On a Theorem of Iwasawa

Raymond Ayoub
Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

Communicated by S. Chowla
Received November 29, 1972

1. Introduction

In this section we shall give the setting which leads to a formulation of Iwasawa's Theorem [1].

Let p be a prime, $p>3$ and let

$$
\begin{equation*}
t=\frac{p-1}{2} \tag{1}
\end{equation*}
$$

Chowla [2] proved that the t real numbers $\cot (2 \pi l / p)(l=1,2, \ldots, t)$ are linearly independent over the field Q of rational numbers.

Following Iwasawa's notation, let Q_{p} be the p-adic completion of Q and let ν_{p} be the normalized valuation on Q_{p} such that $\nu_{p}(p)=1$. For $a=1,2, \ldots, p-1$, it is easily seen that

$$
\begin{equation*}
\alpha_{a}=\lim _{n \rightarrow \infty} a^{p^{n}} \tag{2}
\end{equation*}
$$

exists in Q_{v}, that $\alpha_{a} \equiv a(\bmod p)$, and that α_{a} is a $(p-1)$-st root of unity in Q_{p}.

Let ζ be a primitive p th root of unity in the complex field and let $K=Q(\zeta)$; let $K_{p}=Q_{p}(\lambda)$, where K_{p} is the local cyclotomic field of p th roots of unity over Q_{p}.

Let ρ be a primitive ($p-1$)-st root of unity in the complex field. There is a natural isomorphism from $Q(\zeta, \rho)$ into K_{p} given by $\rho \rightarrow \alpha_{g}, \zeta \rightarrow \lambda$, where g is a primitive root $\bmod p$. Call this isomorphism η. The valuation ν_{p} can be extended to K_{p} and hence can be defined on $Q(\zeta, \rho)$ as follows: If $\beta \in Q(\zeta, \rho)$, then define

$$
\begin{equation*}
\nu_{p}(\beta)=\nu_{p}(\eta(\beta)) \tag{3}
\end{equation*}
$$

108

We use the same symbol for the valuation on $Q(\zeta, \rho)$ as no confusion will arise.
Let

$$
\begin{equation*}
\xi_{l}=\frac{\zeta^{l}+\zeta^{-l}}{\zeta^{l}-\frac{\zeta^{-l}}{}}=i \cot \left(\frac{2 \pi l}{p}\right) \tag{4}
\end{equation*}
$$

and let γ be the automorphism $\zeta \rightarrow \zeta^{-1}$ of $K=Q(\zeta)$. Let

$$
\begin{align*}
& K^{+}=\{k \in K ; \gamma(k)=k\}, \tag{5}\\
& K^{-}=\{k \in K ; \gamma(k)=-k\} . \tag{6}
\end{align*}
$$

K^{-}is not a subfield of K, but both K^{+}and K^{-}are vector spaces over Q of dimension t. Since $\gamma\left(\xi_{l}\right)=-\xi_{l}(l=1,2, \ldots, t)$, it follows that

$$
\xi_{l} \in K^{-}(l=1,2, \ldots, t)
$$

and hence, by Chowla's theorem, ξ_{l} form a basis for K^{-}over Q. Moreover $\zeta-\zeta^{-1} \in K^{-}$; therefore, there exist $x_{l} \in Q(l=1,2, \ldots, t)$ such that

$$
\begin{equation*}
\zeta-\zeta^{-1}=\sum_{l=1}^{t} x_{l} \xi_{l} \tag{7}
\end{equation*}
$$

This may be rewritten as

$$
\begin{equation*}
2 \sin \frac{2 \pi}{p}=\sum_{l=1}^{i} x_{l} \cot \left(\frac{2 \pi}{p} l\right) . \tag{8}
\end{equation*}
$$

Let

$$
\begin{equation*}
\delta_{p}=\max _{l}\left(-\nu_{p}\left(x_{l}\right)\right) . \tag{9}
\end{equation*}
$$

Suppose that χ is a character $\bmod p$ and consider

$$
u_{\chi}=\frac{2 \chi(2)}{p} \sum_{m=1}^{p-1} m \chi(m) ;
$$

then $u_{x} \in Q(\zeta, \rho)$. If $\chi(-1)=1$ and χ is nonprincipal, then $u_{x}=0$; otherwise, if $\chi(-1)=-1, u_{x} \neq 0$. Let

$$
e_{x}=v_{p}\left(u_{x}\right) .
$$

Iwasawa proved the following theorem:

$$
\begin{equation*}
\delta_{p}=\max _{x}\left(e_{x} ; \chi(-1)=-1\right) . \tag{10}
\end{equation*}
$$

He deduced that (i) in general $\delta_{p} \geqslant 0$, (ii) $\delta_{p}=0$ if and only if the prime p is regular. Let $h=h_{1} h_{2}$, where h is the class number of K and h_{2} the class number of K^{+}.

