, is implemented 
at time n, , n, = l,..., N. If z = I, S(d, 1, 7, kN) is said to be feasible. 
A feasible strategy is minimax (or optimal) if d is maximized over all 
feasible S. If S*(d, 1, 7, kN) is optimal, let d = d* so that S(d, 1, 7, kN) = 
S*(d*, 1, T, kN). An optimal strategy need not be unique. 

Let I,’ = I, + max{xi,j : X+ E [I, , r,], j = n - T + 1,. .., n}. The re- 
duction ratio r = z/d. 

A sequential search strategy places all experiments in the interval of 
uncertainty, which is successively being reduced. A simultaneous search 
strategy cannot take advantage of the results of any experiments and 
hence requires many more experiments. The equivalent simultaneous 
strategy of S*(d*, 1, T, kN) will be denoted .9’(EN, d*, 1, 7, k,). 
9’(E, , d*, 1, T, k,) reduces the interval of uncertainty from [0, d*] to a 
unit final interval using one block of experiments. EN denotes the least 
number of experiments required to accomplish this. 

3. THE SEARCH STRATEGY 

THEOREM. The length of the maximum starting interval that may be 
searched to give a unit final interval of uncertainty, given kN and 7, is LN , 
where: 

(3.1) L, = 1, n < 0. 

(3.2) L, = kv--n+A--l--r + G-1 , n > 0. 

A minimax search strategy on the above interval is: 

(3.3) Xi,% = I:-, -I- iLN-n--r , i = l,..., k, . 

Let this search strategy be denoted by S#(LN , 1, 7, kN). 
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Before proving the theorem, it is convenient to prove the following 
lemma, which gives the longest interval that may be searched to give a 
unit final interval of uncertainty using simultaneous derivative evaluation 
experiments. 

LEMMAI. ZfN=l,k,=K, thend*=L,=K+l. Theoptimal 
search strategy S*(L, , 1, 7, k,) is: 

(3.4) xi,l = i, i=l ,..., K. 

Proof. For notational convenience, define xO,r = 0, x~+~,~ = d*. 

(a) Optimality 

Consider any search. If the search is feasible, then it is required that 
rl - II < 1. Hence we require that 

(3.5) xi+1,1 - xi,1 < 1, i = O,..., K. 

Hence 

(3.6) d* < max t x~+~,~ - xi.1 < K + 1 e L, . 
i=O 

(b) Feasibility 

The final interval of uncertainty will be [x(,~ , xi+,,,] for some i = O..., K. 
By (3.4) x~+~,~ - xi,1 = 1 for i = O,..., K. Hence the search is feasible, 
and d* = L. 

Proof of the Theorem. The proof is in two parts. The first shows that, 
given kN and T, [0, LN] is the largest interval that can be searched to 
produce a unit final interval. The second shows that the proposed search 
is feasible, producing a unit final interval of uncertainty from the initial 
interval [0, LN]. 

(a) Optimality 

The technique to be used is to transform a search strategy employing a 
sequence of blocks into an equivalent simultaneous strategy. 

Let N, kN , and 7 be given. Assume that S*(d*, 1, T, kN) is known. This 
strategy may be transformed to the equivalent simultaneous strategy 
9’(E,, d*, 1, I-, kN). It will be shown that LN is an upper bound for 
EN + 1. Since EN + 1 = d* by Lemma 1, LN will also be an upper bound 
for d*. The feasibility part will show that S#(LN, 1, T, k,,,) is feasible, so 
that LN = d* and S#(LN , 1, 7, kN) is the minimax search strategy. 
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The induction hypothesis is that, for N > 0, EN < EN‘ , where 

Ej,r’ = kjv(E;-~-1 + 1) + Eke, . 

