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Abstract—We propose two iterative schemes to refine an approximate solution of a Sylvester op-
erator equation Kz — z6 = y, where K is a bounded linear operator in a Banach space B, K its
extension to the product space X = B™, and § € C™X™_ An approximate solution , is obtained
by means of an approximation K, to K. Then, x, is refined by two iterative processes involving the
resolution, for en, of Knen — enf = r,, with different second members 7. In these processes, K is

only used for evaluations.

1. MATHEMATICAL BACKGROUND

Let (B,!|.]) be a Banach space over the complex field C, {£{B), |-}, the space of bounded linear
operators in B, m a positive integer, and X = B™ the product space. For z = (z1,...,zm) € X,
we set |lz]] = (301, |z:/?)'/2, and given an operator A : B — B, we write A its natural ex-

tension to X : Az = (Axy,...,Azy). It can be shown that A € L(B) implies A € L(X)
and ||A|| = |A|. For A € L(B), sp(4) is the spectrum of A and re(A) the resolvent set. For

Y 5> A ] 1 - N NN ~mXm

z € re(A), R(A,z) = (A — 2I)~! € L(B) is the resolvent. For § = {#;;) € C™*™, we define

0 = (331, 0a s,

k)
where | Ir is the Frobeni

mvertlble and

=1
s n

X 1 e gl all(l S

sp(K) Nsp(8) = 0.

S Bimzi) € X, and the following inequality holds: ||z8| < ||z|||8]F,
orm. Let there be given K € ['(R\ and 8 € CM™X™ guch that 8 is

(1.1)

We define the linear operator G : X — X by Gz = Kz — z6. Hypothesis (1.1) implies that G

has an inverse G~! € £(X). We are interested in solving the equation

Gz =y, (1.2)
where y € X is given. Let K, € L(B), n € N, be a sequence of operators. We define G,, € L(X)
by
vV c X, Grpz = Kyx — 26. (1.3)
Tn what follauwe wo giinnoge that
411 wiliau 1uliuwo, wo ou I}IUDC viiau
K € L(B) is a compact operator, (1.4)
K, is pointwise convergent to K, (1.5)
(K,, — K)K,, converges in norm to 0. (1.6)
We shall prove that under these hypotheses, given any y € X, the approximate equation
Gnn =1y (1.7)
is uniquely solvable for all n large enough.
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THEOREM 1.1. For each z € re(K) there exists n(z) € N such that for all n > n(z), z € re(K,)

and ¢(z) = sup |R(Ky,z)| is a finite constant.
n>n(z)
PROOF. See [1]. 1

THEOREM 1.2. There exists n(#) € N such that Co = sup |G,}| is a finite constant.
n>n(0)

PROOF. By Schur’s theorem, there exists a unitary matrix Q@ € C™*™ such that 7 = Q*6Q =
(1i;) is upper triangular. Condition (1.1) implies that for n large enough and j = 1,...,m,
7;; € re(K,). The equation (1.7) can be written as

Knal, — 27 =y, (1.8)

where z;, = 2,Q and ' = yQ. If 2’ = (z,,...,2],,) and ¥ = (y{,...,yl,), then the solution
zl, € X is given by

-1
fl:lln = R(Kanll)yi, I;n = R(Kn,’r]]) (y; + ZTHI;") y J = 2’ ce., M.

i=1

Since z = 2'Q* and |Q*|r = |Q|r = y/m, the result follows. 1

THEOREM 1.3. x, converges to r as n tends to infinity.

PROOF. Since zp, —z = (G,;' =G )y =G, Y G- G,)G 'y = G; (K — Ky,)x, and since K, is
pointwise convergent to K, then the uniform boundedness of G;;! is sufficient to the convergence
of x,, to x. ]

2. ITERATIVE REFINEMENT SCHEMES

THEOREM 2.1. For n large enough but fixed, the iterative refinement scheme

2@ =2, =Gy, ™D =W G K™ — 2 Rg — ), k>0, (2.1)

converges linearly to x as k — oo. Moreover, there exist & > 0 and v, € ]0,1[ such that, for all
k>0, max{||a®* —zf, |2+ —z[|]} < a(y,)*.

