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Summary

Background: At the onset of embryogenesis, key devel-
opmental regulators called determinants are activated
asymmetrically to specify the body axes and tissue
layers. In C. elegans, this process is regulated in part
by a conserved family of CCCH-type zinc finger proteins
that specify the fates of early embryonic cells. The
asymmetric localization of these and other determinants
is regulated in early embryos through motor-dependent
physical translocation as well as selective proteolysis.
Results: We show here that the CCCH-type zinc finger
protein OMA-1 serves as a nexus for signals that regu-
late the transition from oogenesis to embryogenesis.
While OMA-1 promotes oocyte maturation during meio-
sis, destruction of OMA-1 is needed during the first cell
division for the initiation of ZIF-1-dependent proteolysis
of cell-fate determinants. Mutations in four conserved
protein kinase genes—mbk-2/Dyrk, kin-19/CK1a, gsk-3,
and cdk-1/CDC2—cause stabilization of OMA-1 protein,
and their phenotypes are partially suppressed by an
oma-1 loss-of-function mutation. OMA-1 proteolysis
also depends on Cyclin B3 and on a ZIF-1-independent
CUL-2-based E3 ubiquitin ligase complex, as well as the
CUL-2-interacting protein ZYG-11 and the Skp1-related
proteins SKR-1 and SKR-2.
Conclusions: Our findings suggest that a CDK1/Cyclin
B3-dependent activity links OMA-1 proteolysis to com-
pletion of the first cell cycle and support a model in
which OMA-1 functions to prevent the premature activa-
tion of cell-fate determinants until after they are asym-
metrically partitioned during the first mitosis.

*Correspondence: craig.mello@umassmed.edu
5 These authors contributed equally to this work.
Introduction

In many organisms, fertilization triggers a remarkable
cascade of events, including cytoskeletal reorganization
and the subsequent asymmetric localization of factors
that regulate gene expression and cell fate [1]. In
C. elegans, the initial anterior-posterior polarity of the
embryo is established after fertilization and completion
of female meiosis. Possible links between oocyte mei-
otic maturation and initial establishment of cell polarity
have been reported previously. For example, prior to fer-
tilization, sperm-derived signals trigger the completion
of the meiosis I to II transition and promote ovulation
[2–4], and after fertilization, interactions between the
sperm-derived astral microtubules and the cortex of
the embryo define the posterior pole. This initial polarity
cue, in turn, triggers the actin/myosin-based partitioning
of both cytoplasmic and cortical factors [5].

Among the developmentally important factors local-
ized during this process are the transcriptional regulator
SKN-1 and several members of the Cys3-His zinc finger
protein family, including PIE-1 and MEX-5 [6–8].

The PIE-1 family member OMA-1 (also called MOE-1)
and its close homolog OMA-2 are required for oocyte
maturation [9, 10]. In the distal gonad, OMA protein lev-
els are low due to GLD-1-dependent translational inhibi-
tion [11]. OMA protein levels begin to increase at the
pachytene stage of meiosis I, reach a maximum level
in the maturing oocyte, and quickly fall to much lower
levels during the first mitosis [9, 10]. A gain-of-function
oma-1 mutation that stabilizes the OMA-1 protein re-
sults in mislocalization of PIE-1 and MEX-5 and induces
an excess-endoderm phenotype that correlates with ec-
topic expression of the proendoderm transcription factor,
SKN-1 [12]. OMA-1 destruction depends on the Dyrk-
kinase homolog MBK-2, which also downregulates the
Katanin homolog MEI-1 at the end of meiosis [13–15].
However, unlike MEI-1 protein, OMA-1 begins to disap-
pear only after the fertilized egg enters the first mitosis.
How the destruction of OMA-1 is timed to coincide with
the first mitosis is not yet known.

The PIE-1 and MEX-5 proteins are present at high lev-
els throughout the oocyte and fertilized egg, but they be-
come localized asymmetrically to opposite ends of the
embryo prior to the first mitosis. The MEX-5 protein is
localized to the anterior half of the fertilized egg via
a mechanism that depends on the PAR proteins [7].
MEX-5, in turn, promotes the posterior localization of
PIE-1, and does so in part through the activation of the
ZIF-1-dependent CUL-2-mediated proteolysis of PIE-1
in the anterior region of the embryo [16].

