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Abstract

It is shown that the quark—antiquark coalescence mechanism for pion production allows to explain the small pseudorapidity
width of the balance function observed for central collisions of heavy ions, provided effects of the finite acceptance region and
of the transverse flow are taken into account. In contrast, the standard hadronic cluster model is not compatible with this data.
0 2003 Elsevier B.V.Open access under CC BY license

1. Recently, measurements of balance functions [1] in central collisions of heavy ions were reported by the
STAR Collaboration [2]. The striking feature observed in the data is the small width of the balance functions (in
rapidity and in pseudorapidity), as compared to the expectations from the expanding thermally equilibrated quark—
gluon plasma [3]. This indicates that hadronization occurs only at the very late stage of the development of the
system [4].

One may then ask if the hadronization properties of the system produced in central collisions of heavy ions (as
reflected in the balance function) are similar to those observed in nucleon—nucleon collisions. To investigate this
problem we have evaluated the expected width of the balance function in pseudorapidity, using the pion cluster
model which some time ago was successfully applied to nucleon—nucleon data [5]. Corrections due to the finite
acceptance region of [2] and the effects of the transverse flow were included.

Our estimates show that to obtain consistency with the data of [2] for central collisions, the decay width of the
pion cluster (in its rest frame) must be substantially narrower than that corresponding to isotropic decay. Thus one
must conclude that the hadronization of the system produced in heavy-ion collisions is rather different from that
produced in hadronic collisions, where isotropic clusters can approximately account for the data [5].

Looking for a more adequate description, we considered the coalescence model [6], which we generalized to
include correlations. We thus assume that the hadronization proceeds in three steps. First, partons form neutral
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1 Note that in this model the guark—gluon structure of the system is entirely ignored.
2 This conclusion is not surprising since the measured rapidity width of the balance function in nucleon—nucleon collisions [1] is about twice
as large as that in central heavy-ion collisions [2]. Our calculation shows that neither finite acceptance nor transverse flow effects can account
for this difference.
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clusters. Subsequently, each cluster decays into some number of gluons angljoper (eitheruii or dd).*
Quarks and antiquarks then recombine into positive, negative and neutral pions. The remaining gluons form new
clusters and the process is continuing until all partons are transformed into hadrons.

We show that this generalized coalescence model gives a good description of the data from [2], provided the
decay of clusters into quarks and antiquarks is isotropic, which seems a rather natural assumption. The obtained
reduction of the width of the balance function (essential to account for the data) is a natural consequence of the
coalescence process. It follows simply from the fact that the dispersion of the average of two independent random
variables is smaller than the dispersion of each of them by facfor

It should be emphasized that we are discussing here only the angular distributions (expressed in terms of
pseudorapidity). The natural assumption of approximately isotropic and uncorrelated cluster decay is then sufficient
to describe the width of the balance function. This is not the case for rapidity distribution where more detailed
information on cluster decay is needed.

Our conclusion is that the generalized coalescence model provides a natural explanation of the very narrow
width of the balance function observed in [2]. This result is a consequence of a very general phenomenon,
characteristic for coalescence mechanism and thus, in our opinion, it does not depend on details of the specific
structure of correlations between partons proposed in this Letter. Since, as we have seen, the model based solely
on hadronic degrees of freedom is not adequate, we feel that our result provides a rather strong argument in favour
of the coalescence scenario.

2. The balance functions can be expressed in terms of the single and double particle densities [3,7]. Assuming,
for simplicity, the(+—) symmetry we have

B(A2|A1) = D(—, A2|+, A1) — D(+, A2+, Ap) (1)
with
Ja, dn2 [, dmid®ny /(dn1dn)

D(+, Az2]+, A1) = D(—, Ag|—, A1) = o
Jaydnsdn/dn
Sa,dnz [ dnid®ny_/(dn1dnp)
D(—, Ag|+, A1) = D(+, Ag|—, Ap) = 222 A "
fAl dnsdny/dny

wheredn /dn anddn/dn1 dn are the corresponding particle densities in pseudorapidity.
The measurements of STAR require both particles to be in an intepttal 51, 72 < A (acceptance) while the
difference of (pseudo) rapidities is kefpted This suggests a change of variables:
+
n1 ; n2 _ . (4)
The integrations must be performed owerwith § being fixed. This implies that must be kept inside the interval
—A<Lz< AwhereA=A—|§]|/2.
Thus the balance function measured in [2] is given by

nL—n2=>29,

f‘A-A_ dz[d?ny_)dzds —d?ny /dzdS]