(Define EL, = ,..., = E,,’ = E-, = ,..., = E,, = 0.) 
If N < T + 1, no experimental results are available before all the blocks 

have been placed, so that in this case the sequential search is the same as 
the simultaneous search P’(E,,, , d*, 1, T, kN) where 

EN = 2 k, . 
n=1 

Let EN’ =E,forO<N<7+1.Thus, 

N-l 

EN’ = k, + c k, = k&E&--7--1 + 1) + EL, 
n=l 

and, since EN = EN’ , the induction hypothesis is satisfied. 
If N = T + 2, the results of the first block are known before the 

(T + 2)-nd block is placed. The length of the interval of uncertainty is 
reduced to r,,, - 1,+1 = either (x~+~,~ - xisI) where iis one of O,..., k, - 1 
or (r. - XJ& k7+2 experiments are then placed in U,,, . There are k, + 1 
possibilities for U,,, , hence a block of k,,, experiments in the sequential 
search is equivalent to at most k,+,(k, + 1) simultaneous experiments. 
The total number of simultaneous experiments required to produce an 
equivalent reduction as sequential search is then 

EN < EN’ = k,+,(k, + 1) + EL-‘:,, = k7+&’ + 1) + EL 

and the hypothesis holds. 
Assume the hypothesis holds for N = M - 1 > 7 + 2. When the 

M-th block is to be placed the results of the first M - 7 - 1 blocks are 
known. By the induction hypothesis, a search with M - T - 1 blocks 
is equivalent to at most Eh-7-1 experiments and hence there-are at most 
EkwTel + 1 possibilities for U,-, , in which the M-th block could be 
placed. The placement of the M-th block in the sequential search is then 
equivalent to at most kM(E~p,-l + 1) experiments in the simultaneous 
search. Since the previous (M - 1) blocks are equivalent to at most 
Ehwl experiments by the hypothesis, we have 

E.+, < E,,,’ = k,+,(ELw-1+ 1) + J%.,-, , 

proving the hypothesis. 
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By Lemma 1, d* = EN + 1 < EN’ + 1. Using the substitution 
Zn = E,’ + 1, n = I,..., N it follows that J& > d* where gpN is deter- 
mined by 

Lgn = 1, n < 0, 

=% = b%--7--l + K--l , n > 0. 

It is shown below that & = LN and hence LN 3 d*, which completes 
the optimality part of the proof. The next part will show that LN = d* 
and that S#(L, , 1, T, kN) is the minimax strategy. 

To show that YN = LN , an inductive proof can be used to obtain 
generalized formulas for 6p, and L, . It can then be shown that the 
formulas for LN and A$ are identical and hence 9N = L, . 

The induction hypothesis is that 

and that 

L,=l$- f  ki, + f  f ki,ki, + **a 
il=N--n+l il=N--n+l i2=il+‘+l 

where 

A, = [++I. 

These formulas are easily verified by induction. For n = N, it is clear 
that A$ = L, . 

(b) Feasibility 

By induction. The hypothesis is that the search strategy SN#(LN , 1, T, kN) 
is feasible on [0, LN]. 

For N = l,..., 7 + 1 it is easily verified by (3.1), (3.2), and (3.3) that 
the length of the final interval of uncertainty, rN+r - lN+r, will be unity. 
Hence the search is feasible. 
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Now assume S&L, , 1, T, kN) is feasible for N < M - 1 on [0, LN]. 
For N = M, by (3.3), the first block of experiments is placed at 
x<,, = lo’ + iL,-,-, = iLM--T--l, i = l,..., kl . The second block is 
placed at xi,2 = 1 I ’ + iLM-f--8 = k,L,-,-, + iLM--r--t!, i = l,..., k, . The 
(T + 1)-st block is placed at x. z.T+l = I,’ -I- iLM--Br-l = Cj’=, k&,+++ + 
iLM--27--1 , i = l,..., kT+l . At this point the result of the first block of 
experiments is received. Iff’(xlc, ,) < 0, then 

u 7+1 = L&+1 z r,+,l = [Xi,1 3 Xi+,,,l, for some i = O,..., k, - 1. 

BY (3.3) 

I Xit1.1 - xi.1 I = L4-4 7 i = O,..., k, - 1. 

Since M - T - 1 blocks remain, by the induction assumption this 
region can be feasibly searched. 

Iff’(xtl ,) > 0, then 

u T+l = h&-+-l 3 Ld 

By (3.2), 1 LM - klLM-,--l 1 = LMwl . T blocks have been placed in 
this region already, positioned at 

(3.7) 1,’ + iLh,--7--2 , i = l,..., k, ;...; 1,’ + iLM--Br.--l , i = l,..., k,+l . 