Here we describe several new mutants with pheno-
types very similar to that of the previously described
oma-1 gain-of-function mutant. These mutations in-
clude two new alleles of oma-1, as well as two special al-
leles of the major cell-cycle kinase cdk-1, one allele of
the 13 kDa CDK-1 binding partner, cks-1, and one allele
of the Dyrk-kinase homolog, mbk-2. We show that all of
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Figure 1. Identification of Extra-Gut Mutants

Partial amino acid sequence alignments for

the MBK-2 protein and other Dyrk-family

kinases including human Dyrk2 and 3, fission

yeast Pom1, and budding yeast Yak1 (A), for

the OMA-1 protein and its C. elegans and

C. briggsae homologs (OMA-2 and CBP05155,

respectively) (B), for the CDK-1 protein and

its human, fruit fly, and budding yeast homo-

logs (C), and for the CKS-1 protein and its hu-

man, fruit fly, and budding yeast homologs

(D). The amino acid substitutions found in

temperature-sensitive or maternal-effect le-

thal alleles of each protein are indicated in

red above the corresponding residue in

each alignment. In (A), an arginine residue

that is required in proline-directed kinases

for P+1 specificity is boxed in red. Potential

MBK-2 phosphorylation sites in OMA-1 and

its homologs are underlined in (B). In (C),

a threonine residue that is phosphorylated

by CAK kinase is boxed in red. The T loop/ac-

tivation domain is underlined.
these mutants exhibit stabilization of OMA-1 and that
all are suppressed in part by downregulating OMA-1 ex-
pression. OMA-1 destruction also requires Cyclin B3,
the GSK-3 and KIN-19/CK1a kinases, a ZIF-1-independent
CUL-2-based E3 ubiquitin ligase complex, the CUL-2-in-
teracting protein ZYG-11, and the Skp1-related proteins
SKR-1 and SKR-2. Our findings support a model in which
OMA-1 functions to prevent the premature activation of
cell-fate determinants and provide insights into regula-
tory mechanisms that link the asymmetric activation of
determinants to the completion of the first cell cycle.

Results and Discussion

Isolation of Extra-Gut Mutants
In very large-scale screens for conditional and maternal-
effect embryonic-lethal mutants, we identified several
mutants with excess endoderm and a suite of other de-
fects in cell polarity and cell-fate specification that were
very similar to the phenotype caused by depletion of the
conserved protein kinase GSK-3 [17] (see Figure S1 in
the Supplemental Data available with this article online).
We later found that these mutants were also similar phe-
notypically to a gain-of-function (gf) allele of the oocyte
maturation factor oma-1 [12]. For example, we found
that all of these mutants exhibit mislocalization of cell-
fate determinants such as PIE-1 and SKN-1 (Figure S2
and data not shown).

Our genetic and molecular studies revealed that these
new mutants include one allele of the Dyrk family kinase
homolog mbk-2(ne3442), two new gain-of-function al-
leles of oma-1(ne411gf and ne3800gf), two alleles of
the cyclin-dependent protein kinase cdk-1(ne236 and
ne2257), and one allele of a highly conserved 13 kDa
CDK-1-interacting protein, cks-1(ne549) (Figure 1).

Degradation of OMA-1 Depends on the MBK-2,
CDK-1, and GSK-3 Kinases

All three gain-of-function oma-1 mutants cause stabili-
zation of the OMA-1 protein ([12] data not shown), and
one of the genes identified in our screen, mbk-2, was re-
cently linked to regulation of OMA-1 destruction [13]. We
therefore asked whether the other newly identified mu-
tant strains might also exhibit OMA-1 stabilization. In
wild-type animals, OMA-1 and its homolog OMA-2 accu-
mulate during oogenesis and remain high until the 1-cell
stage, but rapidly decline during the first and second mi-
tosis [9, 10] (Figure 2 and Figure S3). We examined the
timing of OMA-1 degradation by monitoring the expres-
sion of an OMA-1::GFP protein. We found that OMA-1
protein levels remain high in gsk-3, cdk-1, cks-1, and
mbk-2 mutant embryos (Figure 2, Figure S3, and data
not shown). Furthermore, consistent with the idea that
the cell-fate defects in these mutants result from OMA-1
(and to some extent OMA-2) stabilization, we found
that each mutant was suppressed by loss-of-function
oma-1 (oroma-2) mutations (Table1, anddatanotshown).
In the case of the cdk-1(ne2257) and gsk-3(nr2047) mu-
tants, substantial suppression was observed in oma-1
(te33) mutants (Table 1). The mbk-2(ne3442) mutant was
only weakly suppressed by oma-1(te33) (Table 1).