From (10) Iwasawa derived the highly interesting fact that, if $\nu_{p}\left(h_{1}\right)=s$ while $r=$ number of Bernouilli numbers $B_{n}(1 \leqslant n \leqslant(p-3) / 2)$ divisible by p, then $s \geqslant r$ and $s=r$ if and only if $\delta_{p} \leqslant 1$.

The object of this note is to give an "explicit" evaluation of the numbers x_{l} and to deduce (10) as a consequence. In the course of the derivation, an alternate proof of Chowla's theorem will appear.

2. Evaluation of x_{l}

We shall first state the result and later give an indication of how it was arrived at and incidentally give another proof of Chowla's Theorem.

Theorem 2.1. Let χ be a character $\bmod p$ such that $\chi(-1)=-1$, and let

$$
\begin{equation*}
S(\chi)=\sum_{m=1}^{p-1} m \chi(m) \tag{11}
\end{equation*}
$$

then

$$
\begin{equation*}
x_{l}=\frac{2 p}{p-1} \sum_{x} \frac{\bar{\chi}(2 l)}{S(\chi)}, \quad l=1,2, \ldots, t \tag{12}
\end{equation*}
$$

and the summation is over all characters χ such that $\chi(-1)=-1$. There are t of these.

Proof. We first remark that the right-hand side is meaningful since $S(\chi)$, being a factor of the first factor of h, is different from 0 . Secondly, $x_{l} \in Q$. This fact will emerge in Section 3 but to make Section 2 independent of Section 3, we give a proof.

Let g be a primitive root $\bmod p$ and choose χ_{0} so that $\chi_{0}(g)=\rho^{-1}$, where ρ is a primitive $(p-1)$-st root of unity. χ_{0} generates the cyclic group of characters. The characters for which $\chi(-1)=-1$ are determined then by $-1=\chi_{0}{ }^{m}(-1)=\chi_{0}{ }^{m}\left(g^{t}\right)=\rho^{-m t}$. It follows that m must be odd. The automorphisms of $Q(\rho)$ are given by $\mu_{a}: \rho \rightarrow \rho^{a}$ with $(a, p-1)=1$. Thus, if $2 l \equiv g^{b}(\bmod p)$, then

$$
\begin{equation*}
\chi(2 l) S(\chi)=\sum_{n=0}^{p} \bar{g}^{n} P^{-m(n+b)} \tag{13}
\end{equation*}
$$

where $\bar{s} \equiv s(\bmod p)$ and $0 \leqslant \bar{s}<p$ with $\chi=\chi_{0}{ }^{m}$ and m odd. Applying μ_{a} to (13), we find that

$$
\begin{equation*}
(\chi(2 l) S(\chi))^{\mu_{a}}=\sum_{n=0}^{p-2} \overline{g^{n}} \rho^{-m a(n+b)} \tag{14}
\end{equation*}
$$

As a is odd, it follows that $m a \equiv w(\bmod p-1)$ with w odd. That is,

$$
\begin{equation*}
\left(\chi_{0}{ }^{m}(2 l) S\left(\chi_{0}{ }^{m}\right)\right)^{L_{a}}=\chi_{0}{ }^{w}(2 l) S\left(\chi_{0}^{w}\right) \tag{15}
\end{equation*}
$$

As $(a, p-1)=1$, it follows that μ_{a} induces a bijection of the set

$$
\left\{\chi_{0}{ }^{m}(2 l) S\left(\chi_{0}^{m}\right) ; \quad m=1,3, \ldots, p-2\right\} .
$$

Hence, x_{l} is invariant under the automorphisms of $Q(\rho)$ and therefore lies in Q.

