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a b s t r a c t

A structure M is pregeometric if the algebraic closure is a pregeometry in all structures
elementarily equivalent to M. We define a generalisation: structures with an existential
matroid. The main examples are superstable groups of Lascar U-rank a power of ω and
d-minimal expansion of fields. Ultraproducts of pregeometric structures expanding an
integral domain, while not pregeometric in general, do have a unique existential matroid.

Generalising previous results by van den Dries, we define dense elementary pairs of
structures expanding an integral domain andwith an existentialmatroid, andwe show that
the corresponding theories have natural completions, whose models also have a unique
existential matroid. We also extend the above result to dense tuples of structures.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A theory T is called pregeometric [14,13] if, in every modelK of T , acl satisfies the Exchange Principle, denoted by EP (and,
therefore, acl is a pregeometry on K); if T is complete, it suffices to check that acl satisfies the EP in one ω-saturated model
of T . The theory T is geometric if it is pregeometric and eliminates the quantifier ∃

∞. We call a structure K (pre)geometric if
its theory is (pre)geometric (thus, K is pregeometric iff there exists an ω-saturated elementary extension K′ of K such that
acl satisfies the EP in K′). Note that a pregeometric expansion of a field is geometric ([10, 1.18]; see also Lemma 3.47).

In the remainder of this introduction, all theories and all structures expand a field; in the body of the article we will
sometimes state definitions and results without this assumption.

Geometric structures are ubiquitous in model theory: if K is either o-minimal, or strongly minimal, or a p-adic field, or a
pseudo-finite field (or more generally a perfect PAC field; see [9,14, 2.12]), then K is geometric.

However, ultraproducts of geometric structures (even strongly minimal ones) are not geometric in general. We will
show that there is a more general notion, structures with existential matroids, which instead is preserved under taking
ultraproducts. In more detail, we consider structures K with a matroid cl that satisfies some natural conditions (cl is an
‘‘existential matroid’’). Our assumption that K expands a field implies that there is at most one existential matroid on K.
An (almost) equivalent notion has already been studied by van den Dries [25]: we will show that an existential matroid
on K induces a (unique) dimension function on K-definable sets, satisfying the axioms in [25], and conversely, any such
dimension function, satisfying a slightly stronger version of the axioms, will be induced by a (unique) existential matroid.
Moreover, a superstable group K of U-rank a power of ω is naturally endowed by an existential matroid (van den Dries
[25, 2.25] noticed this already in the case when K is a differential field of characteristic 0).

Given a geometric structureK, there is an abstract notion of dense subsets ofK, which specialises to the usual topological
notion in the case of o-minimal structures or of p-adic fields. More precisely, a subset X of K is dense in K if every infinite
K-definable subset of K intersects X [16, Section 1.2]. If T is a complete geometric theory, then the theory of dense
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elementary pairs of models of T is complete and consistent (the proof of this fact was already in [26], but the result was
stated there only for o-minimal theories).

We consider here the more general case when T is a complete theory with an existential matroid. We show that there
is a corresponding abstract notion of density in models of T . Given T as above, consider the theory of pairs ⟨K′,K⟩, where
K ≺ K′

|= T and K is a proper dense subset of K′; the theory of such pairs will not be complete in general, but we will
show that it will become complete (and consistent) if we add the additional condition that K is cl-closed in K′ (that is,
cl(K) ∩ K′

= K); we thus obtain the (complete) theory T d. Moreover, T d also has an existential matroid. This allows us to
repeat the above construction, and consider dense cl-closed pairs of models of T d, which turn out to coincide with nested
dense cl-closed triples of models of T ; iterating many times, we can thus study nested dense cl-closed n-tuples of models
of T .

Of particular interest are two cases of structures with an existential matroid: cl-minimal structures and d-minimal
topological structures.

A structure K (with an existential matroid) is cl-minimal if there is only one ‘‘generic’’ 1-type over every subset of K (see
Section 10); the prototypes of such structures are given by stronglyminimal structures and connected superstable groups of
U-rank a power of ω. If T is the theory of K, we show that the condition that K is dense in K′ is superfluous in the definition
of T d, and that T d is also cl-minimal.

A first-order topological structure K (expanding a topological field) is d-minimal if it is Hausdorff, it has an ω-saturated
elementary extension K′ such that every definable unary subset of K′ is the union of an open set and finitely many discrete
sets, and it satisfies a version of the Kuratowski–Ulam theorem for definable subsets of K2 (see Section 9; the ‘‘d’’ stands for
‘‘discrete’’). Examples of d-minimal structures are p-adic fields, o-minimal structures, and d-minimal structures in the sense
of Miller. We show that a d-minimal structure has a (unique) existential matroid, and that the notion of density given by
the matroid coincides with the topological one. Moreover, if T is the theory of a d-minimal structure, then T d is the theory
of dense elementary pairs of models of T (the condition that K is a cl-closed subset of K′ is superfluous); hence, in the case
when T is o-minimal, we recover [26, Theorem 2.5]. However, if T is d-minimal, T d will not be d-minimal. Moreover, while
ultraproducts of o-minimal structures and of p-adic fields are d-minimal, ultraproducts of d-minimal structures are not
d-minimal in general. Under some mild assumptions, if ⟨K′,K⟩ is a dense pair of d-minimal structures, then K′ is the open
core of ⟨K′,K⟩ (Theorem 13.11).

We show that, if K has an existential matroid, then K is a perfect field; therefore, the theory exposed in this article does
not apply to differential fields of finite characteristic, or to separably closed nonperfect fields.

2. Notations and conventions

Let T be a complete theory in some languageL, with only infinitemodels. Let κ > |T | be a ‘‘big’’ cardinal.Wework inside
a κ-saturated and strongly κ-homogeneous model M of T ; we call M a monster model of T .

We denote by A, B, and C , subsets of M of cardinality less than κ , by ā, b̄, and c̄ , finite tuples of elements of M, and by a,
b, and c , elements of M. As usual, we will write, for instance, ā ⊂ A to say that ā is a finite tuple of elements of A, and Ab̄ to
denote the union of Awith the set of elements in b̄.

Given a set X and m ≤ n ∈ N, denote by Πn
m : Xn

→ Xm the projection onto the first m coordinates. Given Y ⊆ Xn+m,
x̄ ∈ Xn, and z̄ ∈ Xm, denote the sections Yx̄ :=


t̄ ∈ Xm

: ⟨x̄, t̄⟩ ∈ Y

and Y z̄ :=


t̄ ∈ Xn

: ⟨t̄, z̄⟩ ∈ Y

.

Denote by Aut(M/B) the set of automorphisms of M which fix B point-wise. Denote byΞ(a/B) the set of conjugates of a
over B; that is,

Ξ(a/C) := {aσ : σ ∈ Aut(M/B)} .

3. Matroids

Let cl be a (finitary) closure operator on M; that is, cl : P (M) → P (M) satisfies, for every X ⊆ M,

Extension: X ⊆ cl(X);
Monotonicity: X ⊆ Y implies that cl(X) ⊆ cl(Y );
Idempotency: cl(cl X) = cl(X);
Finite Character: cl(X) =


{cl(A) : A ⊆ X & A finite}.

The closure operator cl is a (finitary)matroid (a.k.a. pregeometry) if, moreover, it satisfies the Exchange Principle.

EP: a ∈ cl(Xc) \ cl(X) implies c ∈ cl(Xa).

When M is not clear from the context, we will write clM instead of cl.
Notice that the closure of a set A such that |A| < κ might be a ‘‘proper class’’, that is, it might have cardinality ≥κ , and

that this will indeed happen in many important examples in this article (more precisely, it will happen for all the existential
matroids different from the algebraic closure).

Proviso. For the remainder of this section, cl is a finitary matroid on M.
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As is well known from matroid theory, cl defines notions of rank (which we denote by rkcl), generators, independence,
and basis (see e.g. [23, Appendix C]).1

Definition 3.1. A subset A of C generates C over B if cl(AB) = cl(CB). A subset A of M is independent over B if, for every
a ∈ A, a /∈ cl


B ∪ (A \ {a})


.

Remark 3.2 (Additivity of Rank).
rkcl(āb̄/C) = rkcl(ā/b̄C)+ rkcl(b̄/C).

For the axioms of independence relations, we will use the nomenclature in [1].

Definition 3.3. Given an infinite set X , a preindependence relation2 on X is a the ternary relation |⌣ on P (X) satisfying
the following axioms.

Monotonicity: If A |⌣C
B, A′

⊆ A, and B′
⊆ B, then A′

|⌣C
B′.

Base Monotonicity: If D ⊆ C ⊆ B and A |⌣D
B, then A |⌣C

B.
Transitivity: If D ⊆ C ⊆ B, B |⌣C

A, and C |⌣D
A, then B |⌣D

A.
Normality: If A |⌣C

B, then AC |⌣C
B.

Finite Character: If A0 |⌣C
B for every finite A0 ⊆ A, then A |⌣C

B.

|⌣ is symmetric if, moreover, it satisfies the following axiom.

Symmetry: A |⌣C
B iff B |⌣C

A.

Definition 3.4. The preindependence relation on M induced by cl is the ternary relation |⌣
cl on P (M) defined by the

following: X |⌣
cl
Y
Z if, for every Z ′

⊂ Z , if Z ′ is independent over Y , then Z ′ remains independent over YX . If X |⌣
cl
Y
Z , we

say that X and Z are independent over Y (w.r.t. cl).

Remark 3.5. If X |⌣
cl
Y
Z , then cl(XY ) ∩ cl(ZY ) = cl(Y ).

Lemma 3.6. The relation |⌣
cl is a symmetric preindependence relation.

Proof. The same as that given in [1, Lemma 1.29]. �

Remark 3.7. The relation |⌣
cl also satisfies the following version of antireflexivity.

• A |⌣
cl
C
B iff cl(A) |⌣

cl
cl(C)

cl(B);
• a |⌣

cl
X
a iff a ∈ cl(X).

Remark 3.8. For every X and Y , X |⌣
cl
Y
Y .

Remark 3.9. T.f.a.e.:
1. X |⌣

cl
Y
Z;

2. for every Z ′ such that Y ⊆ Z ′
⊆ cl(YZ), we have cl(XZ ′) ∩ cl(YZ) = cl(Z ′);

3. there exists Z ′
⊆ Z which is a basis of ZY/Y , such that Z ′ remains independent over XY ;

4. for every Z ′
⊆ Z which is a basis of ZY/Y , Z ′ remains independent over XY ;

5. if X ′
⊆ X is a basis of YX/Y and Z ′

⊆ Z is a basis of YZ/Y , then X ′ and Z ′ are disjoint, and X ′Z ′ is a basis of XZ over Y ;
6. for every X ′ finite subset of X , rkcl(X ′/YZ) = rkcl(X ′/Y ).

Lemma 3.10. The preindependence relation |⌣
cl also satisfies the following stronger form of the Local Character axiom.

For every A and B there exists a subset C of B such that |C | ≤ |A| and A |⌣
cl
C
B.

Proof. Let A and B be given. Let B′
⊆ B be a basis of AB over A, A′

⊆ A be a basis of AB over B, and C ⊆ B be a basis of B
over B′. Notice that CA′ is a basis of AB/B′ and A is a set of generators of AB/B′; hence, by the EP, |C | ≤ |A|. Moreover, by
Remark 3.9(3), A |⌣

cl
C
B. �

Lemma 3.11. Assume that ā |⌣
cl
C
d̄ and that ād̄ |⌣

cl
C
b̄. Then, ā |⌣

cl
C
b̄d̄ and d̄ |⌣

cl
C
b̄ā.

Proof. Cf. [1, 1.9]. Since ād̄ |⌣
cl
C
b̄, we have ā |⌣

cl
Cd̄

b̄, which implies that ā |⌣
cl
Cd̄

b̄d̄, which, together with ā |⌣
cl
C
d̄, implies that

ā |⌣
cl
C
b̄d̄. �

1 Sometimes in geometric model theory the ‘‘rank’’ is called ‘‘dimension’’ and/or the ‘‘dimension’’ (defined later) is called ‘‘rank’’; however, since inmany
interesting cases (e.g. algebraically closed fields and o-minimal structures, with the acl matroid) what we call the dimension of a definable set induced by
the matroid coincides with the usual notion of dimension given geometrically, our choice of nomenclature is clearly better.
2 Preindependence relations as defined here are slightly different than the ones defined in [1]. However, as we will see later, if cl is definable, then |⌣

cl is
a preindependence relation in Adler’s sense.
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Lemma 3.12. Let ⟨I,≤⟩ be a linearly ordered set,

āi : i ∈ I


be a sequence of tuples in Mn, and C ⊂ M. Then, t.f.a.e.:

1. For every i ∈ I , we have āi |⌣
cl
C
(āj : j < i);

2. For every i ∈ I , we have āi |⌣
cl
C
(āj : j ≠ i).

Proof. Assume, for contradiction, that (1) holds, but ai ̸ |⌣C
(āj : j ≠ i), for some i ∈ I . Since |⌣

cl satisfies Finite Character,
w.l.o.g., I = {1, . . . ,m} is finite. Letm′ be such that i < m′

≤ m is minimal with āi ̸ |⌣
cl
C
(āj : j ≤ m′ & j ≠ i); w.l.o.g.,m = m′.

Let d̄ := (aj : j ≠ i & j < m). By assumption, āi |⌣
cl
C
d̄ and d̄āi |⌣

cl
C
ām. Then, by Lemma 3.11, we have āi |⌣

cl
C
d̄ām, which is

absurd. �

Definition 3.13. We say that a sequence (āi : i ∈ I) satisfying one of the above equivalent conditions is an independent
sequence over C .

Remark 3.14. Let (ai : i ∈ I) be a sequence of elements of M. There is a clash of terminology with the previous definition
of independence; more precisely, let J := {i ∈ I : ai /∈ cl(C)}; then, (ai : i ∈ I) is an independent sequence over C according
to |⌣

cl iff all the aj are pairwise distinct for j ∈ J , and the set

aj : j ∈ J


is independent over C according to cl. Hopefully, this

will not cause confusion.

3.1. Definable matroids

Definition 3.15. Let φ(x, ȳ) be an L-formula. We say that φ is x-narrow if, for every b̄ and every a, if M |= φ(a, b̄), then
a ∈ cl(b̄) (cf. Remark 3.42). We say that cl is definable if, for every A,

cl(A) =


φ(M, ā) : φ(x, ȳ) is x-narrow, ā ∈ An, n ∈ N


.

Proviso. For the rest of the section, cl is a definable matroid.

Remark 3.16. For every A and every σ ∈ Aut(M), σ(cl(A)) = cl(σ (A)).

Lemma 3.17. 1. |⌣
cl satisfies the Invariance axiom: if A |⌣

cl
B
C and ⟨A′, B′, C ′

⟩ ≡ ⟨A, B, C⟩, then A′
|⌣
cl
B′
C ′.

2. |⌣
cl satisfies the following stronger form of the Strong Finite Character axiom: if A ̸ |⌣

cl
C
B, then there exist finite tuples ā ⊆ A,

b̄ ⊆ B, and c̄ ⊆ C, and a formula φ(x̄, ȳ, z̄) without parameters, such that
• M |= φ(ā, b̄, c̄);
• if c̄ ′

⊆ C and M |= φ(ā′, b̄, c̄ ′), then ā′
̸ |⌣

cl
C
B.

3. For every ā, B, and C, if tp(ā/BC) is finitely satisfied in C, then ā |⌣
cl
C
B.

Proof. (1) By Remark 3.16.
(2) Assume that A ̸ |⌣

cl
C

B. Hence, there exists b̄ ∈ Bn independent over C , such that b̄ is not independent over AC . Hence,

there exist ā ⊂ A and c̄ ⊂ C finite tuples, such that, w.l.o.g., b1 ∈ cl(c̄āb̃), where b̃ := ⟨b2, . . . , bn⟩. Let α(x, x̃, ȳ, z̄) be an
x-narrow formula, such that M |= α(b1, b̃, c̄, ā). If ā′

⊂ M and c̄ ′
⊆ C satisfy α(b̄, c̄ ′, ā′), then ā′

̸ |⌣
cl
C
B.

(3) Follows as in [1, Remark 2.3]. �

Definition 3.18 ([1, Definition 1.1]). Let |⌣ be a preindependence relation onM.We say that |⌣ is an independence relation
on M if, moreover, it satisfies Invariance, Local Character, and the following.

Extension: If A |⌣C
B and D ⊇ B, then there exists A′

≡BC A such that A′
|⌣C

D.

Adler also defines the following axiom.

Existence: For any A, B, and C , there exists A′
≡C A such that A′

|⌣C
B.

Corollary 3.19. If |⌣
cl satisfies either the Extension or the Existence axiom, then it is an independence relation (and it satisfies the

Existence axiom).

Proof. See [1, Thm. 2.5]. �

Definition 3.20. The matroid cl satisfies Existence if the following holds.
For every a, B, and C , if a /∈ cl(B), then there exists a′

≡B a such that a′ /∈ cl(BC).

The following lemma will be quite useful in the following.

Lemma 3.21. T.f.a.e.:
1. cl satisfies Existence.
2. For every a, B, and C, ifΞ(a/B) ⊆ cl(BC), then a ∈ cl(B).
3. For every a, b̄, and c̄, if a /∈ cl(b̄), then there exists a′

≡b̄ a such that a′ /∈ cl(b̄c̄).
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4. For every a, b̄, and c̄, and every x-narrow formula ψ(x, ȳ, z̄), if M |= ψ(a′, b̄, c̄) for every a′
≡b̄ a, then a ∈ cl(b̄).

5. For every formula (without parameters) φ(x, ȳ) and every x-narrow formula ψ(x, ȳ, z̄), if M |= ∀ȳ ∃z̄ ∀x

φ(x, ȳ) →

ψ(x, ȳ, z̄)

, then φ is x-narrow.

6. For every a and B, if rkcl

Ξ(a/B)


is finite, then a ∈ cl(B).

7. For every a and B, if rkcl

Ξ(a/B)


< κ , then a ∈ cl(B).

8. |⌣
cl is an independence relation.

Proof. The only nontrivial fact is (5 ⇒ 4), which is proved by a compactness argument. �

Remark 3.22. If cl satisfies Existence, then acl A ⊆ cl A.

Lemma 3.23. Assume that cl(A) is an elementary substructure of M, for every A ⊂ M. Then, cl satisfies Existence, and therefore
|⌣
cl is an independence relation. Hence, if T has definable Skolem functions and cl extends acl, then cl satisfies Existence.