These results suggest that the mbk-2(ne3442) muta-
tion also affects additional developmental functions
of MBK-2 [13]. Likewise, the incomplete suppression
observed in cdk-1 and gsk-3 backgrounds by oma-
1(te33) loss of function could reflect the existence of
defects in developmental mechanisms unrelated to
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Figure 2. mbk-3, gsk-3, and cdk-1 Are Defec-

tive in OMA-1 Proteolysis

Fluorescence micrographs showing OMA-

1::GFP in wild-type and mutant embryos at

three time points (as indicated). The row la-

bels in this figure are correct and have been

slightly modified from the version of this pa-

per published online December 8, 2005.
Table 1. Phenotypic and Rescue Analysis of Extra-Gut Mutants

Genotype

C-Derived

Guta
EMS Division

(L/R)

Wild-type 0% (0/6) 0% (0/8)

oma-1(zu405)b 80% 50%

gsk-3(nr2047) 43% (6/14) 59% (10/17)

gsk-3(nr2047); oma-1(te33) 14% (1/7) 5.9% (1/17)

cdk-1(ne2257) 36% (4/11) 95% (19/20)

cdk-1(ne2257); oma-1(te33) 10% (1/10) 0% (0/10)

mbk-2(ne3442) 100% (12/12) 92% (11/12)

mbk-2(ne3442) oma-1(te33) 78% (18/23) 41% (7/17)

a C-derived gut specification was followed in laser-operated em-

bryos.
b Phenotype of oma-1 (zu405) was previously scored by Lin [12].
OMA-protein stabilization. However, given that partial
suppression was also observed in oma-2 loss-of-func-
tion mutants, it is likely that the failure to achieve full
suppression reflects, at least in part, the persistence of
the OMA-2 protein in these double mutant backgrounds.
Unfortunately, it is not possible to construct triple mu-
tant embryos lacking both OMA proteins due to the re-
quirement for at least one intact oma gene for oocyte
maturation.

GSK3 and KIN-19 Influence Wnt Signaling Indirectly
through OMA-1

Endoderm specification is regulated by both the Wnt
[18, 19] and Src [20] pathways in C. elegans. A previous
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study has shown that the Wnt-responsive Tcf/Lef-related
protein POP-1 is misregulated in oma-1(zu405gf) mutants
[12], and we found that SRC-1-dependent phospho-
tyrosine staining at the junction between signaling cells
is reduced in oma-1(ne411gf) mutants (data not shown).
These findings suggest that stabilized OMA-1 interferes
with both the Wnt- and Src-signaling pathways, perhaps
by perturbing the localization of SKN-1, PIE-1, and other
upstream maternal determinants that specify the fates of
the signaling and responding cells.

Previous genetic studies have suggested that GSK-3
and a Casein kinase 1a (CK1a) homolog, KIN-19, have
direct functions in the Wnt/wingless pathway for endo-
derm specification and spindle orientation [17, 21, 22].
We found that RNAi targeting kin-19 also causes OMA-1
stabilization (Figure 2 and Figure S3). The finding that
both kinases are required for OMA-1 proteolysis and
that the cell fate and spindle-orientation defects of
gsk-3 mutants are suppressed by lowering OMA-1 levels
suggests that these kinases may indirectly regulate P2/
EMS signaling by lowering OMA protein levels in early
embryos.

OMA-1 Ubiquitination Machinery
In a previous genetic screen, we identified one addi-
tional mutant allele, zu136, which exhibits an extra-
endoderm phenotype similar to that of oma-1(gf). Ge-
netic mapping and complementation analysis revealed
that zu136 is allelic to zyg-11. Although the molecular
function of ZYG-11 is not yet determined, it has been re-
ported that ZYG-11 acts with a CUL-2-based E3 ubiquitin-
ligase to control progress through meiosis II [23, 24].
Degradation of OMA-1 was previously reported to de-
pend on CUL-2 [16]. We therefore examined the role of
ZYG-11 and found that OMA-1 degradation is disrupted
in zyg-11(RNAi) embryos (Figure 2 and Figure S3). Simi-
lar results were obtained in zyg-11(zu136) mutants (data
not shown). Thus, the destruction of OMA-1, like the de-
struction of PIE-1 and other maternal determinants, de-
pends on a CUL-2/E3 complex [16]. However, OMA-1
differs from PIE-1 in that its destruction is not dependent
on the SOCS protein ZIF-1 [16]. This difference in the
adaptor proteins required for destruction of OMA-1 ver-
sus other zinc finger family members may help explain
how OMA-1 destruction precedes and appears to regu-
late the destruction of PIE-1 (see below).

