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Abstract

It is shown that the quark–antiquark coalescence mechanism for pion production allows to explain the small pseud
width of the balance function observed for central collisions of heavy ions, provided effects of the finite acceptance re
of the transverse flow are taken into account. In contrast, the standard hadronic cluster model is not compatible with t
 2003 Elsevier B.V.

1. Recently, measurements of balance functions [1] in central collisions of heavy ions were reported
STAR Collaboration [2]. The striking feature observed in the data is the small width of the balance functi
rapidity and in pseudorapidity), as compared to the expectations from the expanding thermally equilibrated
gluon plasma [3]. This indicates that hadronization occurs only at the very late stage of the developmen
system [4].

One may then ask if the hadronization properties of the system produced in central collisions of heavy
reflected in the balance function) are similar to those observed in nucleon–nucleon collisions. To investig
problem we have evaluated the expected width of the balance function in pseudorapidity, using the pion
model which some time ago was successfully applied to nucleon–nucleon data [5]. Corrections due to t1

acceptance region of [2] and the effects of the transverse flow were included.
Our estimates show that to obtain consistency with the data of [2] for central collisions, the decay width

pion cluster (in its rest frame) must be substantially narrower than that corresponding to isotropic decay. T
must conclude that the hadronization of the system produced in heavy-ion collisions is rather different fr
produced in hadronic collisions, where isotropic clusters can approximately account for the data [5].2

Looking for a more adequate description, we considered the coalescence model [6], which we gener
include correlations. We thus assume that the hadronization proceeds in three steps. First, partons for

E-mail address:bialas@th.if.uj.edu.pl (A. Bialas).
1 Note that in this model the quark–gluon structure of the system is entirely ignored.
2 This conclusion is not surprising since the measured rapidity width of the balance function in nucleon–nucleon collisions [1] is ab

as large as that in central heavy-ion collisions [2]. Our calculation shows that neither finite acceptance nor transverse flow effects ca
for this difference.
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clusters. Subsequently, each cluster decays into some number of gluons and one3 qq̄ pair (eitheruū or dd̄).4

Quarks and antiquarks then recombine into positive, negative and neutral pions. The remaining gluons f
clusters and the process is continuing until all partons are transformed into hadrons.

We show that this generalized coalescence model gives a good description of the data from [2], prov
decay of clusters into quarks and antiquarks is isotropic, which seems a rather natural assumption. The
reduction of the width of the balance function (essential to account for the data) is a natural consequen
coalescence process. It follows simply from the fact that the dispersion of the average of two independen
variables is smaller than the dispersion of each of them by factor

√
2.

It should be emphasized that we are discussing here only the angular distributions (expressed in
pseudorapidity). The natural assumption of approximately isotropic and uncorrelated cluster decay is then s
to describe the width of the balance function. This is not the case for rapidity distribution where more d
information on cluster decay is needed.

Our conclusion is that the generalized coalescence model provides a natural explanation of the very
width of the balance function observed in [2]. This result is a consequence of a very general pheno
characteristic for coalescence mechanism and thus, in our opinion, it does not depend on details of the
structure of correlations between partons proposed in this Letter. Since, as we have seen, the model ba
on hadronic degrees of freedom is not adequate, we feel that our result provides a rather strong argument
of the coalescence scenario.

2. The balance functions can be expressed in terms of the single and double particle densities [3,7]. As
for simplicity, the(+−) symmetry we have

(1)B(∆2|∆1)=D(−,∆2|+,∆1)−D(+,∆2|+,∆1)

with

(2)D(+,∆2|+,∆1)=D(−,∆2|−,∆1)=
∫
∆2
dη2

∫
∆1
dη1d

2n++/(dη1dη2)∫
∆1
dη+ dn+/dη+

,

(3)D(−,∆2|+,∆1)=D(+,∆2|−,∆1)=
∫
∆2
dη2

∫
∆1
dη1d

2n+−/(dη1dη2)∫
∆1
dη+ dn+/dη+

,

wheredn/dη anddn/dη1 dη2 are the corresponding particle densities in pseudorapidity.
The measurements of STAR require both particles to be in an interval−∆� η1, η2 �∆ (acceptance) while th

difference of (pseudo) rapidities is keptfixed. This suggests a change of variables:

(4)η1 − η2 = δ,
η1 + η2

2
= z.

The integrations must be performed overdz with δ being fixed. This implies thatz must be kept inside the interv
−∆̄� z� ∆̄ where∆̄=∆− |δ|/2.