Bs(8; A) = = (%)
Jo S dng dny jdn

3 We consider just one pair for simplicity. This is not essential for the conclusions.
4 Throughout this Letter by quarks and antiquarks we always mean—in the spirit of the coalescence modehstiheentquarks and
antiquarks.
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3. Consider first a model in which pions are produced in neutral, isotropic clusters. It is well known that such
models can account for the gross features of the nucleon—nucleon data [5]. The distribution of clusters is denoted
by p.(Y), whereY is the cluster pseudorapidity.

To simplify the problem we assume that clusters decay into two charged particles and any number of neutrals.

The distribution in cluster decay is

dNi_
d77+d —
whereh(z — Y) is responsible for correlations:= 1 if the decay products are uncorrelated.
The single particle distribution in cluster decagh — Y) is obtained by integration of (6) over rapidity of one

particle. Both distributions are normalized to unity.
The distribution of all particles is the convolution

=hz=Y)fny =Y)f(n-=7), (6)

dl’l+
dny

with identical formula for negative particles.

To evaluate the two-particle distributions one has to take into account that some pairs may come from different
clusters and some others from one cluster. As is well known (and can be easily confirmed by explicit calculation)
the contribution from different clusters cancels in the balance function and thug-prlypairs from one cluster
do contribute. Their distribution is given by

/ dY pe(¥)p(ny — Y) @

d2n+_
d77+ d)’},
Introducing (8) into (5) we have

=depc(Y)h(Z—Y)f(n+—Y)f(77— -Y). (8)

A 4 [dY pe(Vh(z —Y Y —Y
B(S;A):f—A z[dY pe(Y)h(z—=Y) f(ny = Y) f(n )‘ ©

[AdnfdY p(n—Y)

4. To continue, we perform a simple exercise, assuming that all functions are Gaussians.We take

(Ne) y? u2 u2
pc(Y)—A\/—eXp( AZ)’ fw) = ffexp< ) h(u)=\/1+f2/ZgzeXp<—?>~ (10)

Using (10) one can evaluate the single particle distribution in cluster decay:

1
p(n) = ——=ex

p(_n_z) oo pYIEI/4%2 (11)
a\/w a?)’ T 1t f2)2¢2
This gives
i~ )
dns  Jr(A2+a yEm
dY p(Y)h(z — ¥ Y ¥y = (V) ——exp =2 ) e~ & 12
/ PN =) f (= ¥) (2 = ¥) = (Ne)—— xp(—z—fz)ﬁ xp(—ﬁ) (12)

5 The normalization of the expression flofu) guarantees the correct normalization in (6).
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with

_ f2+2A%0+ £2/2¢7
21+ f2/2¢7)

This result introduced into (9) allows to express the integrals paedy in terms of the error function. The result
is

F? (13)

1 82 \ erfl[(A —18]/2)/F]
B(S; A) = - 14
6 4) f/2n EXp( 2f2) erflA /v/AZ + a?] (1)

which completes the calculation.
This exercise shows that—in the limit of large acceptance—the width of the balance function is determined by
the parametef which describes the cluster decay.

5. These results can be used to evaluate expectations from isotropically decaying clusters which were found
roughly compatible with the data on hadron—hadron collisions [5]. In this case the cluster decay distribution is

p(n) = (15)

1
2(coshy)?
giving the cluster decay widtkin|) = log2. This can be approximated by a Gaussian of the form (11) with
a =log2,/7 ~ 1.23. Ignoring for the time being the effect of finite acceptance, we thus conclude from (11) that
the expected width of the balance functigé|) must be larger thanv/2/./7 ~ 0.98 and thus by far exceeds the
one measured in [2].