M - 7 - 1 blocks remain to be placed. But, given (k, ,..., kN) and an 
interval of length LMvl to search, (3.7) gives the precise placement of the 
first 7 blocks of S,ff-l(LM-l , 1, 7, k,-,). By the induction hypothesis this 
search is feasible and LN = d*. This proves the hypothesis. 

This completes the proof of the theorem. 

4. EXAMPLE 

Suppose N = 5, K = 8, and 7 = 1 and that it is required that ka < 2, 
i = I,..., 5. It will be shown in Section 5 that the optimal k, = (2, 1,2, 1,2). 
In this case, 

L, = 1, 

L1 = k, + 1 = 3, 

L, = k4 + L, = 4, 

L, = k,L, + L, = 10, 
L, = kzL, + L, = 14, 

L, = klL, + L., = 34. 
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Thus the interval [0, 341 may be searched to give a unit final interval of 
uncertainty. The placements in the first two blocks are given by: 

X 11 = L, = 10, 

X 21 = 2L, = 20 = II', 

x12 = II' + L, = 24. 

Before placing the third block, the results of the first block become 
known and the interval of uncertainty, U, , is reduced to one of [0, lo], 
[IO, 201 or [20, 341. Supposef’(x,,) < 0 so U, = [0, lo]. Then 

13f = 0, 

x13 = 13' + L, = 3, 
x23 = 13' + 2L, = 6 = Ia', 

Xl, = Ia + L, = 7. 

At this point, the result of the third block becomes known so that 
U, = [O, 31, [3, 61, or [6,10]. Supposef’(x,,) > 0. Then 

Is' = 7, 

x15 = 1s' + L-1 = 8, 

x25 = 1s' + 2L-, = 9. 

After the results of these experiments are obtained, the final interval of 
uncertainty is reduced to one of [6, 71, [7, 81, [8,9], or [9, lo]. 

Figure 1 depicts the placement of the first four blocks of experiments. 
Block 3 has been placed three times, to cover the three cases U, = [0, lo], 
U, = [lo, 201, and U3 = [20, 341. Similarly, block 4 has been placed four 
times. In practice, of course, these blocks are placed only once in the 
appropriate interval, as above. Block 5, consisting of two experiments, 
has yet to be placed in Figure 1. It is clear, however, that after it is placed, 
the final interval of uncertainty is unity. Figure 1 thus shows the power of 
sequential search in that the experiments in block 3 are equivalent to 
three times as many experiments than if all experiments had been placed 
simultaneously, while block 4 is equal to four times as many, and block 5 
is equal to ten times as many. 

x3 x3 “4 7 x3 3 x4 5 “4 “2 5 “3 “4 1~~1111011 f 1 I I I I ,I I I I, ,, I ,, , , , , , , , 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1X I9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

FIG. 1. Placement of experiments for k = (2, 1, 2, 1, 2). 
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5. ARRANGEMENT OF EXPERIMENTS 

The selection of kN depends on N (the time allotted to the search), 
T, the maximum experiments allowable per block and the desired reduction 
ratio. For given values of T and the reduction ratio, decreasing N requires 
increasing K. 

The optimal kN can be determined as follows. From (3.2): 

(5.1) LN = W,-,-, + k&--r--2 + ,..., + k+A+-2~+~ + h-v-1, 

where LN--r--l ,..., L,-,,-, are independent of k, ,..., k,+l . Now L, 3 L,-l 
for all 12. If there are no constraints on the number of experiments per 
block, it is clear that LN is maximized by setting k, = ,..., = k7+1 = 0 
and placing the available experiments in block 1, say k, = k,‘. Similarly 
LNmTal could be expanded as L, was, and this would show that LNeTel 
is maximized by setting kT+2 = k:+2 , kT+3 = ,..., = k2r+3 = 0, if there 
are no constraints. Continuing in this manner, we find that 

(5.2) L, = kl’k:,2 ,..., kb’ + 1, 

where b = [N/(7 + l)l(~ + 1) + 1. Let h = (b + T)/(T + I), a = [K/h] 
and P = K - ah. Then LN in (5.2) is maximized by setting 

I a+ 0, 1, i otherwise. = 1, 7 + 2 ,..., (P - 1) 7 + P, 
ki = a, i = PT f P + I,..., 6, 