Assuming Chowla's Theorem, the x_{l} are uniquely determined. We show then that the x_{l} as defined by (12) do, in fact, satisfy (7). The expression

$$
\sum_{x(-1)=-1} \frac{\bar{\chi}(2 l)}{S(\chi)},
$$

is meaningful for any $l=1,2, \ldots, p-1$. Hence, x_{l} is meaningful for $l=1,2, \ldots, p-1$ with the relation, however, that $x_{p-l}=-x_{l}$. Consider then

$$
\begin{equation*}
\sum_{l=1}^{p-1} x_{l} \xi_{l}=\sum_{l=1}^{t} x_{l} \xi_{l}+\sum_{l=t+1}^{p-1} x_{l} \xi_{l} \tag{16}
\end{equation*}
$$

As $\xi_{\mathcal{p}-l}=-\xi_{l}$ and $x_{p-l}=-x_{l}$, it follows from (16) that

$$
\begin{equation*}
\sum_{l=1}^{p-1} x_{l} \xi_{l}=2 \sum_{l=1}^{t} x_{l} \xi_{l} \tag{17}
\end{equation*}
$$

Moreover, it is easy to see that

$$
\begin{equation*}
\xi_{l}=1+\frac{2}{p} \sum_{k=1}^{p-1} k \xi^{2 l k} \tag{18}
\end{equation*}
$$

This being so, we have (bearing in mind that the sums involving characters are over odd characters) from (17) and (18)

$$
\begin{align*}
A & =\sum_{l=1}^{t} x_{l} \xi_{l}=\frac{1}{2} \sum_{l=1}^{p-1} x_{l} \xi_{l} \\
& =\frac{p \bar{\chi}(2)}{p-1}\left(\sum_{l=1}^{p-1} \sum_{x} \frac{\bar{\chi}(l)}{S(\chi)}\left(1+\frac{2}{p} \sum_{k=1}^{p-1} k \zeta^{2 k l}\right)\right) \\
& =\frac{p \bar{\chi}(2)}{p-1} \sum_{x} \frac{1}{S(\chi)} \sum_{l=1}^{p-1} \bar{\chi}(l)+\frac{2}{p-1} \sum_{l=1}^{p-1} \sum_{x} \frac{\bar{\chi}(l)}{S(\chi)} \sum_{k=1}^{p-1} k \zeta^{2 k l l} . \tag{19}
\end{align*}
$$

As χ is not principal, the first term is 0 . In the second sum, we introduce the term $1=\chi(k) \bar{\chi}(k)$ and get from (19)

$$
A=\frac{2}{p-1} \sum_{x} \frac{1}{S(\chi)} \sum_{k=1}^{p-1} k \chi(k) \sum_{l=1}^{p-1} \bar{\chi}(2 k l) \zeta^{2 k l}
$$

For a given k we have

$$
\sum_{l=1}^{n-1} \bar{\chi}(2 k l) \zeta^{2 k l}=\sum_{n=1}^{p-1} \bar{\chi}(n) \zeta^{n}
$$

and the left sum is therefore independent of k. Hence,

$$
\begin{align*}
A & =\frac{2}{p-1} \sum_{x} \sum_{n=1}^{p-1} \bar{\chi}(n) \zeta^{n} \frac{1}{S(\chi)} \sum_{k=1}^{p-1} k \chi(k) \\
& =\frac{2}{p-1} \sum_{n=1}^{p-1} \zeta^{n} \sum_{x} \bar{\chi}(n) \tag{20}
\end{align*}
$$

To evaluate the inner sum (which is well known), we note that, if $n \neq 1$ $(\bmod p)$, then

$$
\begin{aligned}
0 & =\sum_{k=1}^{p-1} \chi_{0}^{k}(n)=\sum_{m=1}^{t} \chi_{0}^{2 m-1}(n)+\sum_{m=1}^{t} \chi_{0}^{2 m}(n) \\
& =\left(1+\chi_{0}(n)\right) \sum_{m=1}^{t} \chi_{0}^{2 m-1}(n)
\end{aligned}
$$

If $\chi_{0}(n) \neq-1$-i.e., if $n \neq-1(\bmod p)$-then

$$
\sum_{m=1}^{t} \chi_{0}^{2 m-1}(n)=0
$$

It follows that

$$
\sum_{x} \bar{\chi}(n)= \begin{cases}0, & \text { if } n \neq \pm 1(\bmod p) \tag{21}\\ -t, & \text { if } n \equiv-1(\bmod p) \\ t, & \text { if } n \equiv 1(\bmod p)\end{cases}
$$

Applying (21) to (20), we get

$$
A=\frac{2}{p-1}\left(t \zeta-t \zeta^{-1}\right)=\zeta-\zeta^{-1}
$$

as required.

