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We investigate a general structure of lepton mixing matrix resulting from the SUF (3) gauge family
model with an appropriate vacuum structure of SUF (3) symmetry breaking. It is shown that the lepton
mixing matrix can be parametrized by using the Wolfenstein parametrization method to characterize its
deviation from the tri-bimaximal mixing. A general analysis for the allowed leptonic CP-violating phase
δe and the leptonic Wolfenstein parameters λe , Ae , ρe is carried out based on the observed lepton mixing
angles. We demonstrate how the leptonic CP violation correlates to the leptonic Wolfenstein parameters.
It is found that the phase δe is strongly constrained and only a large or nearly maximal leptonic CP-
violating phase |δe | � 3π/4 ∼ π/2 is favorable when λe > 0.15. In particular, when taking λe to be the
Cabibbo angle λe � λ � 0.225, a sensible result for leptonic Wolfenstein parameters and CP violation is
obtained with Ae = 1.40, ρe = 0.20, δe ∼ 101.76◦, which is compatible with the one in quark sector.
An interesting correlation between leptons and quarks is observed, which indicates a possible common
origin of masses and mixing for the charged leptons and quarks.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The standard model (SM) has been well established with the
observation of the last particle predicted in the SM, i.e., Higgs par-
ticle, at the LHC experiment [1,2]. The neutrino oscillations with
massive neutrinos [3–13] provide a strong evidence and a useful
window for exploring new physics beyond the SM. In compari-
son with the quark masses and CKM quark mixing matrix [14] in
the SM, the smallness of neutrino masses and large MNSP lep-
ton mixing [15] have been a long-term puzzle to be understood
as a possible indication for new physics. The greatest success of
the SM is the gauge symmetry structure SUc(3) × SUL(2) × UY (1)

which characterizes three basic forces of strong and electroweak
interactions. All the gauge symmetries are associated with the
quantum numbers of quarks and leptons. SUc(3) characterizes the
symmetry among three color quantum numbers of quarks, SUL(2)

describes the symmetry between two isospin quantum numbers
of quarks and leptons for each family, and U Y (1) is the symme-
try corresponding to the hypercharge quantum number of quarks
and leptons. The quark and lepton mixing matrices and CP viola-
tions reflect the properties of three family quarks and leptons. To
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understand the quark and lepton mixing matrices and CP viola-
tions, it is interesting to investigate the possible gauge symmetries
among three family quantum numbers. Obviously, a non-abelian
gauge family symmetry [16–28] for three families of quarks and
leptons becomes natural as a simple extension of the SM gauge
symmetry structure.

It has been shown in Ref. [16] that the SUF (3) gauge family
symmetry enables us to construct a simple gauge family model for
understanding the mixing and masses of leptons. The SUF (3) gauge
family symmetry was first introduced in early time for estimating
the top quark mass [29]. It was found in Ref. [16] that the model
can provide a consistent prediction for the lepton mixing and neu-
trino masses when considering the appropriate vacuum structure
of SUF (3) gauge symmetry breaking. Specifically, through appro-
priately making the SUF (3) gauge fixing condition with keeping a
residual Z2-permutation symmetry in the neutrino sector, we can
obtain in the neutrino sector the so-called tri-bimaximal mixing
matrix [30–34] and largely degenerate neutrino masses, while the
small mixing matrix in the charged-lepton sector is resulted by re-
quiring the vacuum structure of spontaneous symmetry breaking
to possess approximate global U(1) family symmetries [16]. Thus
the deviation from tri-bimaximal mixing in the lepton mixing ma-
trix is attributed to the small mixing in the charged-lepton sector,
its smallness is protected by the mechanism of approximate global
U(1) family symmetries [35–38]. As the spontaneously symmetry
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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breaking CP-violating phases in the vacuum [39] are not restricted
by the considered symmetries, they can in principle be large and
maximal. The small masses of the neutrinos and charged leptons
are simply ascribed to the usual seesaw mechanism. As a sim-
ple case, when applying the Wolfenstein parametrization [40] for
the CKM quark mixing matrix to the charged-lepton mixing ma-
trix with a similar hierarchy structure as the CKM quark mixing
matrix, and making a naive ansatz that all the smallness due to
the approximate global U(1) family symmetries is characterized by
a single Wolfenstein parameter λ � 0.22, we can obtain an inter-
esting prediction for the lepton mixing matrices with a maximal
spontaneous CP violation δ � π/2 [16]