Now consider the case in which constraints on the ki exist, ki < Ci . 
Suppose that ci = c, i = l,..., N. Set ki = c, i = 1, T  + 2 ,..., b and deter- 
mine if the required reduction ratio is attained. If not, then it is clear that, 
to optimize (5.1), experiments should be added, one at a time to blocks 
2, 7 + 3,... . If these blocks each has one experiment, and the reduction 
ratio is not obtained, continue adding experiments in the prescribed 
manner until either the desired reduction ratio is attained or until each 
of these blocks has c experiments in it. If the latter holds, start adding 
experiments to blocks 3, 7 + 4,... . Continue in this manner until the 
desired reduction ratio is obtained or until all blocks have c experiments 
in them, so that no greater reduction ratio is possible, given the constraints. 

Very similar reasoning holds if we are given K, N, T ,  z = 1, and k; < Ci 

and wish to minimize the reduction ratio. This was the case in the example 
of Section 4, where N = 5, K = 8, 7 = 1, and ci = 2, i = I,..., 5. 
Using the above reasoning, experiments are first placed in blocks 1, 3, 
and 5. Since the maximum per block is 2, set k, = k, = k, = 2 as this 
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does not violate K = 8. Two experiments remain to be placed, and fol- 
lowing the above discussion set k, = k4 = 1. Thus k, = (2, 1,2, 1,2). 
This gives the optimum reduction ratio subject to the constraints. 

7. ASYMPTOTIC RESULTS 

In practice, it is frequently desired to use a search procedure in which N 
is not specified initially. In this case, the asymptotic results are required. 
Once these are known, the asymptotic search procedure can be specified 
and used instead of the procedure requiring the value of N initially. Thus 
golden section search is often used instead of Fibonacci search, and golden 
block search instead of block search [8]. The asymptotic results for the 
present case will be derived under the assumption that k, = k for all n 
and T = 0, 1 and 2. 

The method of solving linear recursion relationships with constant 
coefficients is sufficiently well known (for example, see Jeske [4]) that 
it will be omitted here. 

The general solution for L, is: 

7+1 

(7.1) L, = c d&R, 
i=l 

where the ai are the T + 1 roots of the equation, 

(7.2) a~+1 - a7 - k = 0, 

and the di are determined by the initial conditions, 

L, = nk + 1, n = O,..., 7. 

The asymptotic solution is 

(7.3) L,” = u1n, 

where the roots of (7.3) are ordered so that a, is the largest real root. 
This result may be used for the asymptotic search strategy in the usual 

manner [6]. If the initial interval is [0, I], then the asymptotic search 
strategy is: 

(7.4) x& = lip1 + iu;(n+‘), i = l,..., k. 

The interval of uncertainty after n blocks is a;“. 
If N had been known initially, the length of the final interval of uncer- 

tainty, using (3.3), would be (L,,,-l. The ratio of the final interval of 
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uncertainty if N is known initially, to that after N experiments when N 
is unknown initially, is aIN/Lw . Since 

hm L, = dialN, 
N-00 

then 

lim alNIL, = d;l. 
N--l 

This provides a measure of comparison between the effectiveness of the 
two search techniques. 

For T = 0, a,=k+l, dI = 1. 
ForT= 1, 

a1 = (1 + 41 + W/2, 

a2 = (1 - 1/l + 4k)/2. 

Using the initial conditions L, = 1, LI = k + 1, 

+;+%‘z, 
22/l + 4k 

d z ! - Lk+ ’ 
2 2 22/l +4k * 

For 7 > 1, (7.2) is difficult to solve in general. Specific results for each 
value of k and 7 can be calculated by solving (7.2). For example, for 
T = 2, these results are a, = 1.466, 1.696, 1.864, and 2.0 for k = 1, 2, 3, 
and 4, respectively. To obtain dI , the other roots of (7.2) are required. 

8. SUMMARY 

The sequential minimax search strategy to optimize one-dimensional 
unimodal functions has been derived using blocks containing any number 
of experiments evaluating derivatives. 