Proof. Let Ξ(a/B) ⊆ cl(BC). We want to prove that a ∈ cl(B). Let B′ and C ′ be elementary substructures of M, such that
B ⊆ B′

⊆ cl(B), B′C ⊆ C ′
⊆ cl(BC), |B′

| < κ , and |C ′
| < κ (B′ and C ′ exist by hypothesis on cl). By substituting B with B′

and C with C ′, w.l.o.g., we can assume that B ≼ C ≺ M. By saturation, there exist an x-narrow formula φ(x, ȳ, z̄), b̄ ⊂ B, and
c̄ ⊂ C , such that Ξ(a/B) ⊆ φ(M, b̄, c̄). Let p := tp(a/B), let q ∈ S1(C) be an heir of p, and let a′ be a realisation of q. Since
φ(x, b̄, c̄) ∈ q, there exists b̄′

∈ B such that φ(x, b̄, b̄′) ∈ p. Hence, a′
∈ cl(B); since a′

≡B a, a ∈ cl(B). �

Definition 3.24. The trivial matroid cl0 is given by cl0(X) = M for every X ⊆ M. The trivial matroid cl0 is a definable
matroid and satisfies Existence. It induces the trivial preindependence relation |⌣

0, such that A |⌣
0
B
C for every A, B, and C .

Notice that |⌣
0 is an independence relation.

Definition 3.25. We say that cl is an existential matroid if cl is a definable matroid, satisfies Existence, and is nontrivial
(i.e., different from cl0).

Notice that every existential matroid cl defines an independence relation |⌣
cl, and is uniquely determined by |⌣

cl

(Remark 3.7); however, not every independence relation is induced by some matroid.

Examples 3.26. 1. Given n ∈ N, theuniformmatroid of rank n is defined as follows: cln(X) := X , if |X | < n, orM if |X | ≥ n.
The uniform matroid cln is a definable matroid, but does not satisfy Existence in general (unless n = 0).

2. Define id(X) := X . Then, id is a definable matroid, but it does not satisfy Existence in general. The preindependence
relation induced by id is given by A |⌣

id
B
C iff A ∩ C ⊆ B.

Remark 3.27. Let M′ be another monster model of T . We can define an operator clM
′

on M′ in the following way:

clM
′

(X ′) :=


φ(M′, ā′) : φ(x, ȳ) x-narrow & ā′

⊂ X ′

.

Then, clM
′

is a definable matroid. If cl satisfies Existence, then clM
′

also satisfies Existence. We will call clM
′

the extension of
cl to M′.

Remark 3.28. Notice that the definitions of ‘‘definable’’ (3.15) and ‘‘existential’’ (3.25 and 3.20) make sense also for finitary
closure operators (and not only for matroids).

However, we will not need such more general definitions.

Proviso. For the remainder of this section, cl is an existential matroid.

Summarising, we have the following. |⌣
cl is an independence relation, satisfying the Strong Finite Character axiom. In

particular, if M is a pregeometric structure, then |⌣
aclis an independence relation.

3.2. Dimension

Definition 3.29. Given a set V ⊆ Mn, definable with parameters from A, the dimension of V (w.r.t. to the matroid cl) is
given by

dimcl(V ) := max

rkcl(b̄/A) : b̄ ∈ V


,

with dimcl(V ) := −∞ iff V = ∅. More generally, the dimension of a partial type p with parameters from A is given by

dimcl(p) := max

rkcl(b̄/A) : b̄ |= p


.

The following remark shows that the above notion is well posed; in its proof, it is important that cl satisfies Existence.

Remark 3.30. Let V be a type-definable subset of Mn. Then, dimcl(V ) ≤ n, and dimcl(V ) does not depend on the choice of
the parameters.
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Remark 3.31. For every d ≤ n ∈ N, the set of complete types in Sn(A) of dimcl greater or equal to d is closed (in the Stone
topology). That is, dimcl is continuous in the sense of [20, Section 17.b].
Remark 3.32. dimcl(Mn) = n. Moreover, dimcl is monotone; if U ⊆ V ⊆ Mn, then dimcl(U) ≤ dimcl(V ).
Lemma 3.33. Let p be a partial type over A. Then,

dimcl(p) := min

dimcl(V ) : V is A-definable & V ∈ p


.

Moreover, if p is a complete type, then, for every b̄ |= p, rkcl(b̄/A) = dimcl(p).
Proof. Let d := dimcl(p), e := min


dimcl(V ) : V is A-definable & V ∈ p


, and b̄ |= p be such that d = rkcl(b̄/A). Let V ∈ p

be such that dimcl(V ) = e; then, b̄ ∈ V , and therefore e ≥ rkcl(b̄/A) = d.
For the opposite inequality, first assume that p is a complete type. W.l.o.g., b̃ := ⟨b1, . . . , bd⟩ are cl-independent over A,

and therefore bi ∈ cl(Ab̃) for every i = d + 1, . . . , n. For every i ≤ n, let φi(x, ȳ, z̄) be an x-narrow formula such that
M |= φ(bi, b̃, ā) (where ā ⊂ A); define ψ(x̄, z̄) :=

n
i=1 φi(xi, x1, . . . , xd, z̄), and V := ψ(Mn, ā). Then, for every b̄′

∈ V ,
rkcl(b̄′/A) ≤ d, and therefore dimcl(V ) ≤ d. Moreover, b̄ ∈ V ; hence V ∈ p, and therefore e ≤ d.

For the general case when p is a partial type, let P be the set of complete types over A extending p. Then, by the previous
result on complete types, for every q ∈ P , there exists anA-definable setWq such thatWq ∈ q and dimcl(Wq) = dimcl(q) ≤ d.
By compactness, there exists V ∈ p such that V ⊆ W , whereW := Wq1 ∪ · · · ∪ Wql . Hence,

e ≤ dimcl(V ) ≤ dimcl(W ) ≤ max
i≤l


dimcl(Wi)


≤ d. �

Definition 3.34. Given p ∈ Sn(B) and q ∈ Sn(C), with B ⊆ C , we say that q is a nonforking extension of p (w.r.t. cl) if q
extends p and dimcl(q) = dimcl(p). We write q |⌣

cl
B
C if q is a nonforking extension of q�B.

Remark 3.35. Let B ⊆ C and q ∈ Sn(C). Then, q |⌣
cl
B
C iff, for some (for all) ā realising q, ā |⌣

cl
B
C .

Remark 3.36. Let p ∈ Sn(B) and B ⊆ C . Then, for every q ∈ Sn(C) extending p, dimcl(q) ≤ dimcl(p). Moreover, there exists
q ∈ Sn(C)which is a nonforking extension of p.
Lemma 3.37. Let |⌣

f be Shelah’s forking relation onM. Then, for every A, B, and C subsets ofM, if A |⌣
f
B
C, thenA |⌣

cl
B
C. In particular,

if K ≺ M, K ⊆ C, and q ∈ Sn(C), and q is either a heir or a coheir of q�K, then q |⌣
cl
K
C.

Proof. The fact that |⌣
f implies |⌣

cl is a particular case of [1, Remark 1.20]. For the case when q is a coheir of q �K, see also
Lemma 3.17(3). �
Corollary 3.38. Assume that T is supersimple and that p ∈ Sn(A) for some A ⊆ M. Then, SU(p) ≥ dimcl(p), where SU is the
SU-rank (see [27, Section 5.1]).
Remark 3.39. Given B ⊇ A, let Nn(B/A) be the set of all n-types over B that do not fork over A. Since |⌣

cl satisfies Strong Finite
Character (cf. Lemma 3.17(2)), Nn(B/A) is closed in Sn(B).
Lemma 3.40. For every complete type p, dimcl(p) is the maximum of the cardinalities n of chains of complete types p = q0 ⊂

q1 ⊂ · · · ⊂ qn, such that each qi+1 is a forking extension of qi.

Proof. Let A be the set of parameters of p, and b̄ |= p. Let d := dimcl(p); w.l.o.g., b̃ := ⟨b1, . . . , bd⟩ are independent over A.
For every i ≤ d, let Ai := Ab1 . . . bi, and qi := tp(b̄/Ai). Then, p = q0 ⊂ · · · ⊂ qd, and each qi+1 is a forking extension of qi.

Conversely, assume that p = q0 ⊂ · · · ⊂ qn, and that each qi+1 is a forking extension of qi.
Claim 1. For every i ≤ n, dimcl(qn−i) ≥ i; in particular, dimcl(p) ≥ n.

By induction on i. The case i = 0 is clear. Assume that we have proved the claim for i; we want to show that it holds for
i + 1. Since qn−i is a forking extension of qn−(i+1), dimcl(qn−i) < dimcl(qn−(i+1)), and we are done. �

Remark 3.41. Let V ⊆ Mn be nonempty and definable with parameters ā. Then, either dimcl(V ) = 0 = rkcl(V/ā), or
dimcl(V ) > 0 and rkcl(V ) ≥ κ .
Remark 3.42. A formula φ(x, ȳ) is x-narrow iff, for every b̄ ∈ Mn, dimclφ(M, b̄) ≤ 0.

Remark 3.43. Let φ(x, ȳ) be a formula without parameters, and ā ∈ Mn. Then, dimcl(φ(M, ā)) = 0 iff there exists an
x-narrow formula ψ(x, ȳ) such that ∀x


φ(x, ā) → ψ(x, ā)


. Therefore, define

Γφ(ȳ) :=

¬θ(ȳ) : θ(ȳ) formula without parameters s.t. ∀ā


θ(ā) → dimcl(φ(M, ā)) = 0


,

U1
φ :=


ā ∈ Mn

: dimcl(φ(M, ā)) = 1

.

Then, U1
φ =


ā ∈ Mn

: M |= Γφ(ā)

, and in particular U1

φ is type-definable (over the empty set).
More generally, let k ≤ m, x̄ := ⟨x1, . . . , xm⟩, and let φ(x̄, ȳ) be a formula without parameters. Define

U≥k
φ :=


ā ∈ Mn

: dimcl(φ(Mm, ā)) ≥ k

.

Then, U≥k
φ is type-definable.
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Lemma 3.44 (Fibre-Wise Dimension Inequalities). Let U ⊆ Mm1 , V ⊆ Mm2 , and F : U → V be definable, with parameters
from C. Let X ⊆ U and Y ⊆ V be type-definable, such that F(X) ⊆ Y . Define f := F � X : X → Y . For every b̄ ∈ Y , let
Xb̄ := f −1(b̄) ⊆ X, and m := dimcl(Y ).

1. If, for every b̄ ∈ Y , dimcl(Xb̄) ≤ n, then dimcl(X) ≤ m + n.
2. If f is surjective and, for every b̄ ∈ Y , dimcl(Xb̄) ≥ n, then dimcl(X) ≥ m + n.
3. If f is surjective, then dimcl(X) ≥ m.
4. If f is injective, then dimcl(X) ≤ m.
5. If f is bijective, then dimcl(X) = m.

Proof. (1) Assume, for contradiction, that dimcl(X) > m+ n. Let ā ∈ X be such that rkcl(ā/C) > m+ n, and b̄ := F(ā). Since
ā ∈ Xb̄, and Xb̄ is type-definable with parameters Cb̄, rkcl(ā/b̄C) ≤ n. Hence, by Remark 3.2, rkcl(ā/C) ≤ rkcl(āb̄/C) ≤ m+n,
which is absurd.

(2) Let b̄ ∈ Y be such that dimcl(b̄/C) = m. Let ā ∈ Xb̄ be such that dimcl(ā/b̄C) ≥ n. Then, by Remark 3.2,
rkcl(āb̄/C) ≥ m + n. However, since ā = F(b̄), ā ⊂ cl(b̄C), and therefore rkcl(b̄/C) = rkcl(āb̄/C) ≥ m + n.

(3) Follows from (2) applied to n = 0. The other assertions are clear. �

Remark 3.45. Let cl′ be another existential matroid on M. T.f.a.e.:

1. cl ⊆ cl′;
2. rkcl ≥ rkcl

′

;
3. dimcl

≥ dimcl′ on definable sets;
4. dimcl

≥ dimcl′ on complete types;
5. for every definable set X ⊆ M, if dimcl(X) = 0, then dimcl′(X) = 0.

T.f.a.e.:

1. cl = cl′;
2. rkcl = rkcl

′

;
3. dimcl

= dimcl′ on definable sets;
4. dimcl

= dimcl′ on complete types;
5. for every definable set X ⊆ M, dimcl(X) = 0 iff dimcl′(X) = 0.

We will show that, for many interesting theories, there is at most one existential matroid. Define TR-0 to be the theory of
rings without zero divisors, in the language of rings LR := (0, 1,+, ·).

Definition 3.46 ([10, 1.18]). If K expands a ring without zero divisors, let F : K4
→ K be the following function, definable

without parameters in the language LR:

⟨x1, x2, y1, y2⟩ →


t if y1 ≠ y2 & t · (y1 − y2) = x1 − x2;
0 if there is no such t.

Notice that F is well defined because, in a ring without zero divisors, if y1 ≠ y2, then, for every x, there exists at most one t
such that t · (y1 − y2) = x.

Lemma 3.47 ([10, 1.18]). Assume that T expands TR-0. Let A ⊆ M be definable. Then, dimcl(A) = 1 iff M = F(A4).

Proof. Assume for contradiction that dimcl(A) = 1, but there exists c ∈ M \ F(A4). Since c /∈ F(A4), the function
⟨x1, x2⟩ → c · x1 + x2 : A2

→ M is injective. Hence, by Lemma 3.44, dimcl(M) ≥ dimcl(A2) = 2, which is absurd.
Conversely, by Lemma 3.44 again, if F(A4) = M, then dim(A) = 1. �

Theorem 3.48. If T expands TR-0, then cl is the only existential matroid on M. If S is a definable subfield of M of dimension 1, then
S = M.

Proof. Let A ⊆ M be definable. By the previous lemma, dim(A) = 1 iff F(A4) = M. Since the same holds for any existential
matroid cl′ on M, we conclude that, for every definable set A ⊆ M, dimcl(A) = 0 iff dimcl′(A) = 0, and hence dimcl

= dimcl′ .
Given S a subfield of M, F(S4) = S. Hence, if dimcl(S) = 1, then S = M. �

Examples 3.49. 1. In the above theorem, we cannot drop the hypothesis that T expands TR-0. Let M be a set with an
equivalence relation E, such that E has infinitelymany equivalence classes, all infinite, and letM be amonster elementary
extension of ⟨M, E⟩. For every a ∈ M, let Ea be the equivalence class of a, and define cl(A) :=


a∈A Ea. Then, acl and cl

are two different existential matroids on M. The example can be improved, taking for instance a chain E1 ⊃ E2 . . . of
equivalence relations, such that each Ei-equivalence class is the union of infinitely many Ei+1-equivalence classes; each
equivalence relation will then induce a different existential matroid on M.
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2. In Theorem 3.48, we cannot even relax the hypothesis to ‘‘T expands the theory of a vector space’’. In fact, let F be an
ordered field, considered as a vector space over itself, in the language ⟨0, 1,+, <, λc⟩c∈F, and let T be its theory. Let T d

be the theory of dense pairs of models of T . [10, 5.8] show that T d has elimination of quantifiers, and acl is a matroid
on T d. However, as the reader can verify, the small closure Scl is another existential matroid on T d (cf. Section 8.4), and
it is different from acl.

Corollary 3.50. If M expands a field, then M must be a perfect field. In particular, the theory of separably closed (but
nonalgebraically closed) fields, and the theory of differentially closed fields of finite characteristic do not admit an existential
matroid.

Proof. Cf. [25, 1.6]. If M is not perfect, then Mp is a proper definable subfield of M, where p := char(M), and therefore
dimcl(Mp) = 0. However, the map x → xp is a bijection from M to Mp; therefore, dimcl(M) = 0, which is absurd. �

Corollary 3.51. Let cl′ be a nontrivial definable matroid on some monster model M′. Assume that M′ expands a model of TR-0.
Then, t.f.a.e.:

1. cl′ is an existential matroid;
2. for every formula (without quantifiers) φ(x, ȳ), φ is x-narrow (w.r.t. cl′) iff, for every b̄, F


(φ(M′, b̄)4


≠ M′.

Proof. (1 ⇒ 2) is clear.
(2 ⇒ 1) follows from Lemma 3.21(5). �

Lemma 3.52. Let K be a ring without zero divisors definable in M, of dimension n ≥ 1. Let F ⊆ K be a definable subring such
that F is a skew field. If dimcl(F) = n, then K = F.

Proof. Assume, for contradiction, that there exists c ∈ K \ F. Define h : F × F → K, h(x, y) := x + cy. Since c /∈ F and F is
a skew field, h is injective. Thus, 2n = dim(F2) ≤ dim(K) = n, a contradiction. �

Corollary 3.53. Let K ⊆ Mn be a definable field, such that dimcl(K) ≥ 1. Then, K is perfect.

Proof. Let p := charK, and let φ : K → K be the Frobenius automorphism φ(x) = xp. Since φ is injective, dimcl(Kp) =

dimcl(K), and therefore Kp
= K. �

The assumption that dimcl(K) ≥ 1 is necessary; nonperfect definable fields of dimension 0 can exist. For instance, let F
be a nonperfect field, P be an infinite set, and let K be the disjoint union of F and P , with the following dimension function
(cf. Section 4).

dim(X) = 1 iff X ∩ P is infinite, where X varies among the definable subsets of K.
Then, F is a nonperfect field definable in K and of dimension 0.

Definition 3.54. Let X ⊆ Kn and Y ⊆ Km be definable. Let g : X  Y be a definable application (i.e., a multi-valued partial
function), with graph G. For every x ∈ X , let g(x) := {y ∈ Y : ⟨x, y⟩ ∈ G} ⊆ Y . Such an application g is a Z-application if, for
every x ∈ X , dimclg(x) ≤ 0.

Remark 3.55. Let A ⊆ K, and let b ∈ K. Then, b ∈ cl(A) iff there exists a ∅-definable Z-application f : Kn  K and ā ∈ A,
such that b ∈ f (ā). Moreover, if c̄ ∈ Kn, then b ∈ cl(Ac̄) iff there exists an A-definable Z-application f : Kn

→ K, such that
b ∈ f (c̄).

Definition 3.56. We say that dimcl is definable if, for every d ∈ N and for every X definable subset of Mm
× Mn, the set

ā ∈ Mm
: dimcl(Xā) = d


is definable.