As a corollary, we derive Iwasawa's Theorem. From (12) we have

$$
\begin{equation*}
\nu_{p}\left(x_{l}\right) \geqslant \min _{\chi} v_{p}\left(\frac{p}{S(\chi)}\right) \geqslant-\max _{\chi}\left(v_{p}\left(\frac{S(\chi)}{p}\right)\right), \tag{22}
\end{equation*}
$$

the min and max taken over odd characters. Therefore, from (22)

$$
\begin{equation*}
-v_{p}\left(x_{l}\right) \leqslant \max _{\chi} v_{p}\left(\frac{S(\chi)}{p}\right) . \tag{23}
\end{equation*}
$$

As the right-hand side does not depend on l, we get from (23),

$$
\delta_{p} \leqslant \max _{x} v_{p}\left(\frac{S(x)}{p}\right) .
$$

To prove the reverse inequality, we write (12) in the form

$$
\begin{equation*}
\left[x_{1}, x_{2}, \ldots, x_{t}\right]=\left(\frac{p}{S\left(x_{1}\right)}, \ldots, \frac{p}{S\left(x_{t}\right)}\right) M \tag{23}
\end{equation*}
$$

where M is the matrix $[\bar{\chi}(2 l)], \chi$ is odd, and $l=1,2, \ldots, t$.
The matrix M is nonsingular; in fact, its determinant is prime to p. Since $\bar{\chi}=\chi^{-1}$, we can write M as

$$
M=\left[\chi_{0}^{-(2 k-1)}(2 l)\right] .
$$

Hence,

$$
\begin{aligned}
M \bar{M}^{T} & =\left[\chi_{0}^{-(2 k-1)}(2 l)\right]\left[\chi_{0}^{2 r-1}(2 l)\right] \\
& =\left[\sum_{l=1}^{t} \chi_{0}^{2 r-2 l}(2 l)\right]
\end{aligned}
$$

If $r=k$, this term of the matrix has value t. If $r \neq k$, then $\chi_{0}^{2(r-k)}$ is an even character, not the principal one, and it is easily seen that then the value is 0 . Therefore, $M \bar{M}^{T}=t I$. That is, M is nonsingular and

$$
\operatorname{det}\left(M \bar{M}^{T}\right)=t^{t}
$$

or

$$
|\operatorname{det} M|^{2}=t^{t} .
$$

In other words, $\nu_{p}(\operatorname{det} M)=0$, as is easily seen.
Therefore, from (23)

$$
\begin{equation*}
\frac{p}{S(\chi)}=\frac{1}{\operatorname{det} M} \sum_{l=1}^{t} \alpha_{l} x_{l} \tag{24}
\end{equation*}
$$

where $\alpha_{l} \in Z[\rho]$.

Consequently, from (24)

$$
\begin{aligned}
& \nu_{p}\left(\frac{p}{S(\chi)}\right) \geqslant \min \nu_{p}\left(x_{l}\right) \\
& \nu_{p}\left(\frac{S(\chi)}{p}\right) \leqslant \max \left(-\nu_{p}\left(x_{l}\right)\right)=\delta_{p} .
\end{aligned}
$$

Hence, $\max \nu_{p}(S(\chi) / p) \leqslant \delta_{v}$. This completes the proof.

3. Derivation of (12) and Alternate Proof of Chowla's Theorem

We begin with the easily proved identity

$$
\begin{equation*}
\sum_{n=1}^{p-1} n \zeta^{n}=\frac{p}{\zeta-1} \tag{25}
\end{equation*}
$$

Replacing ζ by ζ^{-1}, we get

$$
\begin{equation*}
\sum_{n=1}^{p} n \zeta^{-n}=\frac{-p \zeta}{\zeta-1} . \tag{26}
\end{equation*}
$$

Subtracting (26) from (25) and replacing ζ by ζ^{2}, we deduce that

$$
\begin{equation*}
\sum_{n=1}^{p-1} n\left(\zeta^{2 n}-\zeta^{-2 n}\right)=p\left(\frac{\zeta+\zeta^{-1}}{\zeta-\zeta^{-1}}\right)=p \xi_{1} \tag{27}
\end{equation*}
$$