sin2 θ13 � 1

2
λ2 � 0.024

(
or sin2 2θ13 � 0.094

)
, (1)

sin2 θ12 � 1

3
, sin2 θ23 � 1

2
, (2)

which agrees with the current experimental data [41–43]. The cor-
responding Leptonic Jarlskog CP-violating invariant quantity [44]
reaches the maximal value

J e
CP � 1

6
λ sin δ � 0.037. (3)

The resulting neutrino masses are largely degenerate with the
value at the order mνi � O (λ2) � 0.04–0.06 eV with a total mass∑

mν ∼ 0.15 eV, which is much larger than the minimal limit∑
mν ∼ 0.05 eV and is expected to be tested by the future ex-

periments.
It is widely expected that the leptonic CP violation can be maxi-

mal or large enough to account for the observed matter–antimatter
asymmetry in the universe via the leptogenesis mechanism as the
CP violation in the SM is not enough to understand the baryogen-
esis. In this note, we are going to make a general analysis on the
leptonic CP-violating phase and its correlation with the deviation
from the tri-bimaximal neutrino mixing based on the current ex-
perimental results.

2. Wolfenstein parametrization of lepton mixing matrix for
characterization of deviation from tri-bimaximal mixing

Let us begin with the following general structure of MNSP lep-
ton mixing matrix

V MNSP = V †
e Vν

≡ Pβ

⎛
⎝ c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎠

×
( eiφ1 0 0

0 eiφ2 0
0 0 1

)
, (4)

which has been expressed into the standard form with ci j = cos θi j ,
si j = sin θi j [41]. An interesting symmetric parametrization was dis-
cussed in [45]. Where Pβ is a diagonal matrix of phase factors and
can be rotated away by the redefinition of charged-lepton fields,
and φi are the so-called Majorana phases for Majorana neutrinos.
It is known that the lepton mixing matrix generally arises from
two mixing matrices V e and Vν , they correspond to the charged-
lepton and neutrino mixing matrices arising from diagonalizing
the charged-lepton mass matrix and neutrino mass matrix respec-
tively. When the charged-lepton mass matrix is Hermitian Me =
PδUemE U †

e P †
δ = M†

e with mE the diagonal mass matrix of charged
leptons mE = diag(me,mμ,mτ ), the unitary charged-lepton mixing
matrix V e can in general be written as
V †
e = U †

e P∗
δ ,

U †
e ≡

⎛
⎝ ce

12ce
13 se

12ce
13 se

13e−iδ′
e

−se
12ce

23 − ce
12se

23se
13e−iδ′

e ce
12ce

23 − se
12se

23se
13e−iδ′

e se
23ce

13

se
12se

23 − ce
12ce

23se
13e−iδ′

e −ce
12se

23 − se
12ce

23se
13e−iδ′

e ce
23ce

13

⎞
⎠,

(5)

Pδ =
( eiδ1 0 0

0 eiδ2 0
0 0 eiδ3

)
, (6)

where Ue is a unitary matrix with CP-violating phase δ′
e , and mix-

ing angles ce
i j = cos θe

i j , se
i j = sin θe

i j . Pδ is a diagonal phase matrix
with three phases δi , while only two relative phases (δi − δ j) are
physically observable CP-violating phases.

