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A NOTE ON ITERATIVE REFINEMENT SCHEMES 
FOR SYLVESTER OPERATOR EQUATIONS 

AND ALAIN 

1. I) be a Banach space over the complex field Cc, (13(B), 1. I), the space of bounded linear 
operators in B, m a positive integer, and X = Bm the product space. For 5 = (~1,. ,xm) E X, 
we set jlzjl = (CL”=, Iz~/~)~/~, and given an operator A : B -+ B, we write A its natural ex- 
tension to X : Az = (Asl,. . . , AZ,,). It can be shown that A E .C(B) implies A E 13(X) 
and [[All = IAl. For A E L(B), sp(A) is the spectrum of A and re(A) the resolvent set. For 
z E re(A), R(A,z) = (A - ~1)~’ E L(B) is the resolvent. For 8 = (e&j) E Cmxm, we define 
2e = cc:“=, eilxir. . . ,C:n=lei,~.i) E x, and the following inequality holds: llz0ll < ~~~~~~8~F, 
where I . IF is the Frobenius norm. Let there be given K E L(B) and 8 E Cmxm such that 0 is 
invertible and 

SP(K) n sp(e) = 0. (1.1) 

We define the linear operator G : X + X by Gx = I(a: - 28. Hypothesis (1.1) implies that G 
has an inverse G-’ E l(X). We are interested in solving the equation 

Gx = y, (1.2) 

where y E X is given. Let I<,, E C(B), IL E N, be a sequence of operators. We define G, E C(X) 

by 
vz E X’, G,x = &x - xe. (1.3) 

In what follows, we suppose that 

I< E f_(B) is a compact operator, 

1C, is pointwise convergent to I<, 

(K, - lC)Kn converges in norm to 0. 

(1.4) 

(1.5) 

(1.6) 

We shall prove that under these hypotheses, given any y E X, the approximate equation 

Gnxn = y (1.7) 

is uniquely solvable for all n large enough. 
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THEOREM 1.1. For each t E re(K) there exists n(z) E N such that for all n > n(z), t E re(K,) 
and c(z) = sup ]R(K,, z) 1 is a finite constant. 

n>n(z) 

PROOF. See [l]. I 

THEOREM 1.2. There exists n(6) E N such that Co = s_rryO) ]]G;l]] is a finite constant. 

PROOF. By Schur’s theorem, there exists a unitary matrix Q E Cmxm such that 7 = Q’eQ = 
(rzj) is upper triangular. Condition (1.1) implies that for n large enough and j = 1, . . . , m, 
rJi E re(K,). The equation (1.7) can be written as 

I&x:, - x;r = y’, (1.8) 

where xk = x,Q and y’ = yQ. If X’ = (x;~,. . . , XL,, ) and y’ = (y{, . . , yk), then the solution 
rk E X is given by 

x;* = R(K,, 711) Y:, xi,, 

Since x = .x/Q* and ]Q*]F = ]Q]F = 6, the result follows. I 

THEOREM 1.3. x, converges to x as 1% tends to infinity. 

PROOF. Sincez,~x=(G,‘-G-‘)y=G,‘(G-G,)G-’y=G,’(K-I(,)z,andsinceI(,is 
pointwise convergent to K, then the uniform boundedness of G;’ is sufficient to the convergence 
of Ic, to z. I 

2. ITERATIVE REFINEMENT SCHEMES 

THEOREM 2.1. For 11 large enough but fixed, the iterative refinement scheme 

x(.(o) = x _ G-ly 
n- R 1 

x(k+l) = x(k) _ G,‘(Kx(“) _ x(“)(j _ y)T 
- k > 0. (2.1) 

converges linearly to z Gas k + CXI. Moreover, there exist Q > 0 and yTL E IO, l[ such that, for all 
k > 0, max{ llxCzk) - z/j, Ilx(2’+1) - XII} < CE(~,~)~. 