Lemma 3.57. T.f.a.e.:
1. dimcl is definable;
2. for every X definable subset of Mm

× M, the set X1,1 :=

ā ∈ Mm

: dimcl(Xā) = 1

is also definable;

3. for every k ≤ n, everym, and every X definable subset ofMm
×Mn, the set Xn,k :=


ā ∈ Mm

: dimcl(Xā) = k

is also definable,

with the same parameters as X.

Proof. (3 ⇒ 1 ⇒ 2) is obvious.
(2 ⇒ 1) We will prove by induction on n that, for every Y definable subset of Kn

× Km, the set Y n,≥k :=
ā ∈ Mm

: dimcl(Xā) ≥ k

is definable. The case k = 0 is clear. The case k = 1 follows from the assumption and the

observation that, for every Z definable subset of Kn, dimcl(Z) ≥ 1 iff dimcl(θ(Z)) ≥ 1 for some θ projection from Kn

onto a coordinate axis. The inductive step follows from the fact that

Xn,≥k
=
 n+m∏
n+m−1

(X)
n−1,≥k

∪

Xn+m−1,≥1n−1,≥k−1

.

(1 ⇒ 3) Let X ⊆ Kn+m be definable with parameters from A. Then, Xn,k is M-definable, by assumption. Moreover, by
Remark 3.43, Xn,k is type-definable over A, and therefore invariant under automorphisms that fix A point-wise. Hence, by
Beth’s definability theorem, Xn,k is definable over A. �
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Corollary 3.58. If T expands TR-0, then dimcl is definable.

Proof. By Lemmas 3.47 and 3.57(2). �

See Remark 14.5 for examples when dimcl is not definable.

Examples 3.59. 1. Let λ and η be ordinal numbers, such that λ is a power of ω (e.g., λ = 1, λ = ω, . . .). Let K be a monster
model, and assume that
• either K is superstable of Lascar U-rank η;
• or K is supersimple of SU-rank η;
• or K is superrosy of þ-rank η (see [11] for definitions).
Denote by R be corresponding rank in the various cases (U, SU, Uþ). Assume that η < m · λ for some m ∈ N. For every
a ∈ K and B ⊂ K, define a ∈ clλ(B) if R(a/B) < λ. It is easy to see that clλ is a closure operator on K satisfying Existence.
Assume now that η < 2λ; then, clλ is a matroid. Moreover, clλ is nontrivial iff there exists a unary type p such that
R(p) ≥ λ (which, in general, is a stronger condition than R(K) ≥ λ). Moreover, for every type q, R(q) = rkclλ(q) · λ+ ρ,
where ρ is some (unique) ordinal such that ρ < λ. However, clλ might not be definable.

2. Let λ be as above, and let G be a monster model of a superstable group, such that U(G) = λ. Define clλ as in (1). Then,
clλ is nontrivial, because there exists at least one generic type (i.e., a type of U-rank λ) [21, Corollary 5.2]. If X is a definable
subset ofG, then dimclλ(X) = 1 iff X is generic (that is, finitelymany bilateral translates of X coverG). By [21, Lemma 5.4],
and Lemma 3.57(2), clλ is a definable (and thus existential) matroid, with definable dimension.

3. LetKbe amonster differentially closed field, and p ≥ 0be its characteristic. If p = 0, thenK is superstable, andU(K) = ω;
hence, by the previous example, there exists a (unique) existentialmatroid cl onK. It is easy to see that, ifA is a differential
subfield of K and b ∈ K, then b ∈ cl(A) iff b is differential-algebraic over A (that is, iff b, db, d2b, . . . are algebraically
dependent over A); see [28,25, 2.25]. On the other hand, if p > 0, then there is no existential matroid on K, because K is
not perfect (Corollary 3.50).

3.3. Morley sequences

Most of the results of this subsection remain true for an arbitrary independence relation |⌣ instead of |⌣
cl.

Definition 3.60. Let C ⊆ B, p(x̄) ∈ Sn(B), and let ⟨I,≤⟩ be a linear order. A Morley sequence over C indexed by I in p is a
sequence (āi : i ∈ I) of tuples in Mn, such that (āi : i ∈ I) are order-indiscernible over B and independent over C , and every
āi realises p(x̄).
A Morley sequence over C is a Morley sequence over C in some p ∈ Sn(C). A Morley sequence in p is a Morley sequence over
B in p.

Lemma 3.61. Let ⟨I,≤⟩ be a linear order, with |I| < κ . Let p(x̄) ∈ Sn(C). Then, there exists a Morley sequence in p(x̄) indexed
by I. If, moreover, b̄ |⌣

cl
C
d̄, then there exists a Morley sequence (āi : i ∈ I) over C indexed by I in p(x̄), such that (b̄āi : i ∈ I) are

order-indiscernible over Cd̄ and, for every i ∈ I , b̄āi |⌣
cl
C
d̄(āj : i ≠ j ∈ I).

Proof. Let (x̄i : i ∈ I) be a sequence of n-tuples of variables. Consider the following set of C-formulae:

Γ1(x̄i : i ∈ I) :=


i∈I

p(x̄i) &

i∈I

x̄i |⌣
cl

C

(x̄j : j < i).

First, notice that, by Remark 3.39, Γ1 is a set of formulae. Consider the following set of C-formulae:

Γ2(x̄i : i ∈ I) := Γ1(x̄i : i ∈ I) & (x̄i : i ∈ I) are order-indiscernible over C .

By [1, 1.12], Γ2 is consistent.
We give an alternative proof of the above fact, which does not use the Erdös–Rado theorem.

Claim 1. Γ2 is consistent.

First, we prove that Γ1 is finitely satisfiable; hence, w.l.o.g., I = {0, . . . ,m} is finite. Let ā0 be any realisation of p(x̄). Let
ā1 ≡C ā0 be such that ā1 |⌣

cl
C
ā0, . . . , and let ām ≡C ā0 be such that ām |⌣

cl
C
ā0 . . . ām−1. Therefore, Γ1 is consistent, and thus,

by Ramsey’s theorem, Γ2 is also consistent.
Since |I| < κ , there exists a realisation (āi : i ∈ I) of Γ2. Then, by Lemma 3.12, (āi : i ∈ I) is a Morley sequence in p(x̄)

over C .
If, moreover, b̄ and d̄ satisfy b̄ |⌣

cl
C
d̄, let q(x̄, ȳ, z̄) be the extension of p(x̄) to S(Cb̄d̄) satisfying ȳ = b̄ and z̄ = d̄. Let

(āib̄d̄ : i ∈ I) be a Morley sequence in q(x̄, ȳ, z̄). By Lemma 3.11, for every i ∈ I , we have b̄āi |⌣
cl
C
d̄(āj : i ≠ j ∈ I). �

Definition 3.62. A type p ∈ Sn(A) is stationary if, for every B ⊇ A, there exists a unique q ∈ Sn(B) such that q is a nonforking
extension of p.

Remark 3.63. Let p ∈ Sn(A). If dimcl(p) = 0, then p is stationary iff p is realised in dcl(A).

Hence, unlike the stable case, if cl ≠ acl, then there are types over models which are nonstationary.
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Lemma 3.64. Let C ⊇ B and q ∈ Sn(C) be such that q |⌣
cl
B
C. Let (āi : i ∈ I) be a sequence of realisations of q independent over C.

Then, (āi : i ∈ I) is also independent over B. If, moreover, q is stationary, then the following hold.

1. (āi : i ∈ I) is a totally indiscernible set over C, and in particular it is a Morley sequence for q over B.
2. If (ā′

: i ∈ I) is another sequence of realisations of q independent over C, then (āi : i ∈ I) ≡C (ā′

i : i ∈ I).

Proof. Standard proof. More precisely, for every i ∈ I , let d̄i := (aj : i ≠ j ∈ I). By assumption, āi |⌣
cl
C
d̄i, and, since q |⌣

cl
B
C ,

āi |⌣
cl
B
C , and therefore āi |⌣

cl
B
d̄i, proving that (āi : i ∈ I) is independent over B.

Let us prove Statement (2). By compactness, w.l.o.g., I = {1, . . . ,m} is finite. Assume, for contradiction, that (ā : i ≤

m) ≢C (ā′
: i ≤ m); by induction onm, we can assume that (āi : i ≤ m− 1) ≡C (ā′

i : i ≤ m− 1), and therefore, w.l.o.g., that
āi = ā′

i for i = 1, . . . ,m − 1. However, since q is stationary, ām ≡C ā′
m, ām |⌣

cl
C
(āi : i ≤ m − 1), and ā′

m |⌣
cl
C
(āi : i ≤ m − 1),

we have that ām ≡C(āi:i≤m−1) ā′
m, which is absurd.

Finally, it remains to prove that the set (āi : i ∈ I) is totally indiscernible over C . If σ is any permutation of I , then
(āσ(i) : i ∈ I) is also a sequence of realisations of q independent over C , and therefore, by Statement (2), (āσ(i) : i ∈ I) ≡C
(āi : i ∈ I). �

Corollary 3.65. Assume that there is a definable linear ordering on M. Then, p ∈ Sn(A) is stationary iff p is realised in dcl(A).
Hence, if dimcl(p) > 0, every nonforking extension of p is nonstationary.

Proof. Assume that p is stationary, but, for contradiction, that dimcl(p) > 0. Then, there is a Morley sequence in p with at
least two elements ā0 and ā1. Since dimcl(p) > 0, ā0 ≠ ā1. By Lemma 3.64, tp(ā0ā1/A) = tp(ā1ā0/A), which is absurd. �

Contrast the above corollary to the case of stable theories, where instead every type has at least one stationary nonforking
extension.

Corollary 3.66. Let B ⊆ C and q ∈ Sn(C). Then, t.f.a.e.:

1. q |⌣
cl
B
C;

2. there exists an infinite sequence of realisations of q which are independent over B;
3. every sequence (āi : i ∈ I) of realisations of q which are independent over C are independent also over B;
4. there exists an infinite Morley sequence in q over B.

Proof. Cf. [1, 1.12–13].
(1 ⇒ 3) Let (āi : i ∈ I) be a sequence of realisations of q independent over C . For every i ∈ I , let d̄i := (āj : i ≠ j ∈ I). Since

āi |⌣C
d̄i and āi |⌣B

C , we have āi |⌣B
d̄i.

(3 ⇒ 4) Let (āi : i ∈ I) be an infinite Morley sequence in q over C; such a sequence exists by Lemma 3.61 (or by [1, 1.12]).
Then, (āi : i ∈ I) is independent also over B, and hence is a Morley sequence for q over B.

(4 ⇒ 2) is obvious.
(2 ⇒ 1) Chooseλ < κ a regular cardinal large enough. Let (ā′

i : i < ω) be a sequence of realisations of q independent over B.
By saturation, there exists a sequence (āi : i < λ) of realisations of q independent over B. By Local Character, and
since λ is regular, there exists α < λ such that āα |⌣

cl
Bd̄

C , where d̄ := (āi : i < α). Since, moreover, āα |⌣
cl
B
d̄, we

have āα |⌣
cl
B
C , and therefore q |⌣

cl
B
C . �

3.4. Local properties of dimension

In this subsection, we will show that the dimension of a set can be checked locally; what this means precisely will be
clear in Section 9, where the results given here will be applied to a ‘‘concrete’’ situation.

Definition 3.67. A quasi-ordered set ⟨I,≤⟩ is a directed set if every pair of elements of I has an upper bound.

Lemma 3.68. Let ⟨I,≤⟩ be a directed set, definable in M with parameters c̄. Then, for every ā ∈ I and d̄ ⊂ M there exists b̄ ∈ I
such that b̄ ≥ ā and d̄ā |⌣

cl
c̄
b̄.

Proof. Fix ā ∈ I and d̄ ⊂ M, and assume, for contradiction, that every b̄ ≥ ā satisfies d̄ā ̸ |⌣
cl
c̄
b̄.

W.l.o.g., c̄ = ∅. Let λ be a large enough cardinal; at the price of increasing κ if necessary, we may assume that λ < κ .
By Lemma 3.61, there exists a Morley sequence (d̄′

iā
′

i : i < λ) in tp(d̄ā/∅). Consider the following set of formulae over
ā′

i : i < λ

:

Λ(x̄) :=

x̄ ∈ I, x̄ ≥ ā′

i : i < λ

.

Since ⟨I,≤⟩ is a directed set,Λ is consistent; let b̄ ∈ I be a realisation ofΛ. By the Erdös–Rado theorem, there exists aMorley
sequence (d̄iāi : i < ω) in tp(d̄ā/∅), such that all the d̄iāi satisfy the same type q(x̄, ȳ) over b̄, and āi ≤ b̄ for every i < ω.
Therefore, by Corollary 3.66, q |⌣

cl b̄, and in particular ā0d̄0 |⌣
cl b̄. Since ā0d̄0 ≡ ād̄, there exists b̄′

≥ ā such that ā0d̄0b̄ ≡ ād̄b̄′,
so b̄′

|⌣ d̄ā and b̄′
≥ ā, a contradiction. �
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Lemma 3.69. Let X ⊆ Mn be definable with parameters c̄, and let

Ut̄

t̄∈I be a family of subsets of Mn, such that each Ut̄ is

definable with parameters t̄ c̄. Let d ≤ n, and assume that, for every ā ∈ X, there exists b̄ ∈ I such that ā ∈ Ub̄, ā |⌣
cl
c̄
b̄, and

dimcl(X ∩ Ub̄) ≤ d. Then, dimcl(X) ≤ d.

Proof. Assume, for contradiction, that dimcl(X) > d; let ā ∈ X be such that rkcl(ā/c̄) > d. Choose b̄ as in the hypothesis of
the lemma; then, rkcl(ā/b̄c̄) > d, which is absurd. �
Lemma 3.70. Let I ⊆ Mn be definable and let< be a definable linear ordering on I. Let


Xb̄


b̄∈I be a definable increasing family

of subsets of Km and X :=


b̄∈I Xb̄. Let d ≤ m, and assume that, for every b̄ ∈ I , dimcl(Xb̄) ≤ d. Then, dimcl(X) ≤ d.

Proof. Let c̄ be the parameters used to define I , <, and

Xb̄


b̄∈I . Let ā ∈ X be such that rkcl(ā/c̄) = dimcl(X). Let b̄ ∈ I be

such that ā ∈ Xb̄. Choose ā′, b̄′
⊂ M such that ā′b̄′

≡c̄ āb̄ and ā′b̄′
|⌣
cl
c̄
āb̄. W.l.o.g., b̄′

≥ b̄; hence, ā ∈ Xb̄′ and

d ≥ dimcl(Xb̄′) ≥ rkcl(ā/c̄b̄′) = rkcl(ā/c̄) = dimcl(X). �
We can extend the above lemma to directed families.

Lemma 3.71. Let ⟨I,≤⟩ be a definable directed set. Let

Xb̄


b̄∈I be a definable increasing family of subsets of Mm and let

X :=


b̄∈I Xb̄. Let d ≤ m, and assume that, for every b̄ ∈ I , dimcl(Xb̄) ≤ d. Then, dimcl(X) ≤ d.

Proof. W.l.o.g., ⟨I,≤⟩ and the family

Xb̄


b̄∈I are definable without parameters. Let ā ∈ X be such that rkcl(ā) = dimcl(X),

and let b̄0 ∈ I be such that a ∈ Xb̄0 . By Lemma 3.68, there exists b̄ ∈ I such that b̄ ≥ b̄0 and āb̄0 |⌣
cl b̄. Hence, ā ∈ Xb̄ and ā |⌣

cl b̄,
and therefore

d ≥ dimcl(Xb̄) ≥ rk(ā/b̄) = rk(ā) = dimcl(X). �

Remark 3.72. The above lemma is not true if

Xb̄


b̄∈I is a definable decreasing family of subsets of Mm, instead of increasing.

For instance, let K be a real closed field, cl = acl, I := (K<0
× K) ∪ {⟨0, 0⟩}; define ⟨x, y⟩ ≤ ⟨x′, y′

⟩ if x ≤ x′ and y = y′, or
x = 0. Let Ib1,b2 := {⟨x, y⟩ ∈ I : ⟨x, y⟩ ≥ ⟨b1, b2⟩}. Then, ⟨I,≤⟩ is a directed set, dimacl(I) = 2, but dimacl(Ib̄) ≤ 1 for every
b̄ ∈ I .

4. Matroids from dimensions

In [25], van den Dries gave a definition of dimension for definable sets; we will show that his approach is almost
equivalent to ours. Let K be a first-order structure.
Definition 4.1. A dimension function on K is a function d from K-definable sets to {−∞} ∪ N, such that, for allm ∈ N and
S, S1 and S2 definable subsets of Km, we have the following.
(Dim 1) d(S) = −∞ iff S = ∅, d({a}) = 0 for every a ∈ K, d(K) = 1.
(Dim 2) d(S1 ∪ S2) = max


d(S1), d(S2)


.

(Dim 3) d(Sσ ) = d(S) for every permutation σ of the coordinates of Km.
(Dim 4) Let U be a definable subset of Km+1, and, for i = 0, 1, let U(i) := {x ∈ Km

: d(Ux) = i}. Then, U(i) is definable with
the same parameters as U , and d(U ∩ π−1(U(i))) = d(U(i))+ i, i = 0, 1, where π := Πm+1

m .
Notice that the axiom (Dim 4) is slightly stronger that the original axiom in [25]; however, after expanding K by at most

|T | many constants, the situation in [25] can be reduced to ours.
Definition 4.2. Given a dimension function d on K, for every A ⊂ K and b ∈ K we define b ∈ cld(A) iff there exists X ⊆ K
definable with parameters in A, such that d(X) = 0 and b ∈ X .
Theorem 4.3. The operator cld (more precisely, the extension of cld to a monster model) is an existential matroid with definable
dimension. The dimension induced by cld is precisely d.

Conversely, if cl is an existential matroid with definable dimension, then dimcl is a dimension function, and cldim
cl

= cl.
Proof. The only nontrivial facts are that, if d is a dimension function, then cld is definable and satisfies the EP and the
Existence axiom.

(Definability) Let a ∈ cl(B). Let X ⊆ K be B-definable such that d(X) = 0 and a ∈ X . Let φ(x, b̄) be the B-formula
defining X . By (Dim 4), w.l.o.g., d(φ(K, ȳ) ≤ 0 for every ȳ.3 Hence, φ(x, ȳ) is an x-narrow formula.