For the neutrino mixing matrix, when an appropriate Z2-sym-
metric neutrino mass matrix between the second and third neutri-
nos is considered to have three independent matrix elements, the
resulting neutrino mixing matrix is completely determined to be

Vν =

⎛
⎜⎜⎝

2√
6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2

⎞
⎟⎟⎠ , (7)

which is the so-called tri-bimaximal neutrino mixing matrix.
It is noticed that when three phases δm

ij (i, j = 1,2,3, i < j)
in the Hermitian mass matrix are not independent and they are
related via δm

ij = δi − δ j , one then has

δ′
e = 0. (8)

On the other hand, when θe
13 is small in comparison with θe

12 and
θe

23, i.e., θe
13 	 θe

12, θ
e
23, it is easily seen that δ′

e will not be a dom-
inant source of leptonic CP violation as the CP-violating phase δ′

e
is associated with the mixing angle θe

13. In this situation, we may
neglect the effect of CP-violating phase δ′

e and take a typical case
δ′

e � 0 for simplicity of discussions. With these considerations, we
may replace the unitary matrix Ue by an orthogonal rotation ma-
trix O e = Ue(δ

′
e = 0)

U †
e → O T

e

=
⎛
⎝ ce

12ce
13 se

12ce
13 se

13

−se
12ce

23 − ce
12se

23se
13 ce

12ce
23 − se

12se
23se

13 se
23ce

13

se
12se

23 − ce
12ce

23se
13 −ce

12se
23 − se

12ce
23se

13 ce
23ce

13

⎞
⎠ . (9)

To investigate whether the leptonic CP violation can be maximally
large with the present experimental measurements on the three
mixing angles and the lepton mixing matrix can be characterized
by the Wolfenstein parametrization method, we may make a sen-
sible analysis by simply taking δ′

e = 0. In Ref. [46], the angle θe
13 is

assumed to be zero, thus the effect of δ′
e automatically disappears.

An alternative consideration was analyzed in [47], where the phase
δ′

e was assumed to be the only CP-violating source and the phases
δi are taken to be zero, i.e., δi = 0.

The leptonic mixing angles θi j and mass-square differences
�m2

i j have been measured by many experiments including the
solar neutrino experiment, atmospheric neutrino experiment, ac-
celerator experiment and reactor experiment. The best-fit results
presented in PDG [41] are

sin2 2θ12 = 0.857 ± 0.024,

sin2 2θ13 = 0.095 ± 0.010,

sin2 2θ23 > 0.95, (10)

which slightly deviates from the tri-bimaximal neutrino mixing.
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Note that the presently extracted mixing angles from exper-
iments are not sensitive to the CP-violating phase due to the
smallness of the effects concerning the CP violation. As the lep-
tonic CP violation is strongly correlated to the non-zero θ13 which
characterizes the deviation from the tri-bimaximal neutrino mix-
ing matrix, it is then interesting to investigate the leptonic CP-
violating phase and its correlation with the deviation from the
tri-bimaximal neutrino mixing based on the above structure of lep-
ton mixing matrix and the current experimental results. It is seen
that the deviation from tri-bimaximal neutrino mixing is described
by the charged-lepton mixing matrix Ue or orthogonal rotation
matrix O e , the smallness of the mixing angle θ13 indicates that
se

12 ∼ O(0.1), which motivates us to parametrize the rotation ma-
trix O e via the Wolfenstein parametrization [40] with a hierarchy
structure similar to the CKM quark mixing matrix. With the lep-
tonic Wolfenstein parameter se

12 ∼ λe ∼O(0.1), the charged-lepton
mixing matrix can be written, to the order O(λ3

e ), as the following
form:

V †
e � P∗

δ

⎛
⎜⎝

1 − λ2
e

2 λe ei(δ1−δ2) Aeλ
3
e ρe ei(δ1−δ3)