Finite acceptanceA = 1.3) of the STAR measurements [2] reduces the observed width of the balance function,
as seen from (14). This is not sufficient, however, to bring the data in agreement with the model of isotropic
pion clusters. The widtk|s|) calculated from (11) for isotropic clusters wijfi ¢ = 0 (uncorrelated decay) equals
0.67 atA = 3.5 (this value ofA is roughly consistent with data for central collisions [8]), and does not change
significantly whenA varies around this value. Since, furthermdié}) increases with increasingy/ g, there is no
chance to meet the experimental value &%)

Another effect which may be responsible for the small width of the balance function is the transverse flow.
Indeed, the clusters which are isotropic in their rest frame will not appear isotropic when moving with a transverse
velocity. As shown in [9], the distribution (15) is then—to a good approximation—replaced by

coshy |

, 16
2cosln [1+ sink? Y, tank? 5]3/2 (16)

p(n) =

whereY is the transverse rapidity, = 0.5log[(1+ v)/(1 — v)], andv is the transverse velocity of the cluster.

We have calculated the width of the balance function with (16) approximated by a G&usbkidre same
width as that of (16). The results are shown in Fig. 1 whesp is plotted versus, for A = 3.5. The measured
values for most central events (as reported in [2]) are also indicated. One sees that the calculated width decrease:
with increasing transverse velocity of clusters. One also sees that to obtain quantitative agreement with data the
transverse velocity must approacl8€ Such a large value seems difficult to reconcile with other estimates of the
transverse velocity [10].

6 It was shown in [9] that this is a good approximation.
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Fig. 1. Width of balance function versus velocity of transverse flow.

6. The pion cluster model discussed so far ignores entirely the parton structure of the final system of hadrons.
One may therefore not be surprised that it fails to describe the data from central heavy-ion collisions. This argument
suggests to try a model in which the parton structure is built in from the beginning. To this end we investigated
coalescence model [6] which we generalized to include the correlations inside the system.

To introduce correlations we assume that—just before hadronization—the QGP forms the weakly correlated
neutral clusters. The clusters decay into quarks (see Footnote 4), antiquarks and gluons. One cluster provides one
(see Footnote 3y pair (eitheruii or dd) and any number of gluons. In the final step quarks and antiquarks
coalesce into observed hadrons. The remaining gluons form again neutral clusters and the process continues.

Thus the model we consider is basically the well-known coalescence model [6] supplemented by a prescription
for correlations. Since the coalescence model was rather successful in description of single particle spectra in
central collisions of heavy ions [6,11], it seems worthwhile to investigate its extension to correlation phenomena
(see also [12]). Admittedly, the proposed extension is very simple—perhaps even simplistic. It contains, however,
all ingredients necessary to formulate and study the width of balance functions which is of interest in this Letter.
Therefore we do not find necessary at the moment to formulate and discuss a more general and/or detailed approach

7. To evaluate the balance function we need the distribution of pairs of charged pions, same charge as well as
opposite charge. The pairs of same charge can be constructed by coalescence of the decay products of four cluster
(two U-clusters and twa-clusters)’ The distribution of the pairs of opposite charge consists of two terms: one
identical to the distribution of same charge pairs and another one, arising from coalescence of the decay products
of two clusters (ond/-cluster and oneD-cluster). Thus the contributions involving four clusters exactly cancel
and we only have to consider the distribution of pions of opposite charge which result from coalescence of decay
products of ond/-cluster and oné-cluster.

7 To shorten the wording, we call by-cluster the one decaying inta: and byD-cluster the one decaying inthi. Their distributions and
decay properties are identical.
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This distribution can be expressed as

+ -
01 = [ avoaro patre, av) [ angans sy = ¥o) £y = Yooy ("2 < vy )

Na +n;
X/dnddn,;fq(nd—YD)fq(ng—YD)hq< 5 d _YD)

Nu + Mg Nd + Na
8| ny — =48] n. - =—2
I
where f, andh, are responsible for the distribution of quarks in decay of eiieror D-cluster, while®
summarizes the properties of the coalescence process. Finally¢, Ay) denotes the joint distribution df -
and D-clusters with average rapidif, where
Yy +7Yp

YCZT, Ay =Yy — Yp. (18)

To simplify the discussion, in the following we shall assume hafactorizes:

}D[nu —n31®[na — nal. (17)

oG (Yc, Ay) = pc(Yc)p(Ay). (19)
Taking advantage of the delta functions we can rewrite (17) as