(EP) Let a ∈ cl(Bc) \ cl(B). Assume, for contradiction, that c /∈ cl(Ba). Let X ⊆ K2 be B-definable, such that a ∈ Xc and
d(Xc) = 0. Let X ′ := X ∩ π−1(X(0)), where π := Π2

1 . By assumption, ⟨c, a⟩ ∈ X ′ and, by (Dim 4), dim(X ′) ≤ 1; w.l.o.g.,
X = X ′.

Let Z := {u ∈ K : d(Xu) = 1}. Since c ∈ Xa and c /∈ cl(Ba), a ∈ Z . Since a /∈ cl(B), d(Z) = 1. Hence, by (Dim 4) and
(Dim 3), d(X) = 2, which is absurd.

(Existence) Immediate from Lemma 3.21(5). �

3 Here it is important that in (Dim 4) we asked that the parameters of U(i) are the same as the parameters of U .
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5. Expansions

Remember thatM is amonstermodel of a completeL-theory T . We are interested in the behaviour of definablematroids
under expansions of M. In this section, we assume that cl = clM is a closure operator on the monster model M.

Definition 5.1. Given X ⊆ M, let the restriction clX : P (X) → P (X) and the relativisation clX : P (M) → P (M) of clM
be defined as clX (Y ) := clM(Y ) ∩ X and clX (Y ) := clM(XY ).

Notice that when M′
≼ M we have already introduced in Remark 3.27 the notation clM

′

for the ‘‘extension’’ of clM to M′;
this is not problematic, because the two notions coincide for existential matroids.

Remark 5.2. Given X ⊆ M, clX is a closure operator on X and clX is a closure operator on M. If, moreover, cl is a matroid,
then both clX and clX are matroids, A |⌣

clX
B
C iff A |⌣

cl
XB

C , and |⌣
clX is the restriction of |⌣

cl to the subsets of X .

In particular, for every X ⊆ M, the rank and the notion of independence coincide for clM and clX (but they are quite
different from the corresponding notions for clX!), and therefore we do not need to specify for example if the rank is taken
w.r.t. clM or w.r.t. clX .

Remark 5.3. Given B ⊂ M (with |B| < κ), let MB be the expansion of M with all constants from B, and consider clB as a
matroid on MB.

1. If clM is definable, then clB is also definable (see Remark 3.28).
2. If clM is a matroid, then clB is also a matroid.
3. If clM is definable and satisfies Existence, then clB satisfies Existence too.
4. If clM is an existential matroid, then clB is also an existential matroid, and dimclM and dimclB coincide (the definable sets

of M and of MB are the same).

Example 5.4. In the above remark, it is not true that, if clM is a definablematroid, and clB satisfies Existence, then clM satisfies
Existence. For instance, let B be any nonempty subset of M (of cardinality less than κ), and clM = cl1 (see Example 3.26);
then, clB = cl0 satisfies Existence, but clM does not.

Lemma 5.5. Let X ⊆ M. Let M′ be the expansion of M with a predicate P for X. Assume that M′ is a monster model, and denote
by cl′X the closure operator cl′X (Y ) := clM(XY ) on M′ (cl′X coincides with clX ).

1. If clM is definable, then cl′X is definable on M′.
2. If clM is a matroid, then cl′X is a matroid.

Proof. Let D ⊆ X be such that |D| < κ and clM(X) = clM(D).

1. b ∈ cl′X (A) iff b ∈ clM(AX) iff M |= φ(b, ā, c̄) for some x-narrow formula φ(x, ȳ, z̄), some ā ⊆ A and some c̄ ∈ Xn. Define
ψ(x, ȳ) := ∃z̄


P(z̄) & φ(x, ȳ, z̄)


. Notice that ψ is an L(P)-formula, and that, for every ā′

⊂ M, ψ(M′, ā′) ⊆ cl′X (ā
′).

2. Trivial. �

Remark 5.6. Let M, X and M′ be as in the above lemma. Let ⟨B, Y ⟩ ≺ ⟨M, X⟩; assume, moreover, that clM is a definable
closure operator on M. Then, (clB)Y = (clX )B; that is, for every A ⊆ B, B ∩ clY (A) = B ∩ clX (A).

Hence, in the above situation, inside B we do not need to distinguish between clX and clY .

Remark 5.7. Let cl be a definable matroid (not necessarily existential), and let X , Y , X∗, and Y ∗ be elementary substructures
of M, such that X ⊆ X∗

∩ Y and X∗
∪ Y ⊆ Y ∗. Let L2 be the expansion of L with a new unary predicate P , and consider

⟨Y , X⟩ and ⟨Y ∗, X∗
⟩ as L2-structures. Assume that (Y , X) ≼ (Y ∗, X∗). Then, X∗

|⌣
cl
X
Y .

Proof. Let x̄∗
⊂ X∗; it suffices to prove that x̄∗

|⌣
cl
X
Y . However, tpL(x∗/Y ) is finitely satisfied in X , and we are done. �

Assume that M expands a ring without zero divisors. Let M′ be an expansion of M to a larger language L′; assume that
M′ is also a monster model and that cl′ is an existential matroid on M′. We have seen that in this case cl′ is the unique
existential matroid on M′, and that, for every X definable subset of M′, dim′(X) = 0 iff F(X4) ≠ M′ (where dim′ is the
dimension induced by cl′). It is clear that cl′, in general, is not definable in M. However, the dimension function dim′ is
definable in M; hence, we can restrict the dimension function dim′ to the sets definable in M (with parameters), and get a
function dim.

Remark 5.8. Let M, M′, dim′, and dim be as above. Then, dim is a dimension function on M (i.e., it satisfies the axioms in
Definition 3.29). The matroid cl induces by dim is characterised by the following.

For every A and b, we have b ∈ cl(A) iff there exists X ⊆ M, definable in M with parameters from A, such that F(X4) ≠ M
and b ∈ X .

Corollary 5.9. Assume that M expands a ring without zero divisors. Let M′ be an expansion of M. If M′ is geometric, then M is
also geometric.

Compare the above corollary with [1, Corollary 2.38 and Example 2.40].
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6. Extension to imaginary elements

Again, M is a monster model of a complete theory T , and cl is an existential matroid on M. Let Meq be the set of imaginary
elements, and let T eq be the theory of Meq. Our aim is to extend the matroid cl to a closure operator cleq on Meq.

We will start with the definition of a ∈ cleq(B)when a is real and B is imaginary.

Definition 6.1. Let B be a set of imaginary elements (of cardinality less than κ), and let a be a real element. We say that
a ∈ cleq(B) iffΞ(a/B) has finite rkcl.

It is relatively easy to prove the following fact.

Remark 6.2 (Exchange Principle [13, 3.1]). The operator cleq satisfies the Exchange Principle for real points over imaginary
parameters. That is, for a and b real elements and C imaginary, if a ∈ cleq(bC) \ cleq(C), then b ∈ cleq(aC).

Recall thatMhas geometric elimination of imaginaries if every for imaginary element a there exists a real tuple b̄ such that
a and b̄ are interalgebraic. If M had geometric elimination of imaginaries, we could define a ∈ cleq(B) iff there exists a real
tuple c̄ such that a ∈ acleq(c̄) and c̄ ⊂ cleq(B). Without geometric elimination of imaginaries, the definition is substantially
more complicated; however, one can proceed from Remark 6.2 as in [13, Section 3] to define the desired extension cleq
(notice that [13] uses dim for what we would call rkcl).

If cl has definable dimension dimcl, then the definition of cleq is much simpler, and proceeds as follows. Let X ⊂ Mn

be definable, and let E be a definable equivalence relation on X . If the dimension of each equivalence class is constant e,
we define the dimension of the imaginary set X/E as dimcleq(X/E) := dimcl(X) − e. In the general case, let Xi :=
x ∈ X : dimcl(Ex) = i


(where Ex is the equivalence class of x); then each Xi is definable, and X = X0 ⊔ · · · ⊔ Xn; thus,

we define dimcleq(X/E) := maxi

dimcleq(Xi/E)


. It is easy to verify that dimcleq is the dimension function associated to cleq,

and therefore we can define cleq as

cleq(A) =


c ∈ Meq

: ∃X ⊂ MeqA-definable s.t. c ∈ X & dimcleq(X) = 0

.

In general, we can use cleq (or, better, the associated rank rkcl
eq
) to extend the independence relation |⌣

cl to imaginary
elements, setting A |⌣

cleq

C
B iff, for every finite subset A′ of A, rkcl

eq
(A′/BC) = rkcl

eq
(A′/C); it is then easy to verify that |⌣

cleqis an
independence relation onMeq extending |⌣

cl, and that the corresponding version of antireflexivity holds for it (cf. Remark 3.7).
When no danger of confusion arises, we will freely use cl to denote also cleq, and similarly for the related notions dimcleq ,
rkcl

eq
, and |⌣

cleq.
Notice that acleq is a closure operator on Meq extending acl; however, even when cl = acl, in general cleq ≠ acleq;

hence, when cl = acl , we will have to pay attention not to confuse the two possible extensions of cl to Meq (cf. the next
remark). On the other hand, by dcleq we will always denote the usual extension of dcl to an imaginary element: a ∈ dcl(b)
ifΞ(a/B) = {a}.

Remark 6.3. Assume that M is a pregeometric structure and that cl = acl. Given b̄ a real or imaginary tuple, we have
acleq(b̄) ⊆ cleq(b̄) and cleq(b̄) ∩ M = acleq(b̄) ∩ M. However, it is not true in general that cleq = acleq; more precisely,
cleq = acleq iff M is surgical [13]. For instance, if K is either a p-adic field, or an algebraically closed valued field, then K
is geometric but not surgical; its value group Γ has dimension 0 but it is infinite; therefore, there exists γ ∈ Γ such that
γ ∈ cleq(∅) \ acleq(∅).

7. Density

Again, M is a monster model of a complete theory T , and cl = clM is an existential matroid on M.

Definition 7.1. LetK ≼ M, and letX ⊆ K.We say thatX isdense inK if, for everyK-definable subsetU ofK, if dimcl(U) = 1,
then U ∩ X ≠ ∅. Recall that clK(X) := clM(X) ∩ K; we say that X is cl-closed in K if clK(X) = X .

Examples 7.2. 1. If K is geometric, then X is dense in K iff X intersects every infinite definable subset of K; in that case, our
definition of density coincides with the one in [16, Section 1].

2. If K is strongly minimal, then X is dense in K iff X is infinite.
3. If K is o-minimal and densely ordered, or if K is the field of p-adic numbers, then X is dense in K in the sense of the above

definition iff X is topologically dense in K (this is the motivation here and in [16] for the choice of the term ‘‘dense’’). See
also Section 9 for a generalisation of this example.

Remark 7.3. If X ⊂ K is dense (in K), and a ∈ X , then X \ {a} is also dense.

Proof. If U ⊆ K is definable and of dimension 1, then U \ {a} is also definable and of dimension 1. �

Lemma 7.4. Let X ⊆ K ≼ M. If X is cl-closed and dense in K, then X ≼ K.
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Proof. Tarski–Vaught test. Let A ⊆ K be definable, with parameters from A; we must show that A∩ X ≠ ∅. If dimcl(A) = 1,
this is true because X is dense in K. If dimcl(A) = 0, this is true because X is cl-closed in K. �

Lemma 7.5. Let K ≼ M be a saturated model of cardinality λ > |T |. Then, there exists X ⊂ K such that X is a cl-basis of K and
X is dense in K. Moreover, there exists F ≺ K such that F is cl-closed and dense in K and F is not equal to K.

Proof. Let (Ai)i<λ be an enumeration of all subsets of K which are definable (with parameters from K) and of dimension 1.
Build a cl-independent sequence (ai)i<λ inductively: for everyµ < λ, wemake sure that (ai)i<µ is cl-independent, and that,
for every i < µ, there exists j < µ such that aj ∈ Ai. Fixµ < λ, and assume that we have already defined ai for every i < µ;
we have to define aµ.

Claim 1. There exists aµ ∈ Aµ such that aµ is cl-independent from (ai)i<µ.

Otherwise, rkcl(Aµ) < λ, which is absurd.
Define aµ as in the above claim. By construction, X ′ := {ai : i < λ} is cl-independent and dense in K; we can complete it

to a cl-basis X , which is also dense.
Choose a ∈ X , let Y := X \ {a}, and let F := cl(Y ). Since X is dense, Y is also dense, and therefore F is dense in K.

Moreover, since X is a cl-basis, a /∈ F. Finally, by Lemma 7.4, F ≺ K. �

The proof of the above lemma shows the following stronger results.

Corollary 7.6. Let K be as in Lemma 7.5. Let c ∈ K \ cl(∅). Then, there exists F ≺ K cl-closed and dense in K, such that c /∈ F.

Given K |= T , and X , Y subsets of K, we say that X is dense in K w.r.t. Y if, for every subset U of K definable with
parameters from Y , if dimcl(U) = 1, then U ∩ X ≠ ∅.

Lemma 7.7. There exist F and K models of T , such that F ≺ K and F is a proper dense and cl-closed subset of K.

Proof. Notice that, if T has a saturated model of cardinality> |T |, we can apply Lemma 7.5. Otherwise, let K0 ≺ K1 ≺ · · ·

be an elementary chain of models of T , such that, for every n ∈ N, Kn+1 is

|Kn| + |T |

+-saturated, and let K :=


n∈N Kn.
Proceeding as in the proof of Lemma 7.5, for every n ∈ N we build a cl-independent set An of elements in Kn+1, such that
An ⊆ An+1 and An is dense in Kn+1 w.r.t. Kn. Let A :=


n An. Then, A is a cl-independent set of elements in K, which is

also dense in K. Conclude as in Lemma 7.5. �

8. Dense pairs

Let B be a real closed field and A be a proper dense subfield of A, such that A is also real closed.We call ⟨B,A⟩ a dense pair
of real closed fields, and we consider its theory, in the language of ordered fields expanded with a predicate for a (dense)
subfield. Robinson [22] proved that the theory of dense pairs of real closed fields is complete. In [26], van den Dries extended
Robinson’s theorem to o-minimal theories: if T is a complete o-minimal theory expanding the theory of (densely) ordered
Abelian groups, then the theory of dense elementary pairs of models of T is complete. Macintyre [16] introduced an abstract
notion of density, in the context of geometric theories, which for o-minimal theories specialises to the usual topological
notion, and proved various results; more recent work has been done in the context of so-called ‘‘lovely pairs’’ either of
geometric structures (see for instance [4,6]) or of simple structures (see [2], which extends Poizat’s work on ‘‘beautiful
pairs’’ of stable structures [19]).

In Section 7, we also proposed an abstract notion of density, which for geometric theories specialises to the one given by
Macintyre. However, it is not true in general that the theory of dense pairs of models of T is complete (unless T is geometric
and expands the theory of integral domains); the main result of this section is that if T expands the theory of integral
domains, and we add the additional condition that A is cl-closed in B, we obtain a complete theory, which we denote by T d

(if T is geometric, the additional condition is trivially true). We will also show that T d admits an existential matroid (the
small closure: Section 8.4), which will allow us to iterate the procedure, by considering dense pairs of models of T d itself,
and so on; see Section 13. For the exposition we will follow [26], using, however, some ideas from [6,2].

We assume that the structure M is a monster model of a complete theory T , and that cl = clM is an existential matroid
on M. For this section, we will write dim instead of dimcl, rk instead of rkcl, and |⌣ instead of |⌣

cl.

Definition 8.1. Let L2 be the expansion of L by a new unary predicate P . Let T 2 be the L2-expansion of T , whose models
are the pairs ⟨K, F⟩, with F ≺ K, F ≠ K, and F cl-closed in K.

Assume that dim is definable. Let T d be the L2-expansion of T saying that F is a proper, cl-closed and dense subset of K
(we need definability of dim to express in a first-order way that F is dense in K).

Notice that, by Lemma 7.4, T d extends T 2. Notice that, if cl = acl, then T 2 is the theory of pairs ⟨K, F⟩, with F ≺ K |= T ;
however, if cl ≠ acl, then there exists F ≺ M with F not cl-closed in M (take any F ≺ M such that |F| < κ).

Remark 8.2. The theory T d is consistent.

Proof. By Lemma 7.7. �
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Proviso. For the remainder of this section, we assume that T expands the theory of integral domains (and therefore dim is
definable), and that ⟨K, F⟩ |= T d.

Theorem 8.3. The theory T d is complete.

Definition 8.4. An L2-formula φ(x̄) is basic if it is of the form

∃ȳ

P(ȳ) & ψ(x̄, ȳ)


,

where ψ is an L-formula.4

Theorem 8.5. Each L2-formula ψ(x̄) is equivalent, modulo T d, to a Boolean combination of basic formulae, with the same
parameters as ψ .

Theorems 8.3 and 8.5 will be proved in Section 8.2.

8.1. Small sets

In this subsection, we will assume that ⟨K,A⟩ |= T 2.

Definition 8.6. A subset X of K is A-small if X ⊆ f (An), for some Z-application f : Kn  K which is definable in K (cf.
Definition 3.54).

Definition 8.7. Let X ⊆ Kn. We say that X isweakly dense in Kn if, for every definable U ⊆ Kn, if X ⊆ U , then dim(U) = n.

For instance, if cl = acl, then X is a weakly dense subset of K iff X is infinite.

Remark 8.8. If X is a weakly dense subset of K, then Xn is a weakly dense subset of Kn.

Lemma 8.9. If K |= T and K′
≼ K, then K′ is weakly dense in K.

Proof. W.l.o.g., the pair ⟨K,K′
⟩ is ω-saturated. Assume, for contradiction, that U ⊂ K is definable, with parameters b̄ ∈ Kn,

dim(U) = 0, and K′
⊆ U . By saturation, rk(K′) is infinite; let c̄ ∈ K′n+1 be independent elements. However, c̄ ∈ U , and

therefore c̄ ⊂ cl(b̄), which is absurd. �

The following result is the most delicate one; the use of Z-applications will allow us to mimic van den Dries’ proof.

Lemma 8.10 ([26, 1.1]). Let f : Kn+1  K be a Z-application A-definable in K, and let b0 ∈ K \ A. For every x ∈ K and
ȳ = ⟨y0, . . . , yn⟩ ∈ Kn+1, let p(ȳ, x) := y0 + y1x + · · · + ynxn. Then, there exists ā ∈ An+1 such that

p(ā, b0) /∈ f (An
× {b0}).