−λe ei(δ2−δ1) 1 − λ2
e

2 Aeλ
2
e ei(δ2−δ3)

Aeλ
3
e (1 − ρe) ei(δ3−δ1) −Aeλ

2
e ei(δ3−δ2) 1

⎞
⎟⎠,

(11)

where the phase matrix P∗
δ can be absorbed by the redefinitions of

charged lepton fields. Note that there is no corresponding Wolfen-
stein parameter ηe in the above parametrization as we have ne-
glected the CP-violating phase δ′

e . Thus the lepton mixing matrix is
given by

V MNSP =
⎛
⎜⎝

1 − λ2
e

2 λe eiδ12 Aeλ
3
eρe eiδ13

−λe e−iδ12 1 − λ2
e

2 Aeλ
2
e eiδ23

Aeλ
3
e (1 − ρe) e−iδ13 −Aeλ

2
e e−iδ23 1

⎞
⎟⎠

×

⎛
⎜⎜⎝

2√
6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

− 1√
2

⎞
⎟⎟⎠ , (12)

which shows that based on the tri-bimaximal neutrino mixing,
the lepton mixing matrix can be parametrized by three leptonic
Wolfenstein parameters: λe , Ae , ρe , and CP-violating phases δi j =
δi − δ j (i = 1,2,3) with δ23 = δ21 − δ31.

As indicated from Z2 symmetry of vacuum structure in the
SU(3)F model [16], it is reasonable to assume that δ2 � δ3. When
expressing the lepton mixing matrix V MNSP to be the standard
form by requiring the matrix elements V 11, V 12, V 23, V 33 be real
with keeping two independent Majorana phases, we can read off
the leptonic CP-violating phase from V 13

δe = δ2 − δ1 � δ3 − δ1. (13)

The Wolfenstein parametrization of lepton mixing matrix is sim-
plified to be

V MNSP =
⎛
⎜⎝

1 − λ2
e

2 λee−iδe Aeλ
3
eρee−iδe

−λeeiδe 1 − λ2
e

2 Aeλ
2
e

Aeλ
3
e (1 − ρe)eiδe −Aeλ

2
e 1

⎞
⎟⎠

×

⎛
⎜⎜⎝

2√
6

1√
3

0

− 1√
6

1√
3

1√
2

− 1√ 1√ − 1√

⎞
⎟⎟⎠ . (14)
6 3 2
In terms of the standard form Eq. (4), the lepton mixing matrix
can be rewritten in terms of the leptonic Wolfenstein parameters
as the following form

V MNSP =

⎛
⎜⎜⎝

|V 1,1| |V 1,2| λe√
2
(1 − Aeλ

2
eρe)e−iδe

e−iφ1 V 2,1 e−iφ2 V 2,2
1√
2
(1 − Aeλ

2
e − λ2

e/2)

e−iφ1 V 3,1 e−iφ2 V 3,2 − 1√
2
(1 + Aeλ

2
e )

⎞
⎟⎟⎠

×
( eiφ1 0 0

0 eiφ2 0
0 0 1

)
, (15)

where V i, j are the matrix elements of V MNSP via Eq. (14). The two
Majorana phases φ1, φ2 turn out to be

φ1 = arg V 1,1 = arctan
(λe + Aeλ

3
eρe) sin δe

2 − λ2
e − (λe + Aeλ

3
eρe) cos δe

,

φ2 = arg V 1,2 = arctan
−(λe + Aeλ

3
eρe) sin δe

1 − λ2
e/2 + (λe + Aeλ

3
eρe) cos δe

, (16)

and the mixing angle θi j can be expressed in terms of the leptonic
Wolfenstein parameters as

s13 = λe√
2

∣∣1 − Aeρeλ
2
e

∣∣, (17)

s23 = 1√
2

1√
1 − s2

13

∣∣∣∣1 − λ2
e

2
− Aeλ

2
e

∣∣∣∣, (18)

s12 = 1√
3

1√
1 − s2

13

∣∣∣∣1 − λ2
e

2
+ λe

(
1 + Aeρeλ

2
e

)
e−iδe

∣∣∣∣, (19)

which shows that the leptonic Wolfenstein parameters λe , Ae , ρe ,
and the CP-violating phase δe characterize the lepton mixing with
deviation from the tri-bimaximal mixing.