,0(77+,n—)=dechYPG(Yc,AY)
u u_ Uy +u_
x /du+du, fq(77+ + % - YC)fq (n + - Yc>hq (z + +T — YC>

X fq(’? - % - C)fq<’7+ - % - C)hq<Z— # - YC)
XDy + Ay)®(u_ + Ay), (20)

wherez = (ny +1n-)/2.
To proceed, we again consider Gaussians

1 2,2 a? x2 1 2,2
_ —x°/c — | _ — —x°/
fo(x) = Cﬁe , hg(x)=,/1+ T exp[ h21|’ D (x) = pﬁe P (21)

With this Ansatz, the integrals ovét du_ can be performed. The result is

4z — Yc)? 2
p(nasn) = Ce= [ ave peveyexp - X (1 < (22)
2 2h2

where § = ny — n— andC is a constant, irrelevant for further discussion.
The formula (22) can be now introduced into (5) and thus the balance function can be calculated. In the limit of
very large acceptance we obtain

1 2,2
B;(8; A) psoo = ﬁ678 /e . (23)

One sees that, in this limit, the width of the balance function depends on one parameter which, to a large degree,
determines also the distribution in decay of a cluster into free quark and antiquark. Indeed, using (17) and (21), one
can show that the decay distribution in the rest frame of the cluster is given by

pp(u) = ——= NG eXD[ n”} (24)
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where

_ pl+c%/an?

BP=2 T
“1+c22m2

(25)

8. It seems natural to assume that, in their rest frame, clusters decay isotropically. This means that their
decay distribution is given by (15), the same as for the clusters of pions considered before. It follows that, for
an uncorrelated decay (i ~ 0), the parameterg in (10) andc in (21) are identical. Comparing (14) and (23)
we thus conclude that in the coalescence model the width of the balance function is expected to be k§2factor
smaller than that obtained for pion clusters. The reason is clear: the dispersion of the pion rapidity is reduced by
precisely this factor when the pion is formed by random coalescence of a quark and an antiquark.

Repeating the argument of the Section 5, we thus conclude that—ignoring for the moment the corrections for
finite acceptance and effects of transverse flow—the width of the balance function is expected to lie between 0.69
and 0.98 (the lower limit is obtained far= (c/ k)% = 0, i.e., when the decay products of a cluster are uncorrelated).

To compare this result with the data we have to estimate the corrections. To this end we take the Gaussian ansatz
for pc:

1 2,42
Yo)= ——e Yc/A 26
pc(Yc) Aﬁe (26)

which allows to evaluate explicitly the integrals in (22). We obtain

1 seyceerfl2(A —11/2)/b)

B;(8; A) = —— , 27
©:4) aved erfl2A /v/b2 + ¢2] @7
where
2 4A2 1 2 2 2
p2 . O HAATA+c%/2h%) (28)

14 c2/2h2

Using (27) one can now follow the argument of Section 5 and evaluate the width of the balance function, taking
into account the finite acceptance and the transverse flow. In Fig. 1 the width of the balance function evaluated
from (27) is plotted versus for A = 3.5 and two values of the parametet= 2/ h2. One sees that these effects
reduce substantially the calculated width. The value found in [2] for central collisions is reproduced with transverse
velocity below 0.5, consistent with other estimates of the transverse flow [10].

One also sees from the Fig. 1 that in the coalescence model the calculated width is smaller than the value
0.65 found in [2] for peripheral collisions. This is not surprising: in peripheral collisions a substantial part of the
particle production should resemble the elementary nucleon—nucleon collisions which are not expected to follow
the coalescence mechanism [11] and are characterized by a significantly larger width of the balance function [1,
5]. As seen from Fig. 1, the width of the balance function calculated from the pion cluster model (adequate for
nucleon—nucleon collisions) is indeed close to 0.65.

9. In conclusion, we have shown that the coalescence mechanism implies a substantial reduction of the
pseudorapidity width of the balance function. This allows to explain the small width observed for central collisions
of heavy ions [2], provided the corrections due to the finite acceptance region and to the transverse flow are taken
into account. This result supports the coalescence mechanism as the final stage of the process of hadronization.
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