Thus the balance function measured in [2] is given by

(5)Bs(δ;∆)=
∫ −∆̄
−∆̄ dz [d2n+−/dzdδ− d2n++/dzdδ]∫ +∆

−∆ dη+ dn+/dη+
.

3 We consider just one pair for simplicity. This is not essential for the conclusions.
4 Throughout this Letter by quarks and antiquarks we always mean—in the spirit of the coalescence model—theconstituentquarks and

antiquarks.
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3. Consider first a model in which pions are produced in neutral, isotropic clusters. It is well known tha
models can account for the gross features of the nucleon–nucleon data [5]. The distribution of clusters is
by ρc(Y ), whereY is the cluster pseudorapidity.

To simplify the problem we assume that clusters decay into two charged particles and any number of n
The distribution in cluster decay is

(6)
dN+−
dη+ dη−

= h(z− Y )f (η+ − Y )f (η− − Y ),

whereh(z− Y ) is responsible for correlations:h≡ 1 if the decay products are uncorrelated.
The single particle distribution in cluster decayρ(η+ − Y ) is obtained by integration of (6) over rapidity of on

particle. Both distributions are normalized to unity.
The distribution of all particles is the convolution

(7)
dn+
dη+

=
∫
dY ρc(Y )ρ(η+ − Y )

with identical formula for negative particles.
To evaluate the two-particle distributions one has to take into account that some pairs may come from

clusters and some others from one cluster. As is well known (and can be easily confirmed by explicit calc
the contribution from different clusters cancels in the balance function and thus only(+−) pairs from one cluste
do contribute. Their distribution is given by

(8)
d2n+−
dη+ dη−

=
∫
dY ρc(Y )h(z− Y )f (η+ − Y )f (η− − Y ).

Introducing (8) into (5) we have

(9)B(δ;∆)=
∫ +∆̄
−∆̄ dz

∫
dY ρc(Y )h(z− Y )f (η+ − Y )f (η− − Y )∫ ∆

−∆ dη
∫
dY ρ(η− Y )

.

4. To continue, we perform a simple exercise, assuming that all functions are Gaussians. We take5

(10)ρc(Y )= 〈Nc〉
A

√
π

exp

(
−Y

2

A2

)
, f (u)= 1

f
√
π

exp

(
− u2

f 2

)
, h(u)=

√
1+ f 2/2g2 exp

(
−u

2

g2

)
.

Using (10) one can evaluate the single particle distribution in cluster decay:

(11)ρ(η)= 1

a
√
π

exp

(
−η

2

a2

)
, a = f

√
1+ f 2/4g2√
1+ f 2/2g2

.

This gives

dn+
dη+

= 〈Nc〉√
π(A2 + a2)

exp

[
− η2+
A2 + a2

]
,

(12)
∫
dY ρc(Y )h(z− Y )f (η1 − Y )f (η2 − Y )= 〈Nc〉 1

f
√

2π
exp

(
− δ2

2f 2

)
1

F
√
π

exp

(
− z2

F 2

)

5 The normalization of the expression forh(u) guarantees the correct normalization in (6).
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(13)F 2 = f 2 + 2A2[1+ f 2/2g2]
2[1+ f 2/2g2] .

This result introduced into (9) allows to express the integrals overz andy in terms of the error function. The resu
is

(14)B(δ;∆)= 1

f
√

2π
exp

(
− δ2

2f 2

)
erf[(∆− |δ|/2)/F ]
erf[∆/√A2 + a2 ]

which completes the calculation.
This exercise shows that—in the limit of large acceptance—the width of the balance function is determ

the parameterf which describes the cluster decay.

5. These results can be used to evaluate expectations from isotropically decaying clusters which we
roughly compatible with the data on hadron–hadron collisions [5]. In this case the cluster decay distributio

(15)ρ(η)= 1

2(coshη)2

giving the cluster decay width〈|η|〉 = log2. This can be approximated by a Gaussian of the form (11)
a = log2

√
π ≈ 1.23. Ignoring for the time being the effect of finite acceptance, we thus conclude from (11

the expected width of the balance function〈|δ|〉 must be larger thana
√

2/
√
π ≈ 0.98 and thus by far exceeds th

one measured in [2].
Finite acceptance (∆= 1.3) of the STAR measurements [2] reduces the observed width of the balance fun

as seen from (14). This is not sufficient, however, to bring the data in agreement with the model of is
pion clusters. The width〈|δ|〉 calculated from (11) for isotropic clusters withf/g = 0 (uncorrelated decay) equa
0.67 atA = 3.5 (this value ofA is roughly consistent with data for central collisions [8]), and does not ch
significantly whenA varies around this value. Since, furthermore,〈|δ|〉 increases with increasingf/g, there is no
chance to meet the experimental value of 0.55.