As an illustration, it is interesting to observe that by taking the
leptonic Wolfenstein parameters to be the following typical values
with a maximal CP-violating phase

λe ∼ 0.22, Ae ∼ 1, ρe ∼ 1,

δe = δ2 − δ1 = δ3 − δ1 ∼ π

2
, (20)

we obtain the predictions for the lepton mixing angles

sin2 2θ12 ∼ 0.901,

sin2 2θ13 ∼ 0.086,

sin2 2θ23 ∼ 0.986, (21)

which are consistent with the PDG’s best-fit results given in
Eq. (10) [41] at 1σ level, except a small mismatch of θ12. Such
a consistency shows that the leptonic Wolfenstein parameters cho-
sen in Eq. (20) are in the reasonable region of parameter space.

Alternatively, we may use the PDG’s value of θ12 given in
Eq. (10) sin2 2θ12 = 0.857 ± 0.024 to extract the leptonic CP-
violating phase δe . With other parameters chosen as Eq. (20), it
is easily found that

δe = (
101.94−6.28

+5.90

)◦, (22)

which is very close to the maximal CP-violating phase δe ∼ 0.57π .
The corresponding two Majorana phases with the input parameters
as Eq. (20) are yielded to be

φ1 ∼ 6.7◦, φ2 ∼ −13.3◦. (23)
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We shall make a general constraint on the leptonic Wolfenstein
parameters λe , Ae , ρe , and the CP-violating phase δe by a detailed
analysis below.

3. Constraints on leptonic Wolfenstein parameters

As it is shown in previous section that the deviation from tri-
bimaximal lepton mixing matrix can be described by three leptonic
Wolfenstein parameters λe , Ae , ρe . It is seen from Eq. (17) and
Eq. (18) that sin θ13 depends on λe and Aeρe , while sin θ23 relies
on λe and Ae . In this section, we shall take the mixing angles θ13
and θ23 indicated from the measurements as the input to provide
a general constraint on leptonic Wolfenstein parameters λe , Ae , ρe .

3.1. Constraints from θ13

The precise measurements on θ13 have been carried out by
DayaBay Collaboration group [42] and RENO Collaboration group
[43]. These two experiments measured the disappearance of νe

from the reactor. The �m2
31 dominated amplitude is given by

P (νe → νe) = 1 − sin2 2θ13 sin2 �m2
31L

4E
, (24)

which shows that the measured results do not sensitively correlate
to the values of other two mixing angles θ12, θ23 and CP-violating
phase δe . From Eq. (17), it is seen that θ13 is also insensitive to the
CP-violating phase δe . Thus we may use the experimental data on
θ13 to make constraints on the leptonic Wolfenstein parameters.

Before doing that, it is noticed that when keeping the expan-
sion of lepton mixing matrix to the order O(λe), we arrive at the
following simple relation

λe ∼ s13

s23
� 0.23, (25)

where we have used the best fit values sin2 θ13 ∼ 0.0225 and
sin2 θ23 ∼ 0.42 [41] to yield the numerical value λe ∼ 0.23, which
is very close to the Wolfenstein parameter of Cabibbo angle
sin θc = λ � 0.225 in quark sector [41]. This observation checks
the consistence of the assumption that λe ∼O(10−1).

Let us now turn to make a general analysis by adopting the
precisely measured mixing angle θ13 [41]

sin2 2θ13 = 0.096 ± 0.013(±0.040) at 1σ (3σ), (26)

which enables us to constrain the allowed region of the combined
leptonic Wolfenstein parameters Aeρe for a given λe .