Proof. Otherwise, there is, for each ā ∈ An+1, a tuple c̄ ∈ An such that p(ā, b0) ∈ f (c̄, b0). W.l.o.g., f is definable
without parameters. For each ȳ ∈ Kn+1 and z̄ ∈ Kn, let D(ȳ, z̄) := {x ∈ K : p(ȳ, x) ∈ f (z̄, x)}. Define W :=

{⟨ȳ, z̄⟩ := dim(D(ȳ, z̄)) = 1}, and Y := Π2n+1
n+1 (W ). Since b0 /∈ A and A is cl-closed in K, we have An+1

⊆ Y . Since
Y is definable, Remark 8.8 and Lemma 8.9 imply that dim(Y ) = n + 1; therefore, dim(W ) ≥ n + 1. Let Z :=
z̄ ∈ Kn

: dim(W z̄) ≥ 1

. Since dim(W ) ≥ n + 1 and dim(Kn) = n, we have that dim(Z) ≥ n, and hence Z is nonempty.

Choose c̄ ∈ Z . Let ā ∈ Kn+1 be such that ⟨ā, c̄⟩ ∈ W and rk(ā/c̄) ≥ 1. By definition of W , dim(D(ā, c̄)) = 1; choose
b ∈ D(ā, c̄) such that rk(b/c̄ā) = 1. Define d := p(ā, b); remember that d ∈ f (c̄, b), and therefore d ∈ cl(c̄b). Let ā′

∈ Kn+1

be such that ā′
≡c̄bd ā and ā′

|⌣c̄bd
ā. Since d ∈ cl(c̄, b), we have ā′

|⌣c̄b
ā. Moreover, p(ā′, b) = d; therefore, p(ā− ā′, b) = 0.

If ā ≠ ā′, this implies that b is algebraic over ā − ā′, and therefore b ∈ cl(āā′), contradicting the fact that b /∈ cl(āc̄) and
ā′

|⌣c̄b
ā.

If instead ā = ā′, then ā′
|⌣c̄b

ā implies that ā ⊂ cl(c̄b), contradicting the facts that b /∈ cl(c̄ā) and rk(ā/c̄) ≥ 1. �

Notice that the hypothesis of the above lemma can be weakened to the following.
K |= T and A is a proper cl-closed and weakly dense subset of K.

Remark 8.11 ([26, 1.3]). Each A-small subset of K is a proper subset of K.

Proof. The same as [26, Corollary 1.3]. �

Remark 8.12. A finite union of A-small subsets of K is also A-small.

Lemma 8.13. Let B ⊆ K be a proper cl-closed subset. Then, B is co-dense in K; that is, K \ B is dense in K.

Proof. Since B is cl-closed in K, F(B4) ⊆ B (cf. Definition 3.46). Assume, for contradiction, that there exists U definable in K,
such that dim(U) = 1 and U ⊆ B. Then, F(U4) = K, and therefore F(B4) = K, contradicting the assumption that B ≠ K. �

4 Basic formulae were called ‘‘special’’ in [26].
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Lemma 8.14 ([26, Lemma 1.5]). If the pair ⟨K,A⟩ is λ-saturated, where λ is an infinite cardinal with |T | < λ, then dim(K/A) ≥

λ. Hence, if |X | < λ, then clK(AX) is co-dense in K.
Proof. The same as [26, Lemma 1.5]. Let E be a generating set for K/A, and suppose that |E| < λ. Let Γ (v) be the set of
L2-formulae of the form

∀y1 . . . ∀yn

P(ȳ) → v /∈ f (ȳ, e1, . . . , ep)


,

where f (ȳ, z̄) is a Z-application ∅-definable in K, and e1, . . . , ep are in E. By Remarks 8.11 and 8.12, Γ (v) is a consistent set
of formulae, with fewer than λ many parameters. By saturation, there exists b ∈ K realising the partial type Γ (v). Thus
b /∈ clK(AE), which is absurd. �

Notice that, in the original [26, Lemma 1.5], if T expands RCF, then van den Dries’ assumption that A is dense in B is
superfluous; density is used if, however, T expands only the theory of ordered Abelian groups.

8.2. Proof of Theorems 8.3 and 8.5

The proof is similar to the ones in [6,2]; the following definition is a variant of the ones they use.
Definition 8.15. Let ⟨B,A⟩ |= T 2 and C ⊆ B. Let c̄ be a tuple of elements from Beq; the P-type of c̄ , denoted by P-tp(c̄), is
the information which tells us which members of c̄ are in A (notice that the elements in c̄ are real or imaginary, but only
real elements can be in A). We say that c̄ is P-independent if c̄ |⌣A∩c̄

A (where, again, only the real elements of c̄ can be in
A ∩ c̄).
Notation 8.16. We will use a superscript 1 to denote model-theoretic notions for L, and a superscript 2 to denote those
notions for L2; for instance, we will write a ≡

1
C a′ if the L-types of a and a′ over C are the same, and a ≡

2
C a′ if the L2-types

of a and a′ over C are the same; similarly, acl2 will denote the T 2-algebraic closure.
Both theorems are immediate consequences of the following proposition.
Proposition 8.17. Let ⟨B,A⟩ and ⟨B′,A′

⟩ be models of T d. Let c̄ be a (possibly infinite) P-independent tuple in Beq, and let c̄ ′ be
a P-independent tuple in (B′)

eq of the same length and the same sorts. If c̄ ≡
1 c̄ ′ and P-tp(c̄) = P-tp(c̄ ′), then c̄ ≡

2 c̄ ′.
Proof. Back-and-forth argument. Let λ be a cardinal such that |T | + |c̄| < λ < κ . W.l.o.g., we can assume that both ⟨B,A⟩

and ⟨B′,A′
⟩ are λ-saturated. Let ē (resp. ē′) be the subtuple of c̄ (resp. of c̄ ′) of nonreal elements. Let

Γ :=

f : c̃ → c̃ ′

: c̄ ⊂ c̃ ⊂ Beq, c̄ ′
⊂ c̃ ′

⊂ (B′)
eq
,

c̃ & c̃ ′ of the same length less than λ and of the same sorts,
with all nonreal elements of c̃ in ē,
f is a bijection,

c̃ & c̃ ′ are P-independent, c̃ ≡
1 c̃ ′, P-tp(c̃) = P-tp(c̃ ′)


.

We want to prove that Γ has the back-and-forth property. So, let f : c̃ → c̃ ′ be in Γ , and let d ∈ B \ c̄; we want to find
g ∈ Γ such that g extends f and d is in the domain of g . W.l.o.g., c̃ = c̄ and c̃ ′

= c̄ ′. Let ā := c̄ ∩ A, and let ā′ := c̄ ′
∩ A′.

Notice that f (ā) = ā′ and that A ∩ cl(c̄) = A ∩ cl(ā) =: clA(ā), and similarly for c̄ ′. We distinguish some cases.
Case 1:: d ∈ A∩clB(c̄) = clA(ā). Notice that c̄d |⌣ād

A, and therefore c̄d is P-independent. There is a x-narrow formulaφ(x, ȳ)

such that B |= φ(d, ā). Choose d′
∈ A′ such that c̄d ≡

1 c̄ ′d′; therefore, B′
|= φ(d′, ā′); hence, d′

∈ clB
′

(ā′) ⊂ A′, and thus
c̄ ′d′ is also P-independent and has the same P-type as c̄d. Thus, we can extend f to c̄d setting g(d) := d′.
Case 2:: d ∈ A \ clB(c̄) = A \ clA(ā). Since c̄ |⌣ā

A and c̄ ⊂ A, we have c̄ |⌣ād
A, and therefore c̄d is P-independent. Let

q(x) := tp1(d/c̄), and let q′ := f (q) ∈ S11(c̄
′). Notice that q |⌣ā

c̄ (because d |⌣ā
c̄), and therefore q′

|⌣ā′
c̄ ′. Since A′ is dense in

B′ and ⟨B′,A′
⟩ is λ-saturated, there exists d′

∈ A′ realising q′. It is now easy to see that c̄ ′d′ is P-independent, and that we
can extend f to c̄d by setting g(d) := d′.
Case 3:: d ∈ clB(c̄A) \ A. Let ā0 ∈ An be such that d ∈ clB(b̄ā0) (ā0 exists because cl is finitary). By applying n times the
cases 1 or 2, we can extend f to f ′

∈ Γ such that ā0 is a subset of the domain of f ′. By substituting f with f ′, we are reduced
to the case that d ∈ clB(c̄) \ A. Since c̄ |⌣ā

A and d ∈ clB(c̄), we have c̄d |⌣ā
A, and hence c̄d is P-independent. Let d′

∈ B′ be
such that d′c̄ ′

≡
1 dc̄. For the same reason as above, c̄ ′d′ is also P-independent. It remains to show that c̄d and c̄ ′d′ have the

same P-type, that is, that d′ /∈ A′. If, for contradiction, d′
∈ A′, then d′

∈ clB
′

(c̄ ′)∩ A′
= clA

′

(ā′); therefore, there would be a
x-narrow-formula witnessing it, and thus d ∈ clB(ā) ⊆ A, which is absurd.
Case 4:: d /∈ clB(c̄A). Let ā0 ⊂ Abe of cardinality less thanλ such that d |⌣ā0 ā

A (ā0 exists because |⌣ satisfies Local Character).
By applying cases 1 and 2 sufficiently many times, we can extend f to f ′

∈ Γ such that ā0 is contained in the domain of f ′;
thus, w.l.o.g., d |⌣ā

A. Let d′
∈ A′ be such that d′c̄ ′

≡
1 dc̄; moreover, by Lemma 8.14, we can also assume that d′

|⌣ā′
A′. We

need only to show that d′ /∈ A′. Assume, for contradiction, that d′
∈ A′ and d′

|⌣ā′
A′; then, d′

|⌣ā′
d′, thus d′

∈ clB
′

(ā′), and
hence d ∈ clB(ā), which is absurd. �
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8.3. Additional facts

Reasoning as in [26, 2.6–2.9], from Theorems 8.3 and 8.5, and Proposition 8.17, we can deduce the following facts. We are
still assuming that T expands an integral domain, and we are still using Notation 8.16. To simplify the statements of various
results, we also assume that T is model-complete.

Corollary 8.18 ([26, 2.6]). Let ⟨B,A⟩ be a model of T d. Suppose that Y ⊆ Bn is A0-definable in ⟨B,A⟩, for some A0 ⊂ A. Then
Y ∩ An is A0-definable in A.

Corollary 8.19 ([26, 2.7]). Let ⟨B,A⟩ and ⟨B′,A′
⟩ be models of T d, such that ⟨B′,A′

⟩ ⊆ ⟨B,A⟩ and B′ and A are cl-independent
over A′. Then, ⟨B′,A′

⟩ ≼ ⟨B,A⟩. In particular, if A ≺ B′
≼ B, with A ≠ B′, then ⟨B′,A⟩ ≼ ⟨B,A⟩.

Corollary 8.20 ([26, 2.8]). Let A ⊆ B ⊂ M be substructures. Assume that ⟨B, A⟩ have extensions ⟨B1,A1⟩ |= T d and
⟨B2,A2⟩ |= T d, such that B |⌣A

Ak and B ∩ Ak = A, k = 1, 2. Then, ⟨B1,A1⟩ ≡
2
B ⟨B2,A2⟩. More generally, for every ā1 ∈ (A1)

n

and ā2 ∈ (A2)
n, if ā1 ≡

1
B ā2, then ā1 ≡

2
B ā2.

Notice that the hypothesis of the above corollary implies that A is cl-closed (but not necessarily dense) in B.

Proof. Let c̄k := Bāk. Notice that c̄1 and c̄2 have the same P-type, they are both P-independent, and c̄1 ≡
1 c̄2; the conclusion

follows from Proposition 8.17. �

Corollary 8.21 ([26, 2.9]). Let ⟨B1,A1⟩ |= T d and ⟨B2,A2⟩ |= T d, and let A be a common subset of A1 and A2. Suppose that
b1 ∈ B1 \ A1 and b2 ∈ B2 \ A2 satisfy b1 ≡

1
A b2. Then, b1 ≡

2
A b2.

Proof. Let c̄i := biAi, i = 1, 2. By assumption, c̄1 ≡
1 c̄2, they have the same P-type, and they are both P-independent. The

conclusion follows from Proposition 8.17. �

For the remainder of this section, we will assume that ⟨B,A⟩ is a model of T d, and that λ is a cardinal number such that
κ > λ > |T | + |B|.

Lemma 8.22 ([26, Theorem 2]). Let b̄ ⊂ B be P-independent. Given a set Y ⊂ An, t.f.a.e.:

1. Y is T 2-definable over b̄;
2. Y = Z ∩ An for some set Z ⊆ Bn that is T -definable over b̄.

Proof. (1 ⇒ 2) follows from compactness and the fact that the L2-type over b̄ of elements from A is determined by their
P-type (cf. the proof of [26, Theorem 2]). (2 ⇒ 1) is obvious. �

Lemma 8.23 ([26, 3.1]). The structure A is T 2-algebraically closed in ⟨B,A⟩.

Proof. As in [26, 3.1]. Let b ∈ B\A. Let ⟨B∗,A∗
⟩ ≽ ⟨B,A⟩ be amonster model, and let clB

∗

be the extension of cl to B∗. Since
clB

∗

is existential, and b /∈ clB
∗

(A), there exist infinitely many distinct b′
∈ B∗ such that b ≡

1
A b′. By Corollary 8.21, b ≡

2
A b′.

Thus, b is not T 2-A-algebraic in ⟨B∗,A∗
⟩, and therefore not T 2-A-algebraic in ⟨B,A⟩. �

Lemma 8.24 ([26, 3.2]). Let A0 ⊆ A be T-algebraically closed (resp., T -definably closed). Then A0 is T 2-algebraically closed (T 2-
definably closed).

Proof. Assume that A0 is T -algebraically closed. Let c ∈ acl2(A0), and let C := {c1, . . . , cn} be the set of L2-conjugates of
c/A0. By definition, C is A0-definable in ⟨B,A⟩, and, by the above Lemma, C ⊂ A. Hence, by Corollary 8.18, C is A0-definable
in A. The case when A0 is T -definably closed is similar. �

Lemma 8.25. Assume that ⟨B,A⟩ is a λ-saturated model of T d. Let D ⊂ B be such that |D| < λ, and let c ∈ B \ cl(D). Define
C :=


c ′

∈ B : c ′
≡

1
D c


∩ A. Then, |C | ≥ λ.

Proof. For every µ < λ, consider the following partial L2-type over D:

p(xi : i < µ) :=


i

xi ≡
1
D c

&


i

P(xi)

&


i<j

xi ≠ xj

.

Claim 1. The type p is consistent.

If not, there exist d̄ ⊂ D, b̄ ⊂ B, and φ(x, d̄) ∈ tp1(c/D), such that φ(B, d̄) \ A = b̄. Let X := φ(B, d̄) \ b̄; notice
that X is definable in B, and that X ⊆ A. Hence, since A is co-dense in B, we conclude that dim(X) ≤ 0, and therefore
dim(φ(B, d̄)) ≤ 0. Thus, c ∈ clB(d̄) ⊆ clB(D), which is absurd.

Thus, p is satisfied in ⟨B,A⟩, and the conclusion follows. �

Proposition 8.26 ([26, 3.3]). Let b̄ ⊂ B be P-independent. Then, dcl2(b̄) = dcl1(b̄), and similarly for the algebraic closure. Let
c ∈ Beq (i.e., c is an imaginary element for the structure B). Then, c ∈ dcl2(b̄) iff c ∈ dcl1(b̄), and similarly for the algebraic
closure.
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Sketch of Proof. W.l.o.g., we can assume that ⟨B,A⟩ is ω-saturated and that b̄ has finite length. Let c ∈ B be such that
c ∈ acl2(b̄). We want to prove that c ∈ acl1(b̄).

If b̄ ⊆ A, the conclusion follows from Lemma 8.24. Otherwise, let B1 := clB(Ab̄); by Corollary 8.19, ⟨B1,A⟩ ≼ ⟨B,A⟩,
and in particular B2 is T 2-algebraically closed in ⟨B,A⟩, and therefore c ∈ B1

eq. Let n ≥ 0 be minimal such that there exist
ā ∈ An with c ∈ clB(b̄ā).

Claim 1. c ∈ clB(b̄), i.e. n = 0.

If n > 0, by substituting b̄ with b̄a1 . . . an−1, and proceeding by induction on n, we can reduce to the case n = 1; let
a := a1. Consider the following partial L-type over b̄a:

q(x) := (x ≡
1
b̄ a) & (x |⌣

b̄

a).

Since |⌣ satisfies Existence, q is consistent. Let d ∈ B be any realisation of q. Since d |⌣b̄
a, we conclude that either d /∈ clB(b̄a)

or d ∈ clB(b̄). However, the latter cannot happen, since d ≡
1
b̄
a /∈ clB(b̄); thus, d /∈ clB(b̄a), and therefore dim(q) = 1. Hence,

since A is dense in B and ⟨B,A⟩ isω-saturated, there exists a′
∈ A satisfying q. Reasoning in the sameway, we can show that

there exists a Morley sequence (a′

2, a
′

3, a
′

4, . . .) in q contained in A. By Corollary 8.20, a′

i ≡
2
b̄
a for every i. Let c1, c2, . . . , cm

be all the L2-conjugates of c over b̄ (there are finitely many of them), and let φ(x, y, z̄) be an x-narrow L-formula without
parameters such that B |= φ(c, a, b̄).

The L-formula (in y, with parameters in b̄c1 . . . cm)


i φ(ci, y, b̄) is equivalent to an L2-formula in y with parameters b̄;
hence, every a′

i satisfies it (because a
′

i ≡
2
b̄
a). Hence, w.l.o.g., c1 ∈ clB(b̄a′

2)∩ clB(b̄a′

3) = clB(b̄) (because a′

2 |⌣b̄
a′

3). Therefore,
c ∈ clB(b̄).