Applying the automorphisms $\zeta \rightarrow \zeta^{a}(a=1,2, \ldots, t)$, we infer that

$$
\begin{equation*}
\sum_{n=1}^{p-1} n\left(\zeta^{2 a n}-\zeta^{-2 a n}\right)=p \xi_{a} \quad(a=1,2, \ldots, t) \tag{28}
\end{equation*}
$$

The automorphisms $\zeta \rightarrow \zeta^{a}(a=t+1, \ldots, p-1)$ yield nothing new.
We shall cut the summation in (28) to t. Let \bar{x} denote the residue of x modulo p with $0 \leqslant \bar{x}<p$. Determine a such that $a n \equiv m(\bmod p)$; i.e., $n \equiv m a^{-1}(\bmod p)$. Then from (28), we get

$$
\begin{align*}
p \xi_{a} & =\sum_{m=1}^{p-1} \overline{m a^{-1}}\left(\zeta^{2 m}-\zeta^{-2 m}\right) \\
& =\left(\sum_{m=1}^{t}+\sum_{m=t+1}^{p-1}\right) \overline{\left(m a^{-1}\left(\zeta^{2 m}-\zeta^{-2 m}\right)\right)} \\
& =S_{1}+S_{2} \tag{29}
\end{align*}
$$

In S_{2}, put $k=p-m$; then

$$
\begin{align*}
S_{2} & =\sum_{k=1}^{t}\left(\overline{(p-k)\left(a^{-1}\right)}\right)\left(\zeta^{-2 k}-\zeta^{2 k}\right) \\
& =\sum_{k=1}^{t}\left(p-\overline{k a^{-1}}\right)\left(\zeta^{-2 k}-\zeta^{2 k}\right) \tag{30}
\end{align*}
$$

Combining (29) and (30), we get

$$
\begin{equation*}
p \xi_{a}=-\sum_{m=1}^{t}\left(2 \overline{m a^{-1}}-p\right)\left(\zeta^{p-2 m}-\zeta^{-(p-2 m)}\right) \quad(a=1,2, \ldots, t) \tag{31}
\end{equation*}
$$

Let $\boldsymbol{\xi}=\left[\xi_{1}, \xi_{2}, \ldots, \xi_{t}\right]$ and

$$
\begin{aligned}
\alpha & =\left[\zeta^{p-2}-\zeta^{-(p-2)}, \zeta^{p-1}-\zeta^{-(p-4)}, \ldots, \zeta-\zeta^{-1}\right] \\
& =\left[\alpha_{t}, \alpha_{t-1}, \ldots, \alpha_{1}\right]
\end{aligned}
$$

where $\alpha_{i}=\zeta^{2 i-1}-\zeta^{-(2 i-1)}, i=1,2, \ldots, t$.
From (31), we get the matrix equation

$$
\begin{equation*}
-p \boldsymbol{\xi}=\alpha A \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\left[2\left(\overline{m a^{-1}}\right)-p\right] \quad(m=1,2, \ldots, t, a=1,2, \ldots, t) \tag{33}
\end{equation*}
$$

Now, if the α_{i} are linearly independent, then the ξ_{i} are linearly independent if and only if A is nonsingular. We shall show that the α_{i} are linearly independent and we shall show that A is nonsingular-indeed, we shall find its inverse.

To see the first statement, assume that there exist $c_{l} \in Q(l=1,2, \ldots, t)$ such that

$$
\sum_{l=1}^{t} c_{l} \alpha_{l}=0
$$

Define $c_{p-l}=-c_{l}$. Then we can rewrite this equation as

$$
\sum_{l=1}^{t} c_{l} \zeta^{2 l-1}+\sum_{l=1}^{t} c_{p-l} \zeta^{p-(2 l-1)}=0
$$

or

$$
\sum_{j=1}^{p-1} d_{j} \zeta^{j}=0
$$

This contradicts the fact that ζ has degree $p-1$ unless $d_{j}=0, j=1, \ldots$, $p-1$.

The matrix A has rational coefficients; to find x_{l}, it therefore suffices to find A^{-1}-in fact; it is enough to find the last column of A^{-1}.