The contour plot for the input sin2 2θ13 is shown in Fig. 1. It
is seen from Fig. 1 that Aeρeλ

2
e < 0 only occur for small values of

λe . In the plot, we have restricted the region to be in the range
−1 ≤ Aeρeλ

2
e ≤ 0.5, so that it satisfies the perturbative expanding

of Wolfenstein parametrization. It also leads to a reasonable region
for the parameter λe

λe � 0.11–0.40, (27)

which will be taken to be a possible allowed region when consid-
ering constraints from other two mixing angles θ12 and θ23.

From Eq. (17), it is seen that sin2 θ13 is an even function of λe .
Thus for the region with λe < 0, the contours of sin2 θ13 are just
the mirror images of Fig. 1, which is omitted here.

3.2. Constraints from θ23 and θ13

For tri-bimaximal mixing, there is a maximal mixing sin2 θ23 =
1/2. The small deviation to the maximal mixing indicates that
Fig. 1. The contour plot of sin2 2θ13 for Aeρeλ
2
e as a function of λe . The contours

show the best fit value and 3σ deviations.

the leptonic Wolfenstein parameters should be small, which may
still be consistent with the current data within the experimen-
tal errors. While the recent global fitting results appear to in-
dicate a quite large deviation from the maximal mixing with
sin2 θ23 = 0.386+0.024

−0.021 [48], and sin2 θ23 = 0.41+0.037
−0.025 [49]. For a

general discussion, we may consider a constraint from a wide
range of θ23 by covering over different global fitting results, i.e.,
sin2 θ23 � 0.365–0.450. The resulting constraint is shown in the
left panel of Fig. 2 for parameter Ae as a function of λe .

By combining the constraint from θ13 and θ23, we are able to
obtain the constraint for the allowed region of ρe as a function
of λe . As shown in the right panel of Fig. 2, by taking the central
value of sin2 θ13 given in Eq. (26), we can obtain the allowed re-
gion for ρe as a function of λe from the given values of sin2 θ23.
It is seen that a wide region swept by the curve when sin2 θ23 in-
creasing from 0.365 to 0.450 is allowed.

Note that there is a special situation that for λe = √
2 sin θ13,

then Aeρe = 0, namely ρe = 0 for Ae �= 0. As a consequence, four
curves intersect with each other at this point, as indicated in Fig. 2.

4. Leptonic CP violation and lepton–quark correlation

In this section, we should make a general analysis on the lep-
tonic CP-violating phase and its correlation to the deviation from
the tri-bimaximal neutrino mixing, which is characterized by the
leptonic Wolfenstein parameters as discussed in the previous sec-
tion.

4.1. Constraints from θ12 and leptonic CP violation

It is seen from Eq. (19) that sin θ12 depends on CP-violating
phase δe , λe , Aeρe . Here Aeρe can be constrained from θ13 for a
given λe .

The mixing angle θ12 is well determined from solar neutrino
oscillation experiments. The measured value of θ12 generally cor-
relates to the value of θ23. It is convenient to obtain the values
of θ12 by setting sin2 2θ23 = 1. The global fitting results have
provided us with both values of θ23 and θ12. Although a non-
maximal θ23 is hinted [48], there is no tension among different
global fitting results on θ12. For instance, sin2 θ12 = 0.307+0.018

−0.016

[48], sin2 θ12 = 0.311 ± 0.013 [49], and sin2 θ12 = 0.320+0.016 [50].
−0.017
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Fig. 2. The left panel is the contour plots of sin2 θ23 for Ae as a function of λe . The right panel is the contour plots of sin2 θ23 for ρe as a function of λe , where the central
value of sin2 θ13 has been used to fix Aeρe for a given λe . The vertical line labels a critical value of λe = √

2 sin θ13, where ρe = 0.
Fig. 3. The contour plot of sin2 θ12 for the CP-violating phase δe as a function of
λe with the best fit value of sin2 θ12 and 1σ deviations. For 0.11 ≤ λe ≤ 0.15, the
allowed δe ranges from ±π to ±π/2, and for λ > 0.2, the resulting δe is close to
maximal ±π/2.