It remains to show that c ∈ acl1(b̄). Let c2 ∈ Beq be such that c2 ≡
1
b̄
c . SinceB isω-saturated, it suffices to prove that there

are only finitely many such c2. Since c ∈ acl2(b̄), it suffices to prove that c2 ≡
2
b̄
c . Let b̄1 := b̄c , b̄2 := b̄c2, and d̄ := b̄ ∩ A. By

assumption, b̄1 ≡
1 b̄2. By Claim 1,we have b̄1 ⊆ clB(b̄), and therefore, since b̄ |⌣d̄

A, b̄1 is P-independent. Claim 1 also implies
that b̄2 ⊆ clB(b̄), and hence b̄2 is also P-independent. It remains to show that b̄1 and b̄2 have the same P-type. Assume for
example that c ∈ A. Since b̄ |⌣d̄

A, we have that c ∈ clB(d̄), and therefore c2 ∈ clB(d̄) = clA(d̄) ⊆ A.
The other assertions are proved in a similar way. �

8.4. The small closure

We will are still assuming that T expands an integral domain. Let M∗ := ⟨B∗,A∗
⟩ be a κ-saturated and strongly

κ-homogeneous monster model of T d, and let ⟨B,A⟩ ≺ M∗, with |B| < κ . Let clB
∗

be the extension of cl to B∗, and denote
by rk the corresponding rank. Notice that rk(B∗/A∗) ≥ κ .

Definition 8.27. For every X ⊆ B∗ we define the small closure of X as

Scl(X) := clB
∗

(XA∗).

For lovely pairs of geometric structures (e.g., dense pairs of o-minimal structures), the small closure was already defined
in [4, Def. 4.5].

Remark 8.28. The matroid Scl is a definable matroid (on M∗).

Proof. Notice that Scl coincides with the operator (clB
∗

)A∗ in Lemma 5.5. �

Notice that we can apply Remark 5.6, an obtain that SclB = (clB)A; that is, we can ‘‘compute’’ the small closure of a subset
of B inside B by using A instead of A∗.

We want to prove that Scl is existential; we will need a preliminary lemma.

Lemma 8.29. Let b ∈ B∗
\ A∗. Define M∗

b the expansion of M∗ with a constant for b, and Sclb(X) := Scl(bX) = clB
∗

(XA∗b).
Then, Sclb is an existential matroid on M∗

b .

Proof. That Sclb is a definable matroid follows from Lemma 5.5, applied to Scl. Let X ⊆ M∗, and let Y := Sclb(X).

Claim 1. Y ≺ M∗ (as an L2-structure).

By Lemma 7.4, Y is an elementary L-substructure of B∗. Corollary 8.19 applied to B′ := Y implies the claim.
The lemma then follows from the above claim and Lemma 3.23; nontriviality follows from the fact that rk(B∗/A∗)

≥ κ . �

Lemma 8.30. The matroid Scl is an existential matroid (on M∗).
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Proof. The only thing that needs proving is Existence. Define Ξ 2(a/C) as the set of conjugates of a over C in M∗. Assume
that Ξ 2(a/C) ⊆ Scl(CD). We want to prove that a ∈ Scl(C). By Lemma 8.14, we can choose b and b′

∈ B∗ which are
clB

∗

-independent over A∗C . By applying the previous lemma to Sclb and Sclb′ , we see that

a ∈ Sclb(C) ∩ Sclb′(C) = clB
∗

(A∗Cb) ∩ clB
∗

(A∗Cb′) = clB
∗

(A∗C) = Scl(C). �

Hence, we can define the dimension induced by Scl, and denote it by Sdim.
Notice that, by Theorem 3.48, Scl is the only existential matroid on T d.

Lemma 8.31. Let X ⊆ Bn be definable in B. Then Sdim(X) = dim(X).

Proof. From clB
∗

⊆ Scl it follows immediately that Sdim(X) ≤ dim(X). For the opposite inequality, we proceed by induction
on k := dim(X). Assume, for contradiction, that Sdim(X) < k. W.l.o.g., dim(Πn

k (X)) = k; therefore, w.l.o.g., k = n. If
k = 1, then Sdim(X) = 0, and therefore F(X4) ≠ B, contradicting dim(X) = 1. For the inductive step, assume that
k = n > 1, and let U := {a ∈ Bn

: dim(Xa) = 1}. Notice that U is definable in B, and therefore, by inductive hypothesis,
Sdim(U) = dim(U) = n − 1. By the case k = 1, for every a ∈ Bn−1, dim(Xa) = Sdim(Xa), and therefore Sdim(Xa) = 1 for
every a ∈ U . Thus, Sdim(X) = n. �

Definition 8.32. Let X ⊆ (B∗)n be definable in ⟨B∗,A∗
⟩. We say that X is small if Sdim(X) = 0. Let Y ⊆ Bn be definable in

⟨B,A⟩. We say that Y is small if Sdim(Y ∗) = 0, where Y ∗ is the interpretation of Y inside ⟨B∗,A∗
⟩.

Notice that, if X ⊂ Bn is A-small (in the sense of Definition 8.6), then X is also small in the above sense. The next lemma
shows that the converse is also true.

Lemma 8.33. Let ⟨B,A⟩ ≼ ⟨B∗,A∗
⟩ and X ⊆ Bn be definable in ⟨B,A⟩. Let X∗ be the interpretation of X inside ⟨B∗,A∗

⟩. Let
c̄ ∈ Bk be the parameters of definition of X. T.f.a.e.:

1. X is small;
2. X∗ is small;
3. X∗

⊆ Scl(b̄) for some finite tuple b̄ ⊂ B∗;
4. X∗

⊆ Scl(c̄);
5. X∗

⊆ clB
∗

(c̄A∗);
6. X∗ is A∗-small; that is, there exists a Z-application f ∗

: B∗m  B∗n, definable in B∗, such that f ∗(A∗m) ⊇ X∗;
7. X is A-small; that is, there exists a Z-application f : Bm  Bn, definable in B (with parameters c̄), such that f (Am) ⊇ X;
8. there exists a Z-application g∗

: B∗m+k  B∗n, definable in B∗ without parameters, such that g∗

A∗m

× {c̄}


⊇ X∗;
9. there exists a Z-application g : Bm+k  Bn, definable in B without parameters, such that f (Am

× {c̄}) ⊇ X.

Proof. The only nontrivial implication is (5 ⇒ 7), which is proved by a compactness argument using Remark 3.55. �

Conjecture 8.34 ([26, 3.6]). Let f : An
→ A be T 2-definable with parameters b̄. Let ā ∈ Am be such that b̄ |⌣ā

A and
dcl1(b̄ā) ∩ A = dcl1(ā). Then, f is given piecewise by functions definable in A with parameters ā.

Lemma 8.35 ([6, 6.1.3]). Let f : An
→ B be T 2-definable with parameters b̄. Assume that b̄ is P-independent. Then, there exists

g : Bn
→ B which is T -definable with parameters b̄, and such that f = g � An.

Proof. Let ⟨B∗,A∗
⟩ be an elementary extension of ⟨B,A⟩ and a∗

∈ (A∗)n. By Proposition 8.26, there exists a function
gi : Bn

→ B which is T -definable with parameters b̄, such that f (a) = gi(a). By compactness, finitely many gi will suffice.
The conclusion then follows from Lemma 8.22. �

Proposition 8.36 ([26, 3.5]). Let b̄ ∈ Bk and ā ∈ Bk′ be such that b̄ |⌣ā
A and b̄ ∩ A ⊆ ā. Let X ⊆ Beq be T-definable with

parameters b̄, such that dim(X) = d. Let Y ⊆ X be T 2-definable, with parameters b̄. Then, there exist S ⊂ X which is T 2-definable
with parameters b̄, and Z ⊆ X which is T -definable with parameters b̄ā, such that Z ∆ Y ⊆ S and Sdim(S) < d.

In particular, if dim(X) = 0, then every T 2-definable subset of X is already T-definable.

Proof. The proof is a variant of Beth’s definability theorem, using Proposition 8.17. W.l.o.g., ⟨B,A⟩ is λ-saturated, for some
cardinal λ such that |T | < λ < κ .

Let W :=

p ∈ S2X (āb̄) : Sdim(p) = d


. Notice that W is a closed subset of S2X (āb̄) (the Stone space of T 2-types over āb̄

containing the formula ‘‘x̄ ∈ X ’’). Let θ : S2X (āb̄) → S1X (āb̄) be the restriction map; notice that θ is continuous, and therefore
V := θ(W ) is compact and hence closed in S1X (āb̄). Let ρ := θ � W .

Claim 1. The map ρ is injective (and therefore ρ is a homeomorphism between W and V).
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We have to prove that, for every c̄ and c̄ ′
∈ X , if Srk(c̄/āb̄) = Srk(c̄ ′/āb̄) = d and c̄ ≡

1
āb̄

c̄ ′, then c̄ ≡
2
āb̄

c̄ ′. Let d̄ := āb̄c̄
and d̄′ := āb̄c̄ ′. By Proposition 8.17, it suffices to prove that d̄ and d̄′ are both P-independent and have the same P-type. Since
Srk(c̄/āb̄) = d and c̄ ∈ X , we have that Srk(c̄/āb̄) = rk(c̄/āb̄), which is equivalent to c̄ |⌣āb̄

A, and hence (since b̄ |⌣ā
A)

d̄ |⌣ā
A, that is d̄ is P-independent, and similarly for d̄′. It remains to show that d̄ and d̄′ have the same P-type. Let di ∈ A; we

have to prove that d′

i ∈ A. Since d̄ |⌣ā
A, we have di ∈ clB

∗

(ā), and hence d′

i ∈ clB(ā′) ⊆ A.
Let U := S2Y (āb̄)∩W ; since Y is definable, U is clopen inW , and since ρ is a homeomorphism, ρ(U) is clopen in V . Hence,

there exists Z subset of X , such that Z is T -definable over āb̄ and V ∩ S1Z (āb̄) = ρ(U).

Claim 2. There exists S ⊂ X which is T 2-definable over b̄, such that Sdim(S) < d and Y ∆ Z ⊆ S.

Assume not. Then, the following partial type over āb̄ is consistent:

Φ(x̄) := x̄ ∈ X & x̄ ∈ Y ∆ Z & x̄ /∈ S,

where S varies among the subsets of X which are T 2-definable over b̄, with Sdim(S) < d. Let c̄ ∈ X be a realisation ofΦ and
p := tp2(c̄/āb̄) ∈ S2X (āb̄). By assumption, Sdim(c̄/āb̄) = d, and therefore p ∈ W . Hence, ρ(p) = tp1(c̄/āb̄) ∈ V . Since ρ is
injective, we have

ρ(p) ∈ ρ

S2Y (āb̄) ∩ W


∆ ρ


S2Z (āb̄) ∩ W


⊆ S1Z (āb̄)∆ S1Z (āb̄) = ∅,

which is absurd. �

In general, given b̄ ∈ Bn, it is always possible to find ā ∈ An′

such that b̄ |⌣ā
A. However, [4, Example 6.13] shows that it

can happen that B is o-minimal, but ā cannot be found inside dcl2(b̄).

Corollary 8.37 ([26, 3.4]). Let b̄ and ā be as in the above proposition. Let Γ be a T-definable set (possibly, in some imaginary
sort) over b̄, and let the function f : Bn

→ Γ be T 2-definable with parameters b̄. Then, there exist S ⊆ Bn, which is T 2-definable
over b̄ and with Sdim(S) < n, and f̂ : Bn

→ Γ , which is T -definable over b̄ā, such that f agrees with f̂ outside S.

Proof. W.l.o.g., ⟨B,A⟩ is ω-saturated. Let G be the set of functions g : Bn
→ Γ that are T -definable with parameters b̄ā.

Claim 1. There exist a set S ⊂ Bn which is T 2-definable with parameters b̄, with Sdim(S) < n, and finitely many functions
g1, . . . , gk in G, such that f agree outside S with some of the gi.

Assume that the claim does not hold. Hence, for every S as in the claim and every g ∈ G, there exists c̄ ∈ Bn such that c̄ /∈ S
and f (c̄) ≠ g(c̄). Thus, the following partial L2-type over b̄ā is consistent:

p(x̄) :=

x̄ ∈ Bn

\ Scl(b̄)


∪ {f (x̄) ≠ g(x̄) : g ∈ G} .

Let c̄ be a realisation of p. Notice that the choice of ā and the fact that Srk(c̄/āb̄) = n imply that c̄b̄ā |⌣ā
A. Hence, by

Proposition 8.26, f (c̄) ∈ dcl1(c̄b̄ā). Thus, f (c̄) = g(c̄) for some function g : Bn
→ B which is T -definable with parameters

b̄ā, which is absurd.
The above claim plus Proposition 8.36 imply the conclusion. �

The above corollary gives a way to find the parameters of the definition of f̂ (and of S) starting from the parameters b̄
of f .

Example 8.38. In general, f̂ cannot be defined using only b̄ as parameters. Consider a1 and a2 in A which are independent
over the empty set, b1 ∈ B \ A, and b2 := a1 + b1 · a2 ∈ B \ A. Let ā := ⟨a1, a2⟩ and b̄ := ⟨b1, b2⟩. Notice that rk(āb̄) = 3,
while Srk(āb̄) = 1. Let f be the constant function a1. Then, f is T 2-definable over b̄, but is not T -definable over b̄.

Question 8.39. Assume that T is d-minimal (see Section 9). Is it true that, for every X ⊆ B∗, Scl(X) = acl1(A∗X) (cf.
Proposition 8.26)?

Conjecture 8.40 (J. Ramakrishnan). Assume that T is o-minimal. Then, for every X ⊂ B,

acl2(X) = acl1

X ∪ (acl2(X) ∩ A)


.

8.5. Elimination of imaginaries

Let cl be an existential matroid on M and cleq be the extension of cl to Meq defined in Section 6. Remember that element
e ∈ Meq is an equivalence class X ⊆ Mn for some ∅-definable equivalence relation E on Mn. If c̄ ∈ X , we say that c̄
represents e.
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Definition 8.41. We say that M has cl-elimination of imaginaries if, for every e ∈ Meq, there exists c̄ representing e, such
that c̄ ∈ cleq(e). Given b̄ ⊂ M, we say that M has cl-elimination of imaginaries modulo b̄ if, for every e ∈ Meq, there exists
c̄ representing e, such that c̄ ∈ cleq(eb̄).

If K ≼ M, we say that K has cl-elimination of imaginaries (modulo some b̄ ⊂ K) if M has it.

Compare the above notion with weak elimination of imaginaries (see [8]).

Remark 8.42. M has cl-elimination of imaginaries iff, for everyM-definable set X , we have X∩cleq(pXq) is nonempty, where
pXq ∈ Meq is the canonical parameter of X .

We will prove the next proposition later.

Proposition 8.43. Let b̄ ⊂ M. Assume that cl(b̄) is dense in M. Then, M has cl-elimination of imaginaries modulo b̄.

Corollary 8.44. Let M be geometric. Assume that acl(∅) is acl-dense in M (e.g., M is a pure algebraically closed field). Then, M has
weak elimination of imaginaries. If, moreover, M expands a field, then M has elimination of imaginaries.

Corollary 8.45. Assume that M expands an integral domain. Let ⟨B,A⟩ |= T d. Let b ∈ B \ A. Then, ⟨B,A⟩ has Scl-elimination of
imaginaries modulo b.

Proof. For every b ∈ B \ A, we have that SclB(b) is Scl-dense in ⟨B,A⟩. �

In the situation of the above corollary, it is not true that ⟨B,A⟩has Scl-elimination of imaginaries (modulo∅). For instance,
let X := B \ A. Then, X ∩ Scleq(pXq) = ∅.

Before proving the Proposition 8.43, we need some preliminaries. Let X ⊆ Mn be a subset definable with parameters b̄.
Let M′ be the expansion of M with a new predicate denoting X . Notice that M and M′ have the same definable sets. However,
cl is no longer an existential matroid on M′; for instance, if X = {b} is a singleton, and b /∈ cl(∅), then b ∈ acl′(∅) \ cl(∅),
where acl′ is the algebraic closure in M′, and therefore cl is not existential on M′. However, notice that |⌣

cl satisfies all the
axioms of a symmetric independence relation on M′, except possibly the Extension axiom.

Let e := pXq ∈ Meq be the canonical parameter for X . For every Z ⊆ M, define cle(Z) := cleq(eZ) ∩ M (notice that, if
e = ∅, then cle = cl).

Lemma 8.46. The matroid cle is an existential matroid on M′.

Proof. Weonly need to check that cle satisfies Existence. Let B and C be subsets ofM such that a /∈ cle(B); that is, a /∈ cleq(eB).
Let a′

≡
M
eB a be such that a′

|⌣
cl
e
BC . Then, a′

≡
M′

B a and a′ /∈ cleq(eBC) = cle(BC). �

Proof of Proposition 8.43. W.l.o.g., b̄ = ∅. Let X be an M-definable set and e := pXq; by Remark 8.42, we need to show that
X ∩ cleq(e) ≠ ∅. Let cle be defined as above. Since cl(∅) is dense in M and cl ⊆ cle, we have that K := cle(∅) is also dense
in M′. Hence, by Lemma 7.4, K ≼ M′. Thus, since X is ∅-definable in M′, there exists c̄ ∈ X ∩ K. �

Other results on elimination of imaginaries for dense pairs of geometric structures were proved in [6].

9. D-minimal topological structures

In this section, we will introduce d-minimal structures. They are topological structures whose definable sets are
particularly simple from the topological point of view; they generalise o-minimal structures. We will show that for
d-minimal structures the topology induces a canonical existential matroid, which we denote by Zcl. Moreover, the abstract
notion of density introduced in Section 7 coincides with the usual topological notion. Finally, if T is a complete d-minimal
theory expanding the theory of fields, then in T d the condition that the smaller structure is cl-closed is superfluous. Our
definition of d-minimality extends an older definition by Miller [17], which applied only to linearly ordered structures.

Let K be a first-order topological structure in the sense of [18]. That is, K is a structure with a topology, such that a basis
of the topology is given by {Φ(K, ā) : ā ∈ Km} for a certain formula without parametersΦ(x, ȳ); fix such a formulaΦ(x, ȳ),
and denote Bā := Φ(K, ā). Examples of topological structures are valued fields, or ordered structures. On Kn we put the
product topology. Let M ≽ K be a monster model. Given X ⊆ Kn, we will denote by X and X̊ , respectively, the topological
closure and the interior of X inside Kn.