CUL-2 is a core component of the ECS (Elongin
C-Cul2-SOCS box) E3 ubiquitin ligase complex. How-
ever, we found that RNAi targeting elc-1 (elongin C),
elb-1 (elongin B), or both caused, at most, a modest in-
crease in OMA-1 levels (data not shown). Instead, we
found that destruction of OMA-1 is largely dependent
on the Skp1 homologs SKR-1 and SKR-2 (data not
shown). Since it has been reported that both SKR-1
and SKR-2 interact with CUL-1 as an SCF (Skp1-Cul1-
F-box) complex, but not with CUL-2 [25, 26], it is unclear
at present whether SKR-1 and SKR-2 work directly with
CUL-2 in OMA-1 destruction.

The zyg-11, skr-1/skr-2, and cul-2 mutant embryos
have pleiotropic effects on polarity and may thus indi-
rectly affect OMA-1 degradation. In order to test the pos-
sibility that the timing of OMA-1 proteolysis is influenced
by cell-polarity factors, we examined OMA-1 localization
in par-1(RNAi) embryos [27]. We found that OMA-1
degradation is still coupled to the cell cycle and occurs
as in wild-type embryos, at the onset of the first mitosis
(Figure 2). This result suggests that initiation of OMA-1
degradation is not regulated by par-1-dependent ante-
rior-posterior cell polarity. However, whereas OMA-1
disappears more slowly from the posterior blastomere
P1 in wild-type embryos, we observed that OMA-1 in-
stead disappears almost simultaneously from both
2-cell stage blastomeres in par-1 mutants (Figure 2).

mbk-2(ne3442), cdk-1(ne236 and ne2257),
and cks-1(ne549) Are Nonnull Alleles

The newly identified alleles of cdk-1, cks-1, and mbk-2
are nonnull alleles. Null alleles of each of these mutants
exhibit additional phenotypes, including sterility and
cell-division defects (in the case of cdk-1 and cks-1
mutants) and polarity and spindle-positioning defects
(in the case of mbk-2 null mutants) [13–15]. The mbk-2
(ne3442) allele is a temperature-sensitive mutation that
alters a conserved amino acid located just two amino
acids away from an arginine residue required for sub-
strate recognition in proline-directed kinases [28] (Fig-
ure 1A). The proximity of the ne3442 lesion to this con-
served residue could alter substrate recognition by the
mutant protein and may thus explain why this allele is
strongly defective in OMA-1 destruction but exhibits no
apparent defects in other MBK-2 functions required for
microtubule stability and spindle positioning [13–15]
(data not shown).

CDK-1 and its 13 kDa binding partner CKS-1 are es-
sential cell-cycle regulators that are highly conserved
from yeast to humans. Depletion of maternal cdk-1 or
cks-1 by RNAi causes a 1-cell meiotic arrest [29, 30]. In
contrast, cdk-1(ne236), cdk-1(ne2257), and cks-1(ne549)
homozygotes have no obvious larval phenotypes and
produce mutant embryos with normal cell divisions and
well-differentiated cells and tissues (Figure S1, data not
shown). Both CDK-1 mutations alter residues within the
T loop (or activation loop) of CDK-1 (Figure 1C), a region
implicated in cyclin binding [31]. The CKS-1 lesion is pre-
dicted to disrupt a single intramolecular hydrogen bond
based on the crystal structure of CKS-1 [32] (Figure 1D).

CDK1/CDC2 kinases are regulated in part through
their interactions with cyclins. We therefore used RNAi
to search for cyclins required for OMA-1 destruction.
The C. elegans genome contains a single cyclin A gene
(cya-1), three cyclin B genes (cyb-1, cyb-2.1, and cyb-
2.2), and a single cyclin B3 gene (cyb-3) [33]. Despite
the cell-cycle delay associated with cyclin RNAi [34],
we found that OMA-1 protein is degraded with normal
timing, as cells first enter mitosis, in cyclin A- or cyclin
B-depleted embryos (Figure 3). In contrast, we found
that OMA-1 protein is dramatically stabilized in embryos
depleted for cyclin B3 (Figure 3).

We next examined the effects of the mutations in
CDK-1 and CKS-1 proteins on their activities and interac-
tions with each other and with Cyclin B and Cyclin B3. We
found that the CDK-1 protein encoded by the ne2257 mu-
tant allele, CDK-1(I173F), binds to CKS-1, CYB-1, and
CYB-3 as efficiently as does wild-type CDK-1 (Figures
4A, 4B, and 4E) and that both cyclin complexes recov-
ered from cdk-1(ne2257) mutant extracts exhibit near
wild-type activity toward histone H1 (Figures 4A and
4B). In contrast, we found that the CKS-1 protein
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encoded by ne549, CKS-1(Y10F), exhibits reduced bind-
ing to wild-type CDK-1 (Figure 4F) and, although the
binding of CDK-1 to the cyclins was not altered detect-
ably, we found that CDK-1/CYB-3 activity toward histone
H1 is reduced to 60% of wild-type in cks-1(ne549) mu-
tants (Figure 4C). Taken together, these findings suggest
that, consistent with the lack of visible defects in the cell
cycle, these alleles exhibit, at most, weak effects on the
histone-H1 kinase activity of the CYB-1 and CYB-3 com-
plexes.