Another effect which may be responsible for the small width of the balance function is the transvers
Indeed, the clusters which are isotropic in their rest frame will not appear isotropic when moving with a tran
velocity. As shown in [9], the distribution (15) is then—to a good approximation—replaced by

(16)ρ(η)= 1

2 cosh2η

coshY⊥
[1+ sinh2Y⊥ tanh2η]3/2 ,

whereY⊥ is the transverse rapidity,Y⊥ = 0.5 log[(1+ v)/(1 − v)], andv is the transverse velocity of the cluste
We have calculated the width of the balance function with (16) approximated by a Gaussian6 of the same

width as that of (16). The results are shown in Fig. 1 where〈|δ|〉 is plotted versusv, for A= 3.5. The measure
values for most central events (as reported in [2]) are also indicated. One sees that the calculated width d
with increasing transverse velocity of clusters. One also sees that to obtain quantitative agreement with
transverse velocity must approach 0.8c. Such a large value seems difficult to reconcile with other estimates o
transverse velocity [10].

6 It was shown in [9] that this is a good approximation.



A. Bialas / Physics Letters B 579 (2004) 31–38 35

adrons.
rgument
tigated

rrelated
vides one
arks
ues.
cription

pectra in
omena
owever,
Letter.

approach.

s well as
ur clusters
: one
products

ncel
f decay
Fig. 1. Width of balance function versus velocity of transverse flow.

6. The pion cluster model discussed so far ignores entirely the parton structure of the final system of h
One may therefore not be surprised that it fails to describe the data from central heavy-ion collisions. This a
suggests to try a model in which the parton structure is built in from the beginning. To this end we inves
coalescence model [6] which we generalized to include the correlations inside the system.

To introduce correlations we assume that—just before hadronization—the QGP forms the weakly co
neutral clusters. The clusters decay into quarks (see Footnote 4), antiquarks and gluons. One cluster pro
(see Footnote 3)qq̄ pair (eitheruū or dd̄) and any number of gluons. In the final step quarks and antiqu
coalesce into observed hadrons. The remaining gluons form again neutral clusters and the process contin

Thus the model we consider is basically the well-known coalescence model [6] supplemented by a pres
for correlations. Since the coalescence model was rather successful in description of single particle s
central collisions of heavy ions [6,11], it seems worthwhile to investigate its extension to correlation phen
(see also [12]). Admittedly, the proposed extension is very simple—perhaps even simplistic. It contains, h
all ingredients necessary to formulate and study the width of balance functions which is of interest in this
Therefore we do not find necessary at the moment to formulate and discuss a more general and/or detailed

7. To evaluate the balance function we need the distribution of pairs of charged pions, same charge a
opposite charge. The pairs of same charge can be constructed by coalescence of the decay products of fo
(two U -clusters and twoD-clusters).7 The distribution of the pairs of opposite charge consists of two terms
identical to the distribution of same charge pairs and another one, arising from coalescence of the decay
of two clusters (oneU -cluster and oneD-cluster). Thus the contributions involving four clusters exactly ca
and we only have to consider the distribution of pions of opposite charge which result from coalescence o
products of oneU -cluster and oneD-cluster.

7 To shorten the wording, we call byU -cluster the one decaying intouū and byD-cluster the one decaying intodd̄ . Their distributions and
decay properties are identical.
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limit of

degree,
21), one
This distribution can be expressed as

ρ(η+, η−)=
∫
dYU dYD ρG(YC,∆Y )

∫
dηu dηū fq(ηu − YU)fq(ηū − YU)hq

(
ηu + ηū

2
− YU

)

×
∫
dηd dηd̄ fq(ηd − YD)fq(ηd̄ − YD)hq

(
ηd + ηd̄

2
− YD

)

(17)× δ

[
η+ − ηu + ηd̄

2

]
δ

[
η− − ηd + ηū

2

]
Φ[ηu − ηd̄ ]Φ[ηd − ηū],

wherefq and hq are responsible for the distribution of quarks in decay of eitherU - or D-cluster, whileΦ
summarizes the properties of the coalescence process. Finally,ρG(YC,∆Y ) denotes the joint distribution ofU -
andD-clusters with average rapidityYC , where

(18)YC = YU + YD

2
, ∆Y = YU − YD.