Definition 9.1. The structure K is d-minimal if

1. it is T1 (i.e., its points are closed);
2. it has no isolated points;
3. for every X ⊆ M definable subset (with parameters in M), if X has empty interior, then X is a finite union of discrete sets;
4. for every X ⊂ Kn definable and discrete,Πn

1 (X) has empty interior;
5. given X ⊆ K2 and U ⊆ Π2

1 (X) definable sets, if U is open and nonempty, and Xa has nonempty interior for every a ∈ U ,
then X has nonempty interior.
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Notice that (4) implies (2). [3, Section 4] introduces the notion of ‘‘geometric structures’’ (distinct from the onewe used in
this article) which, more or less, are d-minimal structures where every definable discrete set is finite, plus some additional
conditions (such as definable Skolem functions), and proves for those theories the analogue of Corollary 9.17.
Examples 9.2. 1. p-adic fields and algebraically closed valued fields are d-minimal;
2. densely ordered o-minimal structures are d-minimal.

In both cases, a definable set is discrete iff it is finite.
Example 9.3. A structure K is definably complete if it expands a linear order ⟨K , <⟩, and every K-definable subset of K
has a supremum in K ⊔ {±∞}. Miller defines a d-minimal structure as a definably complete structure K such that, given K′

an ℵ0-saturated elementary extension of K, every K′-definable subset of K′ is the union of an open set and finitely many
discrete sets. In particular, o-minimal structures and ultra-products of o-minimal structures are d-minimal inMiller’s sense.
If K expands a field and is a d-minimal structures in the sense of Miller, then K is d-minimal in our sense [12, Section 10].
Conversely, any definably complete structure which is d-minimal in our sense is also d-minimal in Miller’s sense.
Proviso. For the remainder of this section, we assume that K is d-minimal, and that T is the theory of K.

Remark 9.4. 1. Let X ⊂ Kn be discrete. Since K has no isolated points, X is nowhere dense; that is, X̊ = ∅.
2. Let X1, . . . , Xr be nowhere dense subsets of Kn. Then X1 ∪ · · · ∪ Xr is also nowhere dense; this remains true if K is any

topological space.
3. Hence, if X1, . . . , Xr are discrete subsets of Kn, then X1 ∪ · · · ∪ Xr is nowhere dense (but no longer discrete, in general).
4. Let X ⊆ K be definable. Then, X has empty interior iff X is nowhere dense.
5. If X1 and X2 are definable subsets of K with empty interior, then X1 ∪ X2 has empty interior. Hence, for every X ⊆ K

definable, X \ X̊ has empty interior.
Lemma 9.5. Let Z ⊂ K2 be definable, such thatΠ2

1 (Z) has empty interior, and Zx has empty interior for every x ∈ K. Then, θ(Z)
has empty interior, where θ is the projection onto the second coordinate.
Proof. By assumption, w.l.o.g.,Π2

1 (Z) is discrete and, for every x ∈ K, Zx is also discrete. Therefore, Z is discrete, and hence
θ(Z) has empty interior. �
Definition 9.6. Given A ⊂ M and b ∈ M, we say that b ∈ Zcl(A) if there exists X ⊂ M A-definable such that b ∈ X and X
has empty interior (or, equivalently, X is discrete).
Lemma 9.7. If c /∈ Zcl(A), thenΞ(c/A) has nonempty interior.
Proof. Let X ⊆ M be any A-definable set containing c. Since c /∈ Zcl(A), c ∈ X̊ . Consider the partial type over cA

Γ (ȳ) :=

c ∈ Bȳ ⊆ X : X ⊆ M is A-definable and c ∈ X


.

By the above consideration, Γ is consistent; let b̄ ⊂ M be a realisation of Γ .
Claim 1. c ∈ Bb̄ ⊆ Ξ(c/A).

Clearly, c ∈ Bb̄. Let c
′

∈ Bb̄ and let X ⊆ M be A-definable and containing c. By our choice of b̄, we have c ′
∈ X , and

therefore c ′ satisfies all the A-formulae satisfied by c. �
Theorem 9.8. The operator Zcl is an existential matroid.
Proof. Finite character, extension and monotonicity are obvious.
The fact that Zcl is definable is also obvious.
(Idempotency) Let b̄ := ⟨b1, . . . , bn⟩, a ∈ Zcl(b̄c̄) and b̄ ⊂ Zcl(c̄). We must prove that a ∈ Zcl(c̄). Let φ(x, ȳ, z̄) and
ψi(y, z̄) be formulae, i = 1, . . . , n, such that φ(M, ȳ, z̄) and ψi(M, z̄) are discrete for every ȳ and z̄, and M |= φ(a, b̄, c̄) and
M |= ψi(bi, c̄), i = 1, . . . , n. Let

Z :=


⟨x, ȳ⟩ : M |= φ(x, ȳ, c̄) &

n
i=1

ψi(yi, c̄)


,

and letW := Πn+1
1 Z . By hypothesis, Z is a discrete subset of Mn+1, and therefore, by Assumption (4),W has empty interior.

Moreover,W is c̄-definable and a ∈ W , and hence a ∈ Zcl(c̄).
(EP) Let a ∈ Zcl(bc̄) \ Zcl(c̄). We must prove that b ∈ Zcl(ac̄). Assume not. Let Z ⊂ M2 be c̄-definable, such that ⟨a, b⟩ ∈ Z
and Zy is discrete for every y ∈ M. Since b ∈ Za and b /∈ Zcl(ac̄), b ∈ int(Za); hence, w.l.o.g., Zx is open for every x ∈ M. Let
U := Π2

1 (Z). Since a ∈ U and a /∈ Zcl(c̄), a ∈ Ů . Hence, by Condition (5), Z has nonempty interior; but this contradicts the
fact Zy is discrete for every y ∈ M.
Existence follows from Lemma 9.7.
(Nontriviality) Consider the following partial type over the empty set:

Λ(x) := {x /∈ Y } ,

where Y varies among the discrete ∅-definable sets. Since M has no isolated points, Λ is finitely satisfiable; if a ∈ M is a
realisation ofΛ, then a /∈ Zcl(∅). �
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We will denote by Zrk, |⌣, and dim the rank, independence relation, and dimension on M induced by Zcl.

Remark 9.9. Let X ⊆ Kn be definable. If X has nonempty interior, then dim(X) = n. IfΠn
d (X) has nonempty interior, then

dim(X) ≥ d.

Conjecture 9.10. Let X ⊆ Kn be definable. Then, dim(X) ≥ d iff, after a permutation of variables,Πn
d (X) has nonempty interior.

Conjecture 9.11. For every X ⊆ Kn definable, dim(X) = dim X.

Example 9.12. It is not true that dim(∂X) < dim(X) if X is definable and nonempty. For instance, let K := ⟨R,+, ·, <, 2Z
⟩

be the expansion of the real field by a predicate for the integer powers of 2. Then, K is d-minimal [24, Theorem II]. Let
X := 2Z. Thus, ∂X = {0}, and hence dim(X) = 0 = dim(∂X).

Lemma 9.13. The set X is Zcl-dense in K according to Definition 7.1 iff X is topologically dense in K.

Proof. Assume that X is dense in K according to Zcl. Let A ⊆ K be an open definable set; thus, dim(A) = 1, and therefore
A ∩ X ≠ ∅. Conversely, if X is topologically dense in K, let A ⊆ K be definable and of dimension 1. Thus, A has nonempty
interior, and therefore A ∩ X ≠ ∅. �

Lemma 9.14. Let d ∈ M, V be a definable neighbourhood of d, and let C ⊂ M. Then, there exists ā ∈ Mm such that ā |⌣d
C and

d ∈ Bā ⊆ V .

Proof. Let X := {ā ∈ Mn
: d ∈ Bā}. Let ≤ be the quasi-ordering on X given by reverse inclusion; that is, ā ≤ ā′ if Bā ⊇ Bā′ .

Fix b̄ ∈ X such that Bb̄ ⊆ V . Since (X,≤) is a directed set, by Lemma 3.68, there exists ā ∈ X such that ā |⌣d
C and

Bā ⊆ Bb̄ ⊆ V . �

Proviso 9.15. For the remainder of this section, will assume that K is d-minimal and expands an integral domain, that + and −

are continuous (and therefore ⟨K,+⟩ is a topological group), and that T is the theory of K. In the following, when K is a d-minimal
expansion of an integral domain, we will always assume that + and − are continuous.

Notice that an algebraically closed field with the Zariski topology is not a topological group, because + is not continuous.
Notice also that, since we required that points are closed, K is a regular topological space.

Remark 9.16. Let X ⊆ K be dense (but not necessarily definable). Then, for every b ∈ K and every V neighbourhood of 0,
there exists a ∈ X such that b ∈ a + V .

Proof. Since − is continuous, there exists V ′ neighbourhood of 0 such that V ′
= −V ′ and V ′

⊆ V . Since X is dense, there
exists a ∈ X such that a ∈ b + V ′. Hence, b ∈ a − V ′

⊆ a + V . �

Corollary 9.17. The theory T d is complete. Besides, T d is the theory of pairs ⟨K, F⟩ such that F ≺ K |= T and F is a (topologically)
dense proper subset of K.

Proof. By Theorem 8.3, it suffices to show that, if F ≼ K is dense in K, then F is Zcl-closed in K. W.l.o.g., the pair ⟨K, F⟩

is ω-saturated. Let b ∈ ZclK(F); we must prove that b ∈ F. Let Z ⊂ K be F-definable and discrete, such that b ∈ Z . Let
U ′ be a definable neighbourhood of b, such that Z ∩ U ′

= {b}. Define U := U ′
− b; since K is a topological group, U is a

neighbourhood of 0 in K, and there exists V , an open neighbourhood of 0 definable in K, such that V = −V and V + V ⊆ U .

Claim 1. There exists W, an F-definable open neighbourhood of 0, such that W ⊆ V .

Suppose that the claim is not true. Since K is a regular space, there exists X , a definable open neighbourhood of 0, such
that X ⊆ V . Let XF := X ∩ F. Since XF is a neighbourhood of 0 in F and since the topology has a definable basis, there exists
WF ⊆ XF such that the setWF is F-definable andWF is an open neighbourhood of 0. LetW be the interpretation ofWF in K.
SinceW is open and F is dense in K, WF is dense inW ; therefore,W ⊆ WF ⊆ X ⊆ V .

By Remark 9.16, there exists a ∈ F such that b ∈ W ′, whereW ′ := a + W .

Claim 2. W ′
⊆ U ′.

The claim is equivalent to a+W ⊆ b+U; that is,W + (a− b) ⊆ U . By assumption, b ∈ a+W , and therefore a− b ∈ −W .
Hence,W + (a − b) ⊆ W − W ⊆ V − V ⊆ U .

Finally,W ′ is F-definable, and b ∈ W ′
∩ Z ⊆ V ∩ Z = {b}. Hence, b is F-definable, and therefore b ∈ F. �

Given ā := ⟨ā1, . . . , ān⟩ ∈ Mn×m and b̄ ∈ Mn, denote

Bā + b̄ := (Bā1 + b1)× · · · × (Bān + bn) ⊆ Mn.

Lemma 9.18. Let d̄ ∈ Mn, V be a definable neighbourhood of d̄, and let C ⊂ M. Then, there exist ā ∈ Mm×n and b̄ ∈ Mn such
that d̄ ∈ Bā + b̄ ⊆ V and āb̄ |⌣ Cd̄.

Proof. Proceeding by induction on n, it suffices to treat the case n = 1. Let V0 := V − d; it is a definable neighbourhood
of 0. Since M is a topological group, there exists V1 definable and open, such that 0 ∈ V1, V1 = −V1, and V1 + V1 ⊆ V0. By
Lemma 9.14, there exists ā ∈ Mm such that ā |⌣ Cd and 0 ∈ Bā ⊆ V1. LetW := d−Bā. Since dim(W ) = 1, there exists b ∈ W
such that b /∈ Zcl(Cād).
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Claim 1. d ∈ Bā + b.

In fact, b ∈ −Bā + d, and therefore d − b ∈ Bā.

Claim 2. āb |⌣ Cd.

By construction, b |⌣ Cād, and therefore b |⌣ā
Cd, and hence āb |⌣ā

Cd. Together with ā |⌣ Cd, this implies the claim. �

Corollary 9.19. Let X ⊆ Mn be a definable set, and let k ∈ N. Assume that, for every x̄ ∈ X, there exists Vx̄, a definable open
neighbourhood of x̄, such that dim(Vx̄ ∩ X) ≤ k. Then, dim(X) ≤ k.

Proof. Let C be the set of parameters of X . By Lemma 9.18, for every x̄ ∈ X there exist ā ∈ Kn×m and b̄ ∈ Kn such that
āb̄ |⌣ Cx̄ and x̄ ∈ Bā + b̄ ⊆ Vx̄; notice that dim(X ∩ (Bā + b̄)) ≤ k. Hence, by Lemma 3.69, dim(X) ≤ k. �

We do not know if the above corollary remains true if we drop the assumption that M expands a group.

Corollary 9.20. Let C ⊂ M and p ∈ Sn(C). Then, p is stationary iff p is realised in dcl(C).

Proof. Assume for contradiction, that p is stationary, but that dim(p) > 0. Let ā0 and ā1 be realisations of p independent
over C . Since dim(p) > 0, ā0 ≠ ā1. Since M is Hausdorff, Lemma 9.18 implies that there exists V , an open neighbourhood
of ā0, definable with parameters b̄, such that ā1 /∈ V and b̄ |⌣ Cā0ā1. Hence, by Lemma 3.11, ā0 |⌣Cb̄

ā1. Since p is stationary,
Lemma 3.64 implies that ā0 ≡b̄ ā1, contradicting the fact that ā0 ∈ V , while ā1 /∈ V . �

10. Cl-minimal structures

Let M be a monster model, T be the theory of M, and let cl be an existential matroid on M. We denote by dim and rk the
dimension and rank induced by cl.

Definition 10.1. A type p ∈ Sn(A) is a generic type if dim(p) = n. The structure M is cl-minimal if, for every A ⊂ M, there
exists only one generic 1-type over A.

Remark 10.2. For every 0 < n ∈ N and A ⊂ M, there exists at least one generic type in Sn(A). If M is cl-minimal, then for
every n and A there exists exactly one generic type in Sn(A).

Lemma 10.3. If M is cl-minimal, then dim is definable.

Proof. Notice that, given x̄ := ⟨x1, . . . , xn⟩ and a formula φ(x̄, ȳ), the set Un
φ := {ā : dim(φ(K, ā)) = n} is always type-

definable (Remark 3.43). By the above remark, Kn
\ Un

φ = Un
¬φ , and therefore Un

φ is both type-definable and or-definable,
and hence definable. �

Remark 10.4. The structure M is cl-minimal iff, for every n > 0 and every X definable subset of Kn, exactly one among X
and Kn

\ X has dimension n.

Remark 10.5. If K ≼ M and dim is definable, then K is cl-minimal iff, for every X definable subset of K, either dim(X) ≤ 0,
or dim(K \ X) ≤ 0; that is, we can check cl-minimality inside K.

Examples 10.6. 1. M is strongly minimal iff acl is a matroid and M is acl-minimal.
2. Consider Example 3.59(2). In that context, a type is generic in our sense iff it is generic in the sense of stable groups.

Hence, G is cl-minimal iff it has only one generic type iff it is connected (in the sense of stable groups).

Lemma 10.7. Assume that T is cl-minimal; let Scl be the small closure inside T d. Then, T d is Scl-minimal. Moreover, T d coincides
with T 2.

Proof. Let ⟨B∗,A∗
⟩ be amonstermodel of T d. Let C ⊂ B∗ with |C | < κ . DefineA := clB

∗

(A∗C), and qC (x) the partialL2-type
over C given by

qC (x) := x /∈ A.

It is clear that every generic 1-T d-type over C expands qC . Hence, it suffices to prove that qC is complete. Let b and b′
∈ B∗

satisfy qC . By Corollary 8.19, ⟨B∗,A∗
⟩ ≼ ⟨B∗,A⟩. By assumption, b and b′ are not in A; hence, since T is cl-minimal, they

satisfy the same generic 1-T -type pA; thus, by Corollary 8.21, b ≡
2
A b′. �
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11. Connected groups

Let M be a monster model, and let cl be an existential matroid on it. Denote dim := dimcl, rk := rkcl, and |⌣
:= |⌣

cl.

Definition 11.1. Let X ⊆ Mn be definable (with parameters). Assume that m := dim(X) > 0. We say that X is connected
if, for every Y definable subset of X , either dim(Y ) < n, or dim(X \ Y ) < n.

For instance, if M is cl-minimal and X = M, then X is connected.

Remark 11.2. If X is connected, then, for every l ≥ 0, X l is also connected.

Remark 11.3. Let X ⊆ Mn be definable and of dimensionm > 0.

1. X is connected iff, for every A ⊂ M containing the parameters of definition of X , there exists exactly one n-type over A in
X which is generic (i.e., of dimensionm).

2. If X is connected and Y is a definable subset of X of dimension less thanm (e.g., Y is finite), then X \ Y is connected.

Lemma 11.4. Let G ⊆ Mn be definable and connected. Assume that G is a semigroup with left cancellation. Assume, moreover,
that G has either right cancellation or right identity. Then G is a group.

Cf. [21, 1.1].

Proof. Assume not. Letm := dim(G). W.l.o.g., G is definable without parameters. For every a ∈ G, let a ·G := {a · x : a ∈ G}.
Since G has left cancellation, we have dim(a · G) = m.

Let F := {a ∈ G : a · G = G}. Our aim is to prove that F = G. It is easy to see that F is multiplicatively closed.
First, assume that G has a right identity element 1. The reader can verify that following claim is true for any abstract

semigroup with left cancellation and right identity.

Claim 1. F is a group.

Claim 2. dim(F) < m.

Assume, for contradiction, that dim(F) = m. Let a ∈ G \ F . Then, F ∩ (a · F) ≠ ∅; let u, v ∈ F be such that u = a · v.
Since u ∈ F and F is a group, there existsw ∈ F such that v ·w = 1; hence, u ·w = a · 1 = a, and therefore a ∈ F , which

is absurd.
Choose a, b ∈ G independent (over the empty set). Since dim(a · G) = dim(b · G) = m, we have a ∈ b · G and b ∈ a · G.

Let u, v ∈ G be such that b = a · u and a = b · v. Hence, a = a · u · v.
Since a · 1 = a · u · v, we have 1 = u · v. Hence, both u and v are in F . However, since dim(F) < m and b = a · u, we have

rk(b/a) ≤ rk(u) < m, which is absurd.
If instead G has right cancellation, it suffices, by symmetry, to show that G has a left identity. Reasoning as above, we can

show that there exist a and b in G such that a · b = a. We claim that b is a left identity. In fact, for every c ∈ G, we have
a · b · c = a · c , and therefore b · c = c , and we are done. �

Proviso. For the remainder of this section, ⟨G, ·⟩ is a definable connected group, of dimension m > 0, with identity 1.