MBK-2 Phosphorylates OMA-1

Since OMA-1 degradation is impaired in mbk-2, gsk-3,
kin-19, and cdk-1 mutants, we hypothesized that some
or all of these protein kinases may directly phosphorylate
OMA-1. Scanning of the OMA-1 sequence revealed
two potential MBK-2 phosphorylation sites (T239 and
S302) [28] that are conserved among C. elegans and
C. briggsae OMA proteins (Figures 1B and 5A). Interest-
ingly, T239 is located next to proline 240, which is mu-
tated in both the original and our newly identified OMA-1
gain-of-function alleles [12] (Figure 1B). We found that
MBK-2 efficiently phosphorylates both potential MBK-2
sites in these OMA-1 fragments (Figure 5B). Further-
more, when both potential MBK-2 sites were mutated

Figure 3. Cyclin B3 Is Specifically Required for OMA-1 Proteolysis

Nomarski and fluorescence micrographs (upper and lower rows, re-

spectively) showing OMA-1::GFP localization in various cyclin-de-

pleted embryos (as indicated).
(S238A; T239A or S302A), the phosphorylation of the
corresponding fragments was abolished. Importantly,
the proline to leucine change (P240L) found in the
oma-1 gain-of-function mutants (zu405 and ne411) also
prevented phosphorylation at T239 (Figure 5B). Taken
together, these results suggest that MBK-2 can phos-
phorylate OMA-1 on T239 and S302 in vitro and that
phosphorylation of T239 (at least) is important for the de-
struction of OMA-1 protein in vivo.

We did not detect any CDK-1-dependent phosphoryla-
tion of OMA-1 (data not shown), suggesting that CDK-1
may not directly regulate OMA-1. In contrast, we found

Figure 4. Characterization of CDK-1/CKS-1/Cyclin Complexes

(A–C) Characterization of CDK-1/cyclin complexes by coimmuno-

precipitation (left) and by histone-H1 kinase assay (right). Immuno-

precipitations were conducted on wild-type and mutant extracts

with either no antibodies (lanes labeled ‘‘Cont’’) or antibodies spe-

cific for CYB-1 ([A], left) or CYB-3 ([B] and [C], left) and were visual-

ized via Western blotting with Cyclin and CDK-1-specific antisera (as

indicated). CYB-3 antisera recognize a prominent background band

(*) that is not depleted in cyb-3 (RNAi) mutant extracts (data not

shown). Complexes recovered in (A)–(C) (left) were incubated with

Histone H1 and radioactive ATP, and phosphorylation of histone-

H1 was measured by autoradiography ([A]–[C], right). For compari-

son, CYB-1 and CYB-3 kinase activities were detected in the same

blot ([B], right), while a longer exposure of the CYB-1 blot is also pro-

vided ([A], right). The difference in the amount of active CDK-1 recov-

ered by the CYB-1 and CBY-3 sera could merely reflect differences

in the nature of the antibodies and may not reflect the actual relative

levels or activities of these complexes in vivo. For example, the

CYB-1 antibodies may interfere with or reduce CDK-1 binding or

activity.

(D) Bacterially expressed wild-type CKS-1 and mutant CKS-1 (F10Y,

encoded by ne549) were visualized by Coomassie staining.

(E and F) Characterization of CDK-1/CKS-1 complexes by pull-

down assay with CKS-1-associated beads in cdk-1 (ne2257) mutant

(E) and CKS-1 or CKS-1 (F10Y)-associated beads in wild-type

extract (F).
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Figure 5. Analysis of OMA-1 Phosphorylation

by MBK-2

(A) Alignments of wild-type (wt) and mutant

OMA-1 protein fragments. Amino acids al-

tered in the mutant isoforms are shown in

bold type. Putative MBK-2 target sites are

indicated in red.

(B) Kinase assays performed by incubating

the indicated wt and mutant OMA-1 sub-

strates with wt and kinase dead (KD)

MBK-2. Kinase activity is measured by auto-

radiography to detect radioactive 32P incor-

poration into the OMA-1 substrates (top),

while relative amount of protein used as sub-

strate in each lane indicated by Coomassie

staining (bottom).
that both human CK1 (a very close homolog of KIN-19)
and C. elegans GSK-3 exhibit weak activity toward full-
length OMA-1 protein and that this activity is enhanced
after pretreatment of OMA-1 with MBK-2 (Figure S4).
These findings suggest that KIN-19 and GSK-3 may di-
rectly phosphorylate OMA-1 in an MBK-2-dependent
manner.