Chowla's Theorem will then follow.
We now invert A. The argument is based on an idea from a paper of Carlitz and Olson [3].

For any integer c let

$$
\begin{equation*}
\{c\}=2 \bar{c}-p \tag{34}
\end{equation*}
$$

then it follows at once that $\{c\}$ is odd, $|\{c\}| \leqslant p-2$, and that

$$
\begin{equation*}
\{-c\}=-\{c\} . \tag{35}
\end{equation*}
$$

Thus, as c runs from 1 to $t,\{c\}$ runs through $1,3, \ldots, p-2$ with possible sign changes.

Let g be a primitive root $\bmod p$; then $\left\{g^{k}\right\}(k=0,2, \ldots, t-1)$ are all distinct and coincide with $\{a\}(a=1, \ldots, t)$ except for order and sign. In fact, if $1 \leqslant c \leqslant t$, then

$$
\begin{equation*}
c \equiv \epsilon_{c} \overline{g^{i_{c}}} \quad(\bmod p) \tag{36}
\end{equation*}
$$

with $0 \leqslant i_{c}<t$ and

$$
\epsilon_{c}=\left\{\begin{aligned}
1, & \text { if } \overline{g^{i_{c}}}<\frac{p}{2} \\
-1, & \text { if } \overline{g^{i_{c}}}>\frac{p}{2}
\end{aligned}\right.
$$

This follows from the fact that $g^{t} \equiv-1(\bmod p)$. Moreover, if

$$
\{c\}=\epsilon_{d}\left\{g^{i_{c}}\right\},
$$

then $\left\{c^{-1}\right\}=\epsilon_{o}\left\{g^{-i_{0}}\right\}$. There exists therefore a permutation matrix M and a sign change K such that

$$
\begin{equation*}
\left[\left\{1^{-1}\right\},\left\{2^{-1}\right\}, \ldots,\left\{t^{-1}\right\}\right]=\left[\left\{g^{-0}\right\},\left\{g^{-1}\right\}, \ldots,\left\{g^{-(t-1)}\right\}\right] M K ; \tag{37}
\end{equation*}
$$

then

$$
\begin{equation*}
\left[\left\{m 1^{-1}\right\},\left\{m 2^{-1}\right\}, \ldots,\left\{m t^{-1}\right\}\right]=\left[\left\{m g^{-0}\right\},\left\{m g^{-1}\right\}, \ldots,\left\{m g^{-(t-1)}\right\}\right] M K . \tag{38}
\end{equation*}
$$

Putting $M K=P$, we get from (38)

$$
\begin{equation*}
\left[\left\{m a^{-1}\right\}\right]=P^{T}\left[\left\{g^{i-j}\right\}\right] P \tag{39}
\end{equation*}
$$

Let $B=\left[\left\{g^{i-j}\right\}\right]$; then (39) becomes

$$
\begin{equation*}
A=P^{\top} B P \tag{40}
\end{equation*}
$$

We shall invert A by diagonalizing B. Let ρ be a primitive ($p-1$)-st root of unity and let

$$
C=\left[\delta_{i j} p^{i}\right] \quad(i, j=0, \ldots, t-1)
$$

Then

$$
\begin{equation*}
C B \bar{C}=\left[\left\{g^{i-j}\right\} \rho^{i-j}\right] . \tag{41}
\end{equation*}
$$

The first row of this matrix is

$$
\left[\left\{g^{-0}\right\} \rho^{-0},\left\{g^{-1}\right\} \rho^{-1}, \ldots,\left\{g^{-(t-1)}\right\} \rho^{-(t-1)}\right] .
$$

Because $g^{t} \equiv-1(\bmod p), \rho^{t}=-1$, we get from (35) that the second row is

$$
\left[\left\{g^{-(t-1)}\right\} \rho^{-(t-1)},\left\{g^{-0}\right\} \rho^{-0}, \ldots,\left\{g^{-(t-2)}\right\} \rho^{-(t-2)}\right],
$$

and so on inductively. Thus, $C B \bar{C}$ is a circular matrix; i.e., the rows are permutations of the first row obtained by powers of the cyclic permutation ($1,2, \ldots, t$). To diagonalize $C B \bar{C}$, let λ be a primitive t th root of unity. Then $\lambda=\rho^{2}$, and let