PrROOF. We have z**2) — ¢ = [G (K, - K)]2 (¥ — z). But [G;; ' (Kn —K)]Q = G (K,
- K)K,G;! + (K — K,)G;;' K), which tends to 0 in the norm of £(X) since G;;! is uniformly
bounded, (K, — K)K,, tends to 0 in the norm of £L(B), (K — K,)G;;! is pointwise convergent
to 0, and K is compact because K is compact. T |

THEOREM 2.2. For n large enough but fixed, the iterative refinement scheme

2 =2, = Gly, YD = (K2 —y)67,

k1) — p(k+1/2) Gr—ll(ﬁx(k+l/2) _ pk+1/2)g _ y), k>0, (2:2)

converges linearly to x as k — oo. Moreover, there exist § > 0 and §,, € |0,1] such that, for all
k>0, (|2 — 2] < B(6,)F.

PrOOF. We have z**D — ¢ = G;! ((Kn — K)K) ((z® — 2)6~!). But K, — K is pointwise
convergent to 0, K is compact, and G;;! is uniformly bounded so that G,‘Ll(& — K)K converges
to 0 in the norm of £{X). 1

3. NUMERICAL EXAMPLES

Let (wjn)}—1 be the weights and (¢;,)7_, the knots of a quadrature formula, pointwise conver-
gent on the space C[0, 1] of complex valued continuous functions defined on [0,1]. Let K be an
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[v o]
o

integral operator defined by a continuous kernel « and K, the Nystrom approximation associated
with the given quadrature formula:

n
w fa N N e
= 2 Wink(8,Lin) P\ljn), € U, 1].
j=

d N

(An‘P)(S)

[
<

—

All the hypotheses of Section 1 are then satisfied. Computational experiments have been done
with the compounded trapezoidal quadrature rule based upon n equally spaced knots. The

Lornsl « and the matrix 8 are oi
Kerne: K and tne magrix

C(oMi-s), fo<t<s<1, (A v 0
Kk(s,t) = . and §=10 X 0.
V10s(1 =), if0<s<t<l, \V ) /\}

Hence, sp(d) = {\}, and the departure from normality is of the order of 2. The second member

Yy = (y1 Y2,Y3) is given by y1(s) = sin10s, ya(s) = €°, and y3(s) = s%. Iterations have been
RS T T I 1. than 5.0 10~ 14 Tialiintimme ~F I Liasrn bomen daco with a fine
bbUppUU williell l;llU IUDIUUGI 1D 1E8S hll amn J.u - . LValuavions Ol A [ave O0€en aoiie Il a 1111

discretization Ky, with N > n. Table 3.1 shows the number of iterations performed by each
method for different values of n and N. Table 3.2 shows the first twelve residuals and their ratios
for each method in one of the cases in Table 3.1.

Table 3.1. Number of iterations needed to obtain a residual less than 5.0F — 14.

n N A v Method A Method B
3 100 -1.0 0.0 30 16
3 100 -1.0 10.0 40 21

5 100 —-1.0 10.0 22 11

10 150 1.0 0.0 78 36

10 200 0.8 1.0 34 16

10 250 2.0 20.0 15 7

Table 3.2. Residuals and their ratios in the case n = 5, N = 100.

[teration Residual of A Ratio Residual of B Ratio
0 TOK+0 STE+0
1 3.0/4+0 0.38 5.0F — 1 0.08
2 TH5FE =1 (.25 3.6k -2 0.07
3 24 — 1 0.32 21K -3 0.05
4 19F -2 .20 1.1E — 4 0.05
5 1.3 -2 0.26 54E — 6 0.05
G 250 -3 0.19 26E -7 0.05
7 6.210 — 4 0.25 1.2/ -8 0.05
11K -4 0.17 5.2FE - 10 0.04
¢ 26 -5 0.24 22F - 11 0.04
10 4.7E -G 0.18 9.5F — 13 0.04
11 1.0F -6 0.21 3.7FE - 14 0.04
12 1.8 -7 0.18
4. FINAL COMMENTS

Method (2.2) has a better rate of convergence than (2.1). This phenomenon was observed in the

case of Fredholm equations of the second kind [‘)1 However. (2 9) needs aone additional svaliiatinn
€ase O I'reGiloim equations ol the second kind 14)- AOWEVEL, (4.4, NECAS Onf aGalviCnal €vaiualion

of K. Method (2.2) appears to be more stable than (2.1). There exist ill-conditioned situations
in which (2.1) diverges and (2.2) converges. We recall that the condition number of (1.7) depends
on the departure from normality of §. In conclusion, we suggest that (2.2) should be prefered to
(2.1). For the numerical resolution of (1.7), the reader is refered to [3].
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