OMA-1 Inhibits ZIF-1-Dependent Proteolysis of PIE-1
Stabilization of OMA-1 in early embryos is correlated
with the persistent expression of several other key de-
velopmental regulators [12] (Figure S2). This raises the
possibility that the OMA proteins may normally function
in early embryos to prevent the premature destruction
of these developmental regulators. The soma-specific
degradation of PIE-1 and of other CCCH-type zinc finger
proteins such as MEX-1 and POS-1 depends on a
CUL-2/E3 complex and its substrate-specific compo-
nent ZIF-1 [16]. In order to ask if stabilized OMA-1 inter-
feres with ZIF-1-dependent proteolysis, we employed
an assay system described by DeRenzo et al. [16] that
utilizes a par-1 mutant background and a GFP construct
fused to the first zinc-finger domain (ZF1) of PIE-1
(GFP::ZF1) to follow ZIF-1-dependent destruction. In
par-1 mutants, GFP::ZF1 protein is expressed uniformly
in all blastomeres until the 2-cell stage but is degraded
rapidly when the embryo divides from two to four cells.
This degradation is dependent on ZIF-1. We found that
in gsk-3(RNAi), cdk-1(ne2257), and oma-1(ne411gf) mu-
tants, the GFP::ZF1 signal remains high from the 4- to 8-
cell stage (Figure 6A), suggesting that stabilized OMA-1
interferes with ZIF-1-dependent proteolysis. It was pre-
viously shown that MEX-5 activates ZIF-1-dependent
proteolysis [16]. Since both MEX-5 and OMA-1 are
CCCH-type zinc finger proteins similar to the RNA bind-
ing protein TIS11 [35], it is possible that they exert their
effects by regulating the translation of the zif-1 mRNA.
OMA-1 Destruction and Its Implications
Our findings support a model in which OMA-1 functions
to prevent the premature destruction of maternal factors
until after the first asymmetric division of the embryo
(Figure 6B). In oocytes and newly fertilized embryos,
PIE-1 and MEX-5 coexist within the cytoplasm. How-
ever, after fertilization, these proteins rapidly become
localized to opposite regions of the 1-cell embryo in
a manner that depends on the PAR proteins and the ac-
tin cytoskeleton [36]. During this process, the majority of
the PIE-1 protein becomes localized to the posterior of
the 1-cell embryo. Following the first mitosis, MEX-5-
dependent activity, now enriched in the anterior blasto-
mere, promotes the ZIF-1-dependent proteolysis of any
residual PIE-1 protein present in the anterior of the em-
bryo. Conceivably, OMA-1 inhibits ZIF-1-dependent pro-
teolysis to permit PIE-1 and MEX-5 to coexist in the em-
bryo prior to the first asymmetric division. Destruction of
OMA-1 at the end of the first mitosis might then be an
important trigger that helps to drive the asymmetric ex-
pression of PIE-1.

According to this model, when MBK-2 phosphory-
lates and promotes destruction of the microtubule-
severing Katanin homolog MEI-1 during meiosis (Stitzel
et al., this issue of Current Biology [37]), MBK-2 may si-
multaneously phosphorylate OMA-1 (this work, [37, 38]).
However, unlike MEI-1, OMA-1 is not degraded until after
the first mitosis. Instead, further regulatory events involv-
ing KIN-19, GSK-3, and CDK-1 are required for OMA-1
destruction. These events may include direct phosphor-
ylations that depend on a conformational change in
OMA-1 or changes in the localization of the regulators.
Consistent with this idea, it has been recently shown
that OMA-1 is directly phosphorylated by GSK-3 and
that this phosphorylation is important for OMA-1 de-
struction [38]. Regulation by CDK-1 provides an impor-
tant link between OMA-1 proteolysis and completion
of the first cell cycle and may thus guarantee that ZIF-
1/CUL-2/E3-dependent proteolysis commences only
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Figure 6. OMA-1 Degradation Regulates ZIF-

1-Dependent Proteolysis

(A) Fluorescence micrographs showing

GFP::ZF1 (PIE-1) localization in par-1(RNAi)

single mutant embryos and in par-1(RNAi);

gsk-3(RNAi), par-1(RNAi); cdk-1(ne2257),

and par-1(RNAi); oma-1(ne411, gain-of-func-

tion) double mutant embryos. Sequential im-

ages were taken from individual embryos at

the indicated cell stages. At least three em-

bryos were followed from the 1-cell stage

for each mutant and similar results were ob-

tained.