$$
L=\left[\lambda^{i j}\right] \quad(i, j=0, \ldots, t-1) .
$$

Suppose that the first row of $C B \bar{C}$ is denoted by $\left[a_{0}, a_{1}, \ldots, a_{t-1}\right]$ so that the element of the i th row and j th column (counting from 0) is given by a_{t+j-i}, it being understood that the subscripts are reduced to the least nonnegative residue modulo t. Hence,

$$
\begin{aligned}
\bar{L} C B \bar{C} L & =\left[\lambda^{-i j}\right]\left[a_{t-i+j}\right]\left[\lambda^{i j}\right] \\
& \left.=\left[\lambda^{-i j}\right] \mid \sum_{k=0}^{t-1} a_{t-i+k} \lambda^{k j}\right] .
\end{aligned}
$$

But

$$
\begin{aligned}
\sum_{k=0}^{t-1} a_{t-i+k^{k}} \lambda^{k j} & =\sum_{m=0}^{t-1} a_{m} \lambda^{(m+i) s} \\
& =\lambda^{i j} \sum_{m=0}^{t-1} a_{m} \lambda^{m j}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\bar{L} C B \bar{C} L & =\left[\sum_{k=0}^{t-1} \lambda^{-i k} \lambda^{k j} \sum_{m=0}^{t-1} a_{m} \lambda^{m j}\right] \\
& =\left[t \delta_{i j} \sum_{m=0}^{t-1} a_{m} \lambda^{m j}\right] \tag{42}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\sum_{m=0}^{t-1} a_{m} \lambda^{m j} & =\sum_{m=0}^{t-1}\left\{g^{-m}\right\} \rho^{-m} \rho^{2 m j} \\
& =\sum_{m=0}^{t-1}\left\{g^{-m}\right\} \rho^{m(2 j-1)}
\end{aligned}
$$

Moreover,

$$
\begin{equation*}
\sum_{m=0}^{p-2}\left\{g^{-m}\right\} \rho^{m(2 j-1)}=\left(\sum_{m=0}^{t-1}+\sum_{m=t}^{p-2}\right)\left(\left\{g^{-m}\right\} \rho^{m(2 j-1)}\right) . \tag{43}
\end{equation*}
$$

Replacing m by $n+t$ in the second sum and noting that

$$
g^{t} \equiv-1(\bmod p), \quad \rho^{t}=-1, \quad \text { and } \quad\{-c\}=-\{c\}
$$

we get from (43)

$$
\begin{equation*}
\sum_{m=0}^{p-2}\left\{g^{-m}\right\} \rho^{m(2 j-1)}=2 \sum_{m=0}^{t-1}\left\{g^{-m}\right\} \rho^{m(2 j-1)} \tag{44}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\sum_{m=0}^{p-2}\left\{g^{-m}\right\} \rho^{m(2 j-1)}=2 \sum_{m=0}^{p-2} \overline{g^{-m}} \rho^{m(2 j-1)} . \tag{45}
\end{equation*}
$$

Thus from (44) and (45), we get

$$
\begin{align*}
\sum_{m=0}^{t-1}\left\{g^{-m}\right\} \rho^{m(2 j-1)} & =\sum_{m=0}^{p-2} \overline{g^{-m}} \rho^{m(2 j-1)} \\
& =S\left(\chi_{0}^{2 j-1}\right) \tag{46}
\end{align*}
$$

Collecting our results, we find from (40)-(42), and (46),

$$
\begin{equation*}
\left[C P^{T} A P \bar{C} L=t\left[\delta_{i j} S\left(\chi_{0}^{2 j-1}\right)\right] \quad(i, j=0, \ldots, t-1)\right. \tag{47}
\end{equation*}
$$

Therefore,

$$
t^{-1} P^{T} A P=C^{-1} \bar{L}^{-1}\left[\delta_{i j} S\left(\chi_{0}^{2 j-1}\right)\right] L^{-1} \bar{C}^{-1} .
$$