To simplify the discussion, in the following we shall assume thatρG factorizes:

(19)ρG(YC,∆Y )= ρC(YC)ρ(∆Y ).

Taking advantage of the delta functions we can rewrite (17) as

ρ(η+, η−)=
∫
dYC d∆Y ρG(YC,∆Y )

×
∫
du+ du− fq

(
η+ + u+

2
− YC

)
fq

(
η− + u−

2
− YC

)
hq

(
z+ u+ + u−

4
− YC

)

× fq

(
η− − u−

2
− YC

)
fq

(
η+ − u+

2
− YC

)
hq

(
z− u+ + u−

4
− YC

)
(20)×Φ(u+ +∆Y )Φ(u− +∆Y ),

wherez= (η+ + η−)/2.
To proceed, we again consider Gaussians

(21)fq(x)= 1

c
√
π
e−x2/c2

, hq(x)=
√

1+ a2

2h2
exp

[
−x

2

h2

]
, Φ(x)= 1

p
√
π
e−x2/p2

.

With this Ansatz, the integrals overdu+ du− can be performed. The result is

(22)ρ(η+, η−)= Ce−δ2/c2
∫
dYC ρC(YC)exp

[
−4[z− YC ]2

c2

(
1+ c2

2h2

)]
,

where δ = η+ − η− andC is a constant, irrelevant for further discussion.
The formula (22) can be now introduced into (5) and thus the balance function can be calculated. In the

very large acceptance we obtain

(23)Bs(δ;∆)∆→∞ = 1

c
√
π
e−δ2/c2

.

One sees that, in this limit, the width of the balance function depends on one parameter which, to a large
determines also the distribution in decay of a cluster into free quark and antiquark. Indeed, using (17) and (
can show that the decay distribution in the rest frame of the cluster is given by

(24)ρp(ηu)= 1

d
√
π

exp

[
−η

2
u

d2

]
,
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where

(25)d2 = c2 1+ c2/4h2

1+ c2/2h2 .

8. It seems natural to assume that, in their rest frame, clusters decay isotropically. This means th
decay distribution is given by (15), the same as for the clusters of pions considered before. It follows t
an uncorrelated decay (c/h ≈ 0), the parametersf in (10) andc in (21) are identical. Comparing (14) and (2
we thus conclude that in the coalescence model the width of the balance function is expected to be by fa

√
2

smaller than that obtained for pion clusters. The reason is clear: the dispersion of the pion rapidity is red
precisely this factor when the pion is formed by random coalescence of a quark and an antiquark.

Repeating the argument of the Section 5, we thus conclude that—ignoring for the moment the correc
finite acceptance and effects of transverse flow—the width of the balance function is expected to lie betw
and 0.98 (the lower limit is obtained forα = (c/h)2 = 0, i.e., when the decay products of a cluster are uncorrela

To compare this result with the data we have to estimate the corrections. To this end we take the Gaussi
for ρC :

(26)ρC(YC)= 1

A
√
π
e−Y 2

C/A
2

which allows to evaluate explicitly the integrals in (22). We obtain

(27)Bs(δ;∆)= 1

c
√
π
e−δ2/c2 erf[2(∆− |δ|/2)/b]

erf[2∆/√b2 + c2 ] ,

where

(28)b2 = c2 + 4A2(1+ c2/2h2)

1+ c2/2h2 .

Using (27) one can now follow the argument of Section 5 and evaluate the width of the balance function
into account the finite acceptance and the transverse flow. In Fig. 1 the width of the balance function e
from (27) is plotted versusv for A= 3.5 and two values of the parameterα = c2/h2. One sees that these effec
reduce substantially the calculated width. The value found in [2] for central collisions is reproduced with tran
velocity below 0.5, consistent with other estimates of the transverse flow [10].

One also sees from the Fig. 1 that in the coalescence model the calculated width is smaller than t
0.65 found in [2] for peripheral collisions. This is not surprising: in peripheral collisions a substantial part
particle production should resemble the elementary nucleon–nucleon collisions which are not expected t
the coalescence mechanism [11] and are characterized by a significantly larger width of the balance fun
5]. As seen from Fig. 1, the width of the balance function calculated from the pion cluster model (adequ
nucleon–nucleon collisions) is indeed close to 0.65.

9. In conclusion, we have shown that the coalescence mechanism implies a substantial reductio
pseudorapidity width of the balance function. This allows to explain the small width observed for central co
of heavy ions [2], provided the corrections due to the finite acceptance region and to the transverse flow a
into account. This result supports the coalescence mechanism as the final stage of the process of hadron
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