If G is Abelian, we will also use + instead of · and 0 instead of 1.
Hence, if G expands a ring without zero divisors, then, by applying the above lemma to themultiplicative semigroup of G,

we obtain that G is a division ring.

Remark 11.5. Let X ⊆ G be definable, such that X · X ⊆ X . Then, dim(X) = m iff X = G.

Proof. Assume that dim(X) = m. Let a ∈ G. Then, X ∩ (a · X−1) ≠ ∅; choose u, v ∈ X such that u = a · v−1. Hence,
a = u · v ∈ X · X = X . �

Lemma 11.6. Let f : G → G be a definable homomorphism. If dim(ker f ) = 0, then f is surjective.

Cf. [21, 1.7].

Proof. Let H := f (G) and K := ker(f ); notice that H < G and K < G. Moreover, by additivity of dimension, m =

dim(H)+ dim(K). Hence, if dim(K) = 0, then dim(H) = m; therefore H = G and f is surjective. �

Example 11.7. The group ⟨Z,+⟩ cannot be cl-minimal, because the homomorphism x → 2x has trivial kernel but is not
surjective.

Lemma 11.8. Let H < G be definable, with dim(H) = k < m. Then, G/H is connected, and dim(G/H) = m − k.

Proof. That dim(G/H) = m − k is obvious. Let X ⊆ G/H be definable of dimension m − k. We must prove that
dim(G/H \ X) < m. Let π : G → G/H be the canonical projection, and let Y := π−1(X). Then, dim(Y ) = m, and therefore
dim(G \ Y ) < m. Thus, dim(G/H \ X) = dim(π(G \ Y )) < m − k. �

Conjecture 11.9. If m = 1, then G is Abelian. Cf. Reineke’s theorem [21, 3.10].



A. Fornasiero / Annals of Pure and Applied Logic 162 (2011) 514–543 539

Proceeding as in [21, 3.10], to prove the above conjecture it would be enough to consider the casewhen any two elements
of G different from the identity are conjugate.

Lemma 11.10. Assume that m = 1 and G is Abelian. Let p be a prime number. Then, either pG = 0, or G is divisible by p.

Proof. Let H := pG and K := {x ∈ G : px = 0}. If dim(H) = 1, then G = H , and therefore G is p-divisible. If dim(H) = 0,
then dim(K) = 1; thus G = K and pG = 0. �

Notice that the above lemma needs the hypothesis thatm = 1. For instance, let M be the algebraic closure of Fp, and let
G := M × M∗ (where M∗ is the multiplicative group of M).

Theorem 11.11. Assume that G expands an integral domain (and is connected). Then, G is an algebraically closed field.

The proof if the above theorem is the same as that of Macintyre’s theorem [21, 3.1 and 6.11] (cf. Corollary 3.53); notice also
that the first step in the proof of Macintyre’s theorem is showing that G is connected. Moreover, in the above theorem it is
essential that G is connected; for instance, if M is a formally p-adic field, then M itself is a nonalgebraically closed field (of
dimension 1).

Question 11.12. Can we weaken the hypothesis in the above theorem from ‘‘G expands an integral domain’’ to ‘‘G expands
a ring without zero divisors’’?

12. Ultraproducts

Let I be an infinite set, and let µ be an ultrafilter on I . For every i ∈ I , let ⟨Ki, cli⟩ be a pair given by a first-order
L-structure Ki and an existential matroid cli on Ki. Let K be the family


⟨Ki, cli⟩


i∈I , and let K := ΠiKi/µ be the

corresponding ultraproduct.
We will give some sufficient condition on the family K , such that there is an existential matroid on K induced by the

family of cli. Denote by di the dimension induced by cli.

Definition 12.1. We say that the dimension is uniformly definable (for the family K) if, for every formula φ(x̄, ȳ)without
parameters, for every tuple x̄ = ⟨x1, . . . , xn⟩ and ȳ = ⟨y1, . . . , ym⟩, and for every l ≤ n, there is a formulaψ(ȳ), also without
parameters, such that, for every i ∈ I ,

ψ(Ki) =

ȳ ∈ Km

i : di

φ(Ki, ȳ)


= l

.

We denote by dlφ the formula ψ .

Remark 12.2. The dimension is uniformly definable if, for every formula φ(x, ȳ) without parameters, ȳ = ⟨y1, . . . , ym⟩,
there is a formula ψ(ȳ), also without parameters, such that, for every i ∈ I ,

ψ(Ki) =

ȳ ∈ Km

i : di

φ(Ki, ȳ)


= 1


.

For instance, if every Ki expands a ring without zero divisors, then the dimension is uniformly definable; given ψ(x, ȳ),
define ψ(ȳ) by

∀z ∃x1, . . . , x4


z = F(x1, . . . , x4) &

4
i=1

φ(xi, ȳ)


.

For the remainder of this section, we assume that the dimension is uniformly definable for K .

Definition 12.3. Let d be the function from definable sets in K to {−∞} ∪ N defined in the following way.
Given a K-definable set X = Πi∈IXi/µ and l ∈ N, d(X) = l if, for µ-almost every i ∈ I , di(Xi) = l.

The following result is the justification for Definitions 12.1 and 12.3.

Remark 12.4. Themap d is a dimension function onK. Let cl be the existential matroid induced by d. Then, a ∈ cl(b̄) implies
that, for µ-almost every i ∈ I , ai ∈ cli(b̄i), but the converse is not true.

Remark 12.5. Let X ⊆ Kn be definable with parameters c̄; let φ(x̄, c̄) be the formula defining X . Given l ∈ N , d(X) = l iff,
for µ-almost every i ∈ I , Ki |= dlφ(c̄i).

Lemma 12.6. If each Ki is cl-minimal, then K is also cl-minimal.

Proof. By Remark 10.5. �
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Example 12.7. The ultraproduct K of strongly minimal structures is not strongly minimal in general (it will not even be a
pregeometric structure), but, if each structure expands a ring without zero divisors, then K will have a (unique) existential
matroid, and will be cl-minimal.

In fact, let F be an algebraically closed field of finite characteristic. For every n ∈ N, let Pn be a subset of F with n element.
Let P be a new unary predicate, define Kn := (F, Pn) in the language of fields expanded by P , and let K := ⟨K ,+, ·, P∗

⟩ be a
nonprincipal ultraproduct of the Kn. Then, P∗ will be an infinite definable subset of K of dimension 0, and therefore K will
not be geometric. By taking instead for Pn suitable finite subsets of F3, we can also attain that any nonprincipal ultraproduct
K of K is not geometric, does satisfy the Independence Property, and has an infinite definable subset with a definable linear
ordering. Moreover, one can also impose that the trivial chain condition for uniformly definable subgroups of ⟨K,+⟩ fails
in K [21, 1.3].

However, K will satisfy the following conditions.
1. Every definable monoid with left cancellation is a group [21, 1.1].
2. Given G a definable group acting in a definable way on a definable set E, if A is a definable subset of E and g ∈ G such that

g · A ⊆ A, then g · A = A [21, 1.2].

We do not know if conditions (1) and (2) in the above example are true for an arbitrary cl-minimal structure expanding
a field.

Remark 12.8. Assume that each Ki is a first-order topological structure, and that the definable basis of the topology of each
Ki is given by the same function Φ(x, ȳ). Then, K is also a first-order topological structure, and Φ(x, ȳ) defines a basis for
the topology of K. If each Ki is d-minimal, then K has an existential matroid, but it needs not be d-minimal.
Assume that each Ki is d-minimal and satisfies the additional condition.

(*) Every definable subset of Ki of dimension 0 is discrete.

Then, K is also d-minimal and satisfies condition (*).

Example 12.9. An ultraproduct of o-minimal structures is not necessarily o-minimal, but it is d-minimal, and satisfies
condition (*).

13. Dense tuples of structures

In this section, we assume that T expands the theory of integral domains.Wewill extend the results of Section 8 to dense
tuples of models of T .

Definition 13.1. Fix n ≥ 1. Let Ln be the expansion of L by (n − 1) new unary predicates P1, . . . , Pn−1. Let T n be the Ln-
expansion of T , whose models are sequences K1 ≺ · · · ≺ Kn−1 ≺ Kn |= T , where each Ki is a proper cl-closed elementary
substructure of Ki+1. Let T nd be the expansion of T n+1 saying that K1 is dense in Kn. We also define T 0d := T .

For instance, T 1
= T , T 2 is the theory we already defined in Section 8, and T 1d

= T d.

Lemma 13.2. If T is cl-minimal, then T n is complete for every n ≥ 1 (and therefore coincides with T (n−1)d). Moreover, T n has a
(unique) existential matroid cln; given ⟨Kn, . . . ,K1⟩ |= T n, we have b ∈ cln(A) iff b ∈ clKn(AKn−1). Finally, T n is cln-minimal.

Proof. By induction on n. Iterate n times Lemma 10.7. �

Corollary 13.3. Assume that T is strongly minimal. Then, T n is complete, and coincides with the theory of tuples K1 ≺ · · · ≺

Kn |= T .

Proof. One can use either the above lemma, or reason as in [15], using Lemma 8.10. �

Remark 13.4. Let ⟨B,A⟩ be a λ-saturated model of T d, for some cardinal λ. Let U ⊆ B be B-definable and of dimension 1.
Then, rk(U ∩ A) ≥ λ.

Theorem 13.5. The theory T nd is complete. There is a (unique) existential matroid on T nd.

Proof. By induction on n, we will prove that T nd is (· · · (T d)d · · · )d iterated n times. This implies both that T nd is complete,
and that it has an existential matroid.

It suffices to treat the case n = 2. Notice that ⟨K2,K1⟩ ≺ ⟨K3,K1⟩ |= T d. It suffices to show that K2 is Scl-dense in
⟨K3,K1⟩. W.l.o.g., we can assume that ⟨K3,K2,K1⟩ is ω-saturated.

Let X ⊆ K3 be definable in ⟨K3,K1⟩ (with parameters from K3), such that Sdim(X) = 1. We need to show that X
intersectsK2. By Corollary 8.36, there existU and S subsets ofK3, such thatU is definable inK3, S is definable in ⟨K3,K1⟩ and
small, and X = U∆S. Therefore, dim(U) = 1. If, by contradiction, X ∩K2 = ∅, then K2 ∩U ⊆ S; therefore, Srk(K2 ∩U) < ω
(where Srk is the rank induced by Scl), contradicting Remark 13.4. �

The above theorem has an analogue version for ‘‘beautiful tuples’’ of stable structures [5, Proposition 5].



A. Fornasiero / Annals of Pure and Applied Logic 162 (2011) 514–543 541

Example 13.6. To clarify a possible source of confusion, consider the case when T is the theory of algebraically closed fields
of characteristic 0. Then, T 2 is a complete theory, and therefore it coincides with both T d and the theory of beautiful pairs for
T . Hence, T d is stable [19], and therefore we can consider in turn beautiful pairs of models of T d. However, such a beautiful
pair will not be a model of T 2d, because it will be of the form ⟨K, F1, F2,L⟩, where L, F1, F2, and K are models of T , with F1
and F2 substructures of K, L = K1 ∩ K2, and K1 |⌣L

K2.

Corollary 13.7. Assume that T is d-minimal (and that Proviso 9.15 holds). Then, T nd coincides with the theory of (n + 1)-tuples
K1 ≺ · · · ≺ Kn ≺ Kn+1 |= T , such that K1 is (topologically) dense in Kn+1.

Proof. Notice that, if ⟨Kn, . . . ,K1⟩ satisfy the assumption, then, by Corollary 9.17, each Ki is cl-closed in Kn. �

13.1. Dense tuples of topological structures

Assume that T expands the theory of integral domains. Assume that M has both an existential matroid cl and a definable
topology (in the sense of [18]). We have two distinct notions of closure and of density on M: the ones given by the topology
and the ones given by the matroid; to distinguish them, we will speak about topological closure and cl-closure, respectively
(and similarly for density).

LetΦ(x, ȳ) be a formula such that the family of sets

Bb̄ := Φ(M, b̄),

as b̄ varies in Mk, is a basis of the topology of M. If b̄ = ⟨b̄1, . . . , b̄m⟩, we denote by Bn
b̄

:= Bb̄1 × · · · × Bb̄m ⊆ Mm.
The first of the following two conditions is taken from [7].

Hypothesis. I. For every m ∈ N, every U open subset of Mm, and every ā ∈ U , the set

b̄ : ā ∈ Bb̄ ⊆ U


has nonempty

interior.
II. Every definable nonempty open subset of M has dimension 1.

Remark 13.8. Assumption II implies that a definable subset of Mm with nonempty interior has dimension m (but the
converse is not true: there can be definable subsets of dimension m but with empty interior). Moreover, it implies that
a cl-dense subset of Mm is also topologically dense (but, again, the converse is not true: see Theorem 13.11).

Examples 13.9. 1. If M is either a valued field (with the valuation topology) or a linearly ordered field (with the order
topology), then it satisfies Assumption I.

2. If M is a d-minimal structure, then it satisfies Assumption II.
3. Let M be either a formally p-adic field, or an algebraically closed valued field, or a d-minimal expansion of a linearly

ordered definably complete field (cf. Example 9.3). Then, M satisfies both assumptions.

Fact 13.10 ([7, Corollary 3.1]). Suppose that Assumption I is true. Let ⟨B,A⟩ |= T 2 and C ⊆ B. Assume that, for every m ∈ N,
there is a set Dm ⊆ Bm such that the following hold.

1. Dm is topologically dense in Bm;
2. for every ā ∈ Dm and every open set U ⊆ Bm, if tp1(ā/C) is realised in U, then tp1(ā/C) is realised in U ∩ Dm;
3. for every d̄ ∈ Dm, tp2(d̄/C) is implied by tp1(d̄/C) in conjunction with ‘‘d̄ ∈ Dm’’.

Then, every open set T 2-definable over C is T -definable over C.

The following theorem, which is a generalisation of [7, Corollary 3.4], follows easily from the above fact.

Theorem 13.11. Assume that the hypothesis holds. Let C := ⟨B,An−1, . . . , A1⟩ |= T nd. Let c̄ ⊂ B be cl-independent over
c̄ ∩ An−1. Let U ⊆ Bm be open and definable in C, with parameters c̄. Then, U is definable in B, with parameters c̄. Moreover, T nd

also satisfies the hypothesis.

In the terminology of [10], the above theorem proves that B is the open core of C.

Proof. By induction on n, it suffices to do the case when n = 2, i.e. when C = ⟨B,A⟩ |= T d. W.l.o.g., C is λ-saturated and
λ-homogeneous, for some |T | < λ < κ . Define Dm :=


d̄ ∈ Bm

: Srk(d̄/c̄) = m

. We want to verify that the hypothesis of

Fact 13.10 is satisfied for the above Dm.

1. By Lemma 8.31, if V ⊆ Bm is B-definable and of dimensionm, then V ∩Dm is nonempty; therefore, by Assumption II, Dm
is topologically dense in Bm.

2. Let d̄ ∈ Dm and U ⊆ Mm be open, and assume that p := tp1(d̄/c̄) is realised in U . We have to show that p is realised
in U ∩ Dm. Let d̄′

∈ U be a realisation of p, and let b̄ ⊂ B be such that d̄′
∈ Bb̄ ⊆ U . Since d̄′

≡
1
c̄ d̄, we have that d̄′ is

cl-independent over c̄. By changing b̄ if necessary, we can also assume that d̄′
|⌣ b̄c̄ (cf. the proof of Lemma 9.18), and

thus d̄′ is cl-independent over b̄c̄. Finally, since A is cl-dense in B, there exists d̄′′
≡

1
b̄c̄

d̄ such that d̄′′ is cl-independent
over b̄c̄A, and therefore d̄′′

∈ Bb̄ ∩ Dm ⊆ U ∩ Dm.
3. By Proposition 8.17.

Hence, we can apply Fact 13.10, and we are done. �
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14. The (pre)geometric case

Remember that M is a pregeometric structure if acl satisfies the EP. If, moreover, M eliminates the quantifier ∃
∞, then M

is geometric.
In this section, we gather various results about (pre)geometric structures, mainly in order to clarify and motivate the

general case of structures with an existential matroid.
Remember that M has geometric elimination of imaginaries if every for imaginary tuple ā there exists a real tuple b̄ such

that ā and b̄ are interalgebraic.

Remark 14.1. A theory T is pregeometric iff T is a real-rosy theory of real þ-rank 1. Moreover, if T is pregeometric and has
geometric elimination of imaginaries, then |⌣

þ
= |⌣

acl, and dimacl is equal to the þ-rank; see [11] for definitions and proofs.

Remark 14.2. The model-theoretic algebraic closure acl is a definable closure operator.

For the remainder of this section, M is pregeometric (and T is its theory).

Remark 14.3. The operator acl is an existential matroid on M. The induced independence relation |⌣
acl coincides with the

real þ-independence relation |⌣
þ and with the M-dividing notion |⌣

Mof [1]. A formula is x-narrow (for acl) iff it is algebraic
in x.

Remark 14.4. Let X ⊆ Mn be definable. We have that dimacl(X) ≤ 0 iff X is finite.

Remark 14.5. The structure M is geometric iff dimacl is definable.

Remark 14.6. The structure M is acl-minimal iff it is strongly minimal.

In Section 6, we defined an extension of acl to the imaginary sorts, which here we will denote by ˜acl (while will we use
acleq to denote the usual algebraic closure for imaginary elements).

Remark 14.7. If a is real and B is imaginary, then a ∈ ˜acl(B) iff a ∈ acleq(B).

Remark 14.8. T.f.a.e.:

1. acleq coincides with ˜acl;
2. T is superrosy of þ-rank 1 [11];
3. T is surgical [13].

Remark 14.9. A set X is dense in M iff, for every U infinite definable subset of M, U ∩ X ≠ ∅. If F ≼ K, then F is acl-closed
in K.

Remark 14.10. Assume that T is geometric. Then, T 2 is the theory of pairs ⟨K, F⟩, with F ≺ K |= T , and T d is the theory of
pairs ⟨K, F⟩ |= T 2, such that F is dense in K. For every X ⊆ K, Scl(X) = acl1(FX) = acl2(FX) (cf. Question 8.39).

For more on the theory T d in the case when T is geometric, and in particular when T is o-minimal, see [6,4].
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