PROOF. We have x(~+~) - :I’ = [G;l(&- 1()12 (xck) - x). But [G;‘(lr’,, - 1()j2 = G;‘((& 
_ E)l<,G,1 + (I( - KVL)G;lIC), which tends to 0 in the norm of l(X) since G-’ is uniformly 

bounded, (K,, - K)KTL tends to 0 in the norm of L(B), (I( - I(,)G;’ is point;ise convergent 
to 0, and ;IL is compact because I< is compact. I 

THEOREM 2.2. For 71 large enough but fixed, the iterative refinement scheme 

k 2 0, 
(2.2) 

converges linearly to .7: as k + 00. Moreover, there exist 0 > 0 and 6,, E IO, l[ such that, for all 

k 2 0, /lx@) - x)1 2 /3(&)% 

PROOF. We have x(~+‘) - z = G;’ ((I(n - K)K) (( z(~) - x)8-‘). But K, - K is pointwise 
convergent to 0, K is compact, and G;’ is uniformly bounded so that G,‘(K, - K)K converges 
to 0 in the norm of C(X). I 

3. NUMERICAL EXAMPLES 

Let (w~~)Y=~ be the weights and (tjn)jn_l the knots of a quadrature formula, pointwise conver- 
gent on the space C[O, l] of complex valued continuous functions defined on [0, l]. Let K be an 
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integral operator defined by a continuous kernel K. and K, the NystrGm approximation associated 
with the given quadrature formula: 

n 

All the hypotheses of Section 1 are then satisfied. Computational experiments have been done 
with the compounded trapezoidal quadrature rule based upon n equally spaced knots. The 
kernel K and the matrix 8 are given by 

ri(s,t) = 
10t(1 - s), ifO<t<s<l, 

lOs(1 -t), 
and 0 = 

ifO<s<t<l, 

Hence, sp(8) = {X}, and the departure from normality is of the order of y2. The second member 
y = (yl,y2,1~3) is given by yl(s) = sin lOs, ~2(s) = es, and ys(s) = s2. Iterations have been 
stopped when the residual is less than 5.0 lo- l4 Evaluations of K have been done with a fine . 
discretization KN, with N > n. Table 3.1 shows the number of iterations performed by each 
method for different values of n and N. Table 3.2 shows the first twelve residuals and their ratios 
for each method in one of the cases in Table 3.1. 

Table 3.1. Number of iterations needed to obtain a residual less than 5.OE - 14. 

n iL’ x 1, Method A Method B 

3 100 - 1.0 0.0 30 16 

3 100 -1.0 10.0 40 21 

5 100 -1.0 10.0 22 11 

10 150 I .o 0.0 78 36 

10 200 0.8 .I.0 34 16 

10 250 2.0 20.0 15 7 

Table 3.2. Residuals alld their ratios in the case R = 5, N = 100. 

Iteration 

0 

1 

2 

3 

-1 

5 

c, 

7 

x 

9 

10 

11 

12 

Residual of it Ratio Residual of B Ratio 

7.9Lc + 0 <5.7E + 0 

:(.0/x + 0 0.3x 5.OE - 1 0.08 

7.5E - 1 0.25 3.GE - 2 0.07 

2.4E - I 0.32 2.1E - 3 0.05 

,l.DE - 2 0.20 l.lE - .1 0.05 

1.31,: ~ 2 0.213 5.4E - G 0.05 

2.5E - 3 0.19 2.GE - 7 0.05 

6.21: - .l 0 ‘25 1.2E - 8 0.05 

I.lE - .1 0.17 5.2E - 10 0.04 

2.(iR - 5 0.2.1 2.2E - 11 0.04 

‘4.71,’ - (i 0.18 9.5E - 13 0.04 

I .OE - 6 0.21 3.7E - 14 0.04 

1.8L;’ - 7 0.18 

4. FINAL COMMENTS 

Method (2.2) has a better rate of convergence than (2.1). This phenomenon was observed in the 
case of Fredholm equations of the second kind [2]. However, (2.2) needs one additional evaluation 
of K. Method (2.2) appears to be more stable than (2.1). There exist ill-conditioned situations 
in which (2.1) diverges and (2.2) converges. We recall that the condition number of (1.7) depends 
on the departure from normality of 8. In conclusion, we suggest that (2.2) should be prefered to 
(2.1). For the numerical resolution of (1.7), the reader is refered to [3]. 
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