(B) Model for how OMA-1 degradation may

determine the timing of ZIF-1-dependent pro-

teolysis. Schematic diagrams showing the lo-

calization of MEX-5 (green), PIE-1 (red), and

OMA-1 (blue). High levels of OMA-1, indi-

cated by the bright blue color of the oocyte

and 1-cell stage embryos, prevents ZIF-1-de-

pendent proteolysis of PIE-1 (indicated by the

genetic bar in bold between the red and blue

diagrams). Although the initial phosphoryla-

tion of OMA-1 by MBK-2 may occur during

meiosis, subsequent phosphorylations by

KIN-19 and GSK-3 may be delayed or are in-

sufficient to induce OMA-1 destruction, until

after CDK-1/CYB-3 is activated at the first mi-

tosis (indicated by the fading blue color). The

degradation of OMA-1 at this time permits the

activation of MEX-5/ZIF-1-dependent prote-

olysis of PIE-1 in the anterior daughter cell.

Panel (B) in the figure shown here has been

corrected from the one originally published

online, where the gradient distribution of

MEX-5 in the 1-cell stage was not indicated.
after MEX-5 and PIE-1 are physically partitioned by cy-
tokinesis.

There are precedents for CDK1/CDC2 as a regulator
of cell polarity. For example, a mutation that reduces
Drosophila CDK1 activity results in a loss of polarity in
neuroblasts, supporting a model in which different
thresholds of CDK1 kinase activity are required for the
cell-cycle and polarity functions of CDK1 [39]. In con-
trast, our cdk-1(ne2257) mutants exhibit wild-type ki-
nase activity toward histone H1 and may thus perturb
the recognition of only a subset of CDK-1 substrates,
or may perturb kinase-independent activities of the
CKS-1 and CDK-1 proteins [40]. How cell-fate specifica-
tion and polarity-signaling mechanisms are linked to the
cell cycle remains almost entirely unknown at present.
The special alleles of cdk-1 and cks-1 described here
provide rare and important clues to these fundamental
mechanisms.
Experimental Procedures

Genetics

All strains were handled and cultured as described by Bei et al. [20].

The temperature-sensitive embryonic lethal screening was per-

formed as described in Pang et al. [15].

RNA Interference

RNA interference (RNAi) was performed as described in Bei et al. [20]

by feeding or injecting double-stranded (ds) RNA at concentration of

1 mg/ml for single dsRNA and 1 mg/ml each for double dsRNAs injec-

tion. Embryos collected 24 hr after injection were scored for pheno-

types at the appropriate temperature.

Plasmid Construction

A full-length MBK-2 cDNA was cloned in the BamHI/XhoI sites of the

pCCM803 vector downstream of the CMV promoter and in-frame

with three copies of the flag epitope tag. This cDNA includes an ad-

ditional exon at the 30 end (exon 7) that is not annotated in Wormbase

[15]. The MBK-2 kinase dead (KD) mutation (K196R) in the kinase

catalytic domain of MBK-2 was created by in vitro mutagenesis. A
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full-length GSK-3 cDNA was cloned in the HindIII/XbaI sites of

pCCM802 downstream of the CMV promoter and in-frame with three

copies of the myc epitope tag. To express GST-OMA-1 fusion pro-

teins, we amplified various coding regions of OMA-1 by PCR and in-

serted the PCR fragments into EcoRI and SalI sites of pET42a. The

following plasmids were used to express GST-OMA-1 constructs

in E. coli, BL21(de3), as follows: B1096 (full-length OMA-1); B1088

(COOH-terminal aa 215–407); B1169 (OMA-1 aa 215–407, T239A);

B1176 (OMA-1 aa 215–407, T239A; S302A); B1082S1 (OMA-1 aa

196–251); B1082S2 (OMA-1 aa 196–251, P240L); B1082S3 (OMA-1

aa 196–251, S238A; T239A); B1084S7 (OMA-1 aa 289–319); and

B1084S8 (OMA-1 aa 289–319, S302A).

Cell Culture and Transfection

COS cells were maintained in Dulbecco’s Modified Eagle Medium

(GIBCO) supplemented with 10% fetal bovine serum (HyClone). For

transfection experiments, cells grown on 10 cm dishes were trans-

fected with 2 mg of plasmid DNA using Effectene reagent (QIAGEN)

according to manufacturer’s instructions.