We remarked above that $S\left(\chi_{0}^{2 j-1}\right) \neq 0$; hence,

$$
\begin{aligned}
t P^{-1} A^{-1}\left(P^{T}\right)^{-1} & =\bar{C} L\left[\delta_{i j} S^{-1}\left(\chi_{0}^{2 j-1}\right)\right] \bar{L} C \\
& \left.=\left[\delta_{i j} \rho^{-j}\right]\left[\rho^{2 i j}\right]\left[\delta_{i j} S^{-1} \chi_{0}^{2 j-1}\right)\right]\left[\rho^{-2 i j}\right]\left[\delta_{i j} \rho^{i}\right] \\
& =\left[\rho^{i(2 j-1)}\right]\left[\delta_{i j} S^{-1}\left(\chi_{0}^{2 j-1}\right)\right]\left[\rho^{-(2 i-1) i}\right] \\
& =\left[\rho^{i(2 j-1)} S^{-1}\left(\chi_{0}^{2 j-1}\right)\right]\left[\rho^{-(2 i-1) j}\right] \\
& =\left[\sum_{k=0}^{t-1} \rho^{i(2 k-1)} S^{-1}\left(\chi_{0}^{2 k-1}\right) \rho^{-(2 k-1) j}\right] \\
& =\left[\sum_{k=0}^{t-1} S^{-1}\left(\chi_{0}^{2 k-1}\right) \chi_{0}^{-(2 k-1)}\left(\left\{g^{i-j}\right\}\right) \chi_{0}^{2 k-1}(2)\right]
\end{aligned}
$$

Since $P^{-1}=P^{T}$, we get

$$
\begin{aligned}
A^{-1} & =t^{-1}\left[\sum_{k=0}^{t-1} S^{-1}\left(\chi_{0}^{2 k-1}\right) \chi_{0}^{-(2 k-1)}\left(\left\{m a^{-1}\right\}\right) \chi_{0}^{2 k-1}(2)\right] \\
& =t^{-1}\left[\sum_{k=0}^{t-1} S^{-1}\left(\chi_{0}^{2 k-1}\right) \chi_{0}^{-(2 k-1)}\left(m a^{-1}\right)\right]
\end{aligned}
$$

From (32), we have $\alpha=-p \xi A^{-1}$. Therefore,

$$
\zeta-\zeta^{-1}=\frac{-2 p}{p-1} \sum_{m=1}^{t} \xi_{m}\left(\sum_{k=0}^{t-1} S^{-1}\left(\chi_{0}^{2 k-1}\right) \chi_{0}^{-(2 k-1)}\left(m t^{-1}\right)\right)
$$

But $t^{-1}=((p-1) / 2)^{-1} \equiv-2(\bmod p)$ and, since $\chi(-1)=-1$, we have (replacing χ_{0} by a generic χ)

$$
\begin{equation*}
\zeta-\zeta^{-1}=\frac{2 p}{p-1} \sum_{m=1}^{t} \xi_{m}\left(\sum_{x} S^{-1}(\chi) \bar{\chi}^{(2 m)}\right) \tag{48}
\end{equation*}
$$

The summation is over all χ for which $\chi(-1)=-1$. Furthermore, in general,

$$
\begin{equation*}
\zeta^{a}-\zeta^{-a}=\frac{2 p \chi(a)}{p-1} \sum_{m=1}^{t} \xi_{m}\left(\sum_{\chi} S^{-1}(\chi) \tilde{\chi}(m)\right) \tag{49}
\end{equation*}
$$

for $a=1,2, \ldots, t$.

That is, since $\zeta^{a}-\zeta^{-a} \in K^{-}$, there exist $c_{l} \in Q$ such that

$$
\zeta^{a}-\zeta^{-a}=\sum_{l=1}^{t} c_{l} \xi_{l}
$$

and these c_{l} are given by

$$
c_{l}=\frac{2 p \chi(a)}{p-1} \sum_{x} S^{-1}(\chi) \tilde{\chi}^{(l)},
$$

the summation being over odd characters.

Acknowledgments

I should like to acknowledge gratefully the helpful suggestions of my colleagues G. Andrews and S. Chowla. Andrews performed some calculations which confirmed a conjecture on the value of a determinant. He also called my attention to the paper of Carlitz and Olson [3].

References

1. K. Iwasawa, On a theorem of S. Chowla, J. Number Theory 7 (1975), 105-107.
2. S. Chowla, The nonexistence of nontrivial linear relations between the roots of a certain irreducible equation, J. Number Theory 2 (1970), 120-123.
3. L. Carlitz and F. R. Olson, Maillet's Determinant, Proc. Amer. Math. Soc. 6, 265-269.
