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have been proved before.

MATHEMATICS SUBJECT CLASSIFICATION:

Abstract Considering five different parameters, we obtain some new Hilbert-type integral inequal-
ities for functions f(x), g(x) in L2[0, 00). Then, we extract from our results some special cases which
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1. Introduction

We study advanced variants of the classical integral Hilbert-
type inequality [1]

X (/Oxgk’(x)dx) W, (1)

unless f(x)=0 or g(x)=0, where k> 1, k' = k/(k—1).
Inequality (1) would be false for some f(x), g(x) if & cosec(n/k)
were replaced by any smaller number see [1]. Inequality (1)
with its improvements has played a fundamental role in the
development of many mathematical branches see for instance
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[2-4]. We centre our attention on the case when k = k' = 2
in (1), which takes the following form:

/03C /Ox/‘%gy) dx dy < n(/0ocj‘z(x)dx/omgz()c)dx)1/27
J(x), g(x) € L?[0, 00). (2)

Inequality (2) has many generalizations concerning the denom-
inator of the left-hand side see for example [5,6,2,3,7].

Our main goal is to obtain new generalizations of Hilbert-
type inequality (2). In the following section, we state the main
result of this paper of which many special cases can be
obtained.

2. Main results and discussion

In this section, we state and discuss our main theorem together
with its special cases.

For three different parameters r, z, 4 € (0,1], we have the
following general result.

Theorem 2.1. Suppose that 0 < a < band0 < r,t, A< 1. Then
for functions f(x), g(x) € L*[0,00) the following Hilbert-type
inequality holds:
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N3 (C) = —4 d - u\ ) du < 0.
a X‘+y d dC ! 0 (1+1/l)1+/'
{/ (ﬁ(l’ q) = 2hy,;(1) ¥(a,b,r,t,2) x = )fz(x)dx Therefore, h,,,({) is strictly decreasing on (0,1]. Hence

I) , y 1/2

[ (50~ 2 ) Wl )]

(3)

where o =1 — <4”+’ ’))L, o =1-— (M> B(O, ¢p) is the
(r+0)4 (r+0)4

B — function with p ==, q:),—T, ) _(»+’[)/7 q =
Y (a,b,r,t, 1) =

2 — (r+1)2

1/8
(r+1)2

4r 7 ((lbﬂ,l)) (w;)) 5
(1+r (r+0)%

alr+% 1/8 _ l——’
(/;O:W») ,and h..;(0) = fo (1+u)’ (L) T du.

As a special case of Theorem 2.1 when ¢ = r, we have the
following corollary:

Corollary 2.2. Suppose that 0 < a < band 0 < t, A< 1. Then
for functions f(x), g(x) € L’[0,00) the following Hilbert-type
inequality holds:

/ / xf—O—y @ dy
. ﬁ(% ) (1 _ (E)l */4)
x ( / ") d / - ig(x) dx>

Another special case of Theorem 2.1 is when ¢ = r = 1, this
leads to the following corollary (which has been proved in [5]):

1/2

Corollary  2.3. Let
g(x) € L’[0,00). Then

[ [ es <o(53)(-6)")
« ( / () d /a'bxlffng(x) dx>

Before proving Theorem 2.1, let us state and prove the fol-
lowing two lemmas.

0<a<b and 0<1t<I1, f(x),

12

Lemma 2.4. For parameters r, t, 2 where 0 < t, A <
h;,[,/»(g) as

1, define

(r+0)2

e (] N
o) =0 [ (0) e @

Then h,,,({) is strictly decreasing, i.e.,
The equality holds when { = 1.

e (8) 2 hyoa(1).

Proof. For { € (0,1], we have

d - G 1
71rt/l = 7 i 1 d
O = /0 (T+uy

Integrating by parts gives

hyy(0) = h,,,(1). This completes the proof. [

In the light of Lemma 2.4, one can think of the following
lemma:

Lemma 2.5. For 0 < a <bandr,t, A€ (0,1], define

(04

b 1 x s
Wwri(a, b, x) ;:/ W v dy, x € [a,b], (5)

and

b 1 ¥
Wr‘t,/'.(a7 b7 y) = / m (})

Then, the following inequalities hold under the condition that
4 X e(0,1]
X' b )

17(%1)2.

dx, y € [a,b]. (6)

Wb ) < (Bp,a) - 200 (W(a b, 3) £57) ),
()

and

vaiasbi) < (B0 ) = 2600 (P (abur ) ) ),
(®)

whereo, o, p,q,p . q,¥Y(a,b,rt,2), VY (ab,rtA)andh(.) are
as defined in Theorem 2.1.

Proof. Putting u = }Y—: in (5) gives
1—("2)/
) du

x* *© 1 1
Wreal b, x) = (/ (1+uy G
a'/x" 1 1 l*%
f/ ; (7) du
0 (I4u) \u
L)),
by (14 u)” \U

where . =1 —rd — 2 —+ '2—/ Use the definition of the Beta func-
tion (ﬁ(@, o) = j:) i 1+(:)fl)+¢ dz) in the first integral and the sub-

stitution u =

- L'in the third integral to have

x% ﬂ’/.Yr 1 1 XII :
wea(a, b, x) = - (ﬁ(Pv q) _/0 (1 +u) (;) du

,\"'/bl 17(31;’1’)/‘.
L)
TN

r+l)/

H»r

where p = and ¢ = A — . Now applying Lemma 2.4
to the second and third terms 1n (9) leads to
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(B(Pv q)—2 hl',f,/i(l)(q’(a, byr,t,7) x(/i‘r-})u’.))’

which is (7). Similarly, we can prove (8). This completes the
proof. [

3. Proving the main result

Proof of Theorem 2.1. By Cauchy’s inequality, we can estimate
the left-hand side of (3) as follows

/ah /abé%gy(,y))zdmy
(1,(;1)).) w
L) T S e
(r+1)%

[T e

bopb 2 Pany 12
X// g@)ﬁ(z)( )dxdy
a a (X"“l‘y’)ﬁ X
12

b b
— {/ wyia(a, b, x)f(X) dx/ Wy (a,b,9)g(») dy} ,

where w, , ;(a,b,x) and w, , ,(a,b,y) are as defined in (5) and (6)
respectively. Applying Lemma 2.5 to inequality (10) yields (3)
as required. This compelets the proof. [
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