Immunoprecipitation and Kinase Assays

COS cells were transfected with plasmids expressing flag-tagged

MBK-2 or myc-tagged GSK-3. After 24 hr of incubation, the cells

were lysed in lysis buffer (50 mM Tris HCl [pH 7.4], 1% NP-40,

150 mM NaCl, 5 mM DTT, 50 mM b-glycerophosphate, 1 mM sodium

vanadate [ortho], 0.05 mM NaF, 0.1 mM PMSF supplemented with

Complete Mini protease inhibitor cocktail tablet [Roche]), and insol-

uble material was removed by centrifugation. Flag-MBK-2 and myc-

GSK-3 were then immunoprecipitated from the lysates by anti-flag or

anti-myc antibodies conjugated to agarose beads (Sigma). Beads

were washed three times with lysis buffer and twice with kinase

buffer, and then aliquoted for kinase assays.

For CK1 kinase assays, N-terminally GST-tagged rat CK1d pur-

chased from Upstate (14-427) was used. Kinase assays were done

in kinase buffer (50 mM HEPES [pH 7.4], 10 mM MgCl2, 10 mM

DTT, 0.5 mM NaF, 0.1 mM Sodium vanadate [ortho], 100 mM ATP,

5 mg/ml leupeptin, and [g-32P]ATP [6000 Ci/mmol; Amersham]) for

15 min at 25ºC. For MBK-2/CK1 or MBK-2/GSK-3 sequential kinase

assays, substrate was first incubated with MBK-2 immobilized on

agarose beads in the presence of 100 mM of nonradiolabeled ATP,

and then transferred to a fresh tube to which CK1 or GSK-3 and

[g-32P]ATP were added.

For CDK-1 immunoprecipitation and kinase assay, wild-type(N2),

cdk-1(ne2257), and cks-1(ne549) mutants were grown at 15ºC and

shifted to 25ºC at L4 stage. Eggs were collected from each strain at

25ºC and lysed in ice-cold CDK-1 buffer (50 mM Tris HCl [pH 7.4],

150 mM NaCl, 15 mM MgCl2, 1% NP-40, 60 mM b-glycerophosphate,

1 mM DTT, 0.1 mM Sodium vanadate [ortho], 0.1 mM PMSF, sup-

plemented with Complete Mini protease inhibitor cocktail tablet

[Roche]). After insoluble material was removed by centrifugation

twice, CYB-1 or CYB-3 proteins were immunoprecipitated from the

lysates by 1 hr incubation with anti-CYB-1 (1/5 dilution) or anti-

CYB-3 (1/5 dilution) antibodies followed by another 1 hr incubation

with Protein G beads (Roche) at 4ºC. Beads were washed three times

with CDK-1 buffer and then boiled with SDS-PAGE sample buffer for

immunoblotting. For kinase assays, beads were washed once more

with 25 mM MOPS (pH 7.2), aliquoted, suspended into 6 ml of CDK-1

assay buffer (25 mM MOPS [pH 7.2], 60 mM b-glycerophosphate,

15 mM MgCl2, 1 mM DTT, 1 mM PMSF, 0.1 mM Sodium vanadate

[ortho]), and incubated at room temperature for 5 min. Prewarmed

beads were added to 10 ml of cocktail containing 25 mM MOPS (pH

7.2), 2 mg/ml Histone H1 (Roche), and [g-32P]ATP (6000 Ci/mmol;

Amersham) and incubated for 15 min at 25ºC. For CKS-1 pull-down

assays, wild-type and mutant (F10Y encoded by ne549) CKS-1::

HIS(3x) proteins were expressed in E. coli, purified via Ni column,

and crosslinked to Sepharose 4B (Pharmacia Biotech) beads. Ex-

tracts from wild-type and cdk-1(ne2257) embryos grown at 25ºC

were incubated with CKS-1 beads, and associated CDK-1 proteins

were detected by immunoblotting.

Live Embryo Imaging and Antibody Staining

Embryos harboring various GFP constructs were mounted in water

on glass slides covered with 2% agarose. DIC and GFP images

were captured at every 20 s with a Leica confocal microscope. For
GFP images, at least three embryos were followed from the 1-cell

stage in each strain and similar results were obtained. SKN-1 stain-

ing was performed as described previously [8] and multiple embryos

were scored.

Supplemental Data

Supplemental Data include three figures and five movies and can be

found with this article online at http://www.current-biology.com/cgi/

content/full/16/1/47/DC1/.
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Note Added in Proof

In the version of this paper originally published online on December

8, 2005, Figure 6B did not indicate the gradient distribution of MEX-5

in the 1-cell stage. The figure has been corrected here.

Reference [38], which had previously been in press, has been up-

dated to include full publication information for the article.
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