The search is applicable for any time delay that may be present in the 
system. The optimal arrangement of experiments in the blocks is specified. 
The results have been extended to asymptotic searches in which N need 
not be known initially. The search strategy specified is also minimax 
for locating the zero of a monotone function. The appendix extends the 
work to an application for use in some non-linear programming 
algorithms. 
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APPENDIX 

The following problem is very similar to the one described in the main 
part of the paper, although the physical situation is quite distinct. The 
problem to be described is found in many non-linear programming 
algorithms (for example, see [7]). 

Let x E RN. Let there be T inequality constraints, 

F = {x : q(x) < 0, i=l ,**-, Tl. 
I = (x : q(x) > 0, for any i = l,..., T}. 

Let x1 E F and x2 E I. Let S = {x : x = hxl + (1 - h) x2, 0 < h < l}. 
It is desired to determine the point in S n F that is farthest from x1. This 
shall be called the boundary point, xB : 

xg = {x’ : x’ = ,rm& 1 x - x1 I}. 

The search problem is to specify a minimax strategy to determine an 
interval in which x, must be contained. It will be shown that the time 
delay search, with slight modification, is applicable. 

It will be assumed that the constraints are well behaved, i.e., that if 
~~~FnSthenx~Fforxsuch thatxESandsuch that 1x1-x1 < 
/ x1 - x0 j. 

Without loss of generality, assume x1 = 0 and x2 = (I,, O,..., 0). 
Each point in S may be specified by its first component and this 
abbreviation will be used (i.e., denote x1 by 0, x2 by Z,). 

The search schemes considered are those that satisfy the following 
rules : 

(1) Evaluate cl(xl) initially. 

(A-2) (2) If c$(x,) > 0, t = l,..., T; n = l,..., N, evaluate c~(x,+~). 

(3) If c&J < 0, t = I,.. ., T - 1; y1 = I,..., N; evaluate ct+i(x,). 
If t = T, evaluate cl(x,+*) unless there exists a previous 
measurement such that c,(x,) < 0 for x,+~ < x, , where 
g = I,..., T - 1. In this case, evaluate c~+~(x,+~) where 
f = max {g : c,(x,) < 0 }. 
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The optimization problem is to determine the x, , n = I,..., N so that 
a minimax strategy is obtained. The minimax strategy is: 

(A-3) x, = 1,’ + Lw+q, , 

where T = 7 + 1 and LNeren is determined by (3.1) and (3.2) with 
k, = 1, n = l,..., N. Also, 

I,’ = max 
X&FKi,WZ=1*...,?& 

(XnL 3 0). 

An outline of the proof strategy will be given. The proof is very similar 
to the technique used in [2]. Suppose N tests are to be made. Assume that 
the maximum interval that can be searched with it experiments to give a 
unit final interval of uncertainty is of length h, . If c&) > 0, then 
n - 1 experiments remain to search [0, x1]. Thus, it is required that: 

(A-4) Xl < Ll. 

Similarly, if CAXJ < 0, t = I,..., T, then it is required that 

(A-5) A, - Xl d A,-, . 

Combining (A-4) and (A-5), we obtain 

(A-6) A, < L-T + L-1 * 

It can be shown that this constraint is required for all n such that 
N 3 y1 > T. This gives an upper bound on the length of interval that 
may be feasibly searched with N experiments, h, < h,-, + A,-, . In 
addition, the initial conditions are easily deduced to be 

(A-7) A, = 1, n. = O,..., T - 1. 

Since (A-6) gives an upper bound on the interval that may be feasibly 
searched, if it can be shown that a feasible strategy exists where (A-6) is 
satisfied as an equality for n >, T and (A-7) is satisfied, then that strategy 
will be the minimax strategy. 

Note that if T = T + 1 and k, = 1, n = l,..., N, then (A-6), if satisfied 
as an equality, is the same as (3.2). Thus the minimax strategy can be 
related to the minimax strategy for the time delay case. Using the initial 
conditions (A-7), T = T + 1, k, = 1 for n = l,..., N, and (A-6) as an 
equality, then X, = L,-, . 

The minimax search strategy is given by evaluating the constraints as 
indicated by (A-2), with 

x, = L-1 i- L2 , II = l,..., N 

= I:-1 + LN--r--n. 
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This strategy can be shown to be feasible by the usual inductive proof 
method, which for brevity will be omitted here. 
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