Here we take the result sin2 θ12 = 0.312+0.018
−0.015 given in PDG [41]

to make constraints on the CP-violating phase δe as a function
of λe . The value of Aeρe is constrained from θ13. The allowed re-
gion for CP-violating phase δe is given as a function of λe in Fig. 3,
where we have taken the central value sin2 2θ13 = 0.096 to yield
the value of Aeρe .

It is seen from Fig. 3 that there are two special regions:
for 0.11 ≤ λe ≤ 0.15, the values of sin2 θ12 is insensitive to δe ,
the allowed region of δe ranges from ±π to ±π/2. While for
λe ≥ 0.2, the constraint on δe becomes very strong, the result-
ing CP-violating phase is near maximal δe ∼ ±π/2. In this region,
sin2 θ12 is insensitive to the values of λe . Thus the leptonic CP vi-
olation favors a maximal CP violation for a large range of leptonic
Wolfenstein parameter λe . Note that a minimal CP-violating phase
δe ∼ 1.08π was obtained in a global fit [48] when the atmospheric
neutrino data are included, while such a fitting result corresponds
to a special region in the parameter space, which does not exclude
a large or nearly maximal CP violation.

4.2. Combination of all constraints and lepton–quark correlation

It is useful to combine all the constraints obtained from
sin2 θ13, sin2 θ23 and sin2 θ12 and plot them together in the same
Fig. 4, so that it is easily seen the allowed values of Ae , ρe and
δe for a given λe . A big uncertainty arises from whether sin2 θ23
is largely deviate from the maximal mixing, which makes the al-
lowed values of Ae and ρe become large.

It is easy to see from Fig. 4 that there are two typical regions
for leptonic Wolfenstein parameters characterized with a small λe

(λe < 0.15) and a large λe (λe > 0.15). For the small λe , we have

λe ∈ [0.11,0.15], Ae ∈ [12,2],
ρe ∈ [−12,−2], |δe| ∈ [π,π/2), (28)

which shows that the CP-violating phase δe is not well constrained
in this case.

A global fitting result cited in [48] corresponds to a solution
of the small λe with δe ∼ π . From the results given in [48] for
the normal hierarchy: sin2 θ23 = 0.386+0.024

−0.021, sin2 θ13 = 0.0241 ±
0.0025, sin2 θ12 = 0.307+0.018

−0.016, and δe = 1.08π , one can easily read
from Fig. 4 the corresponding leptonic Wolfenstein parameters

λe = 0.127−0.013
+0.012, Ae = 7.27−1.67

+1.50,

ρe = −6.21−0.75
+0.79. (29)

With the central values, two Majorana phases are found to be very
small

φ1 = −0.29◦, φ2 = 0.61◦. (30)

For the case of inverted hierarchy, the result is very close to the
above one, we shall omit it here.

For large values of λe , we have

λe ∈ [0.15,0.4], Ae ∈ [7,0],
ρe ∈ [−10,15], |δe| ∼ [3π/4,π/2), (31)
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Fig. 4. The allowed parameter regions for Ae , ρe and δe for given values of λe .

Fig. 5. The allowed regions of leptonic Wolfenstein parameters in parameter space for λe = 0.225.
where the CP-violating phase δe is strongly constrained, only a
large or nearly maximal CP violation is favorable.

It is interesting to observe from Fig. 4 that when taking the
value of the leptonic Wolfenstein parameter λe to be the same
as the one in the quark sector, λe � λ � 0.225, and fixing the
lepton mixing angles to be the central values sin2 2θ12 = 0.857
and sin2 θ23 = 0.42, we arrive at a sensible result for the leptonic
Wolfenstein parameters

λe � 0.225, Ae = 1.40

ρe = 0.20, δe ∼ 101.76◦

φ1 = 6.40◦, φ2 = −13.56◦, (32)

which is compatible with the Wolfenstein parameters in quark sec-
tor

λ � 0.225, A = 0.811,
ρe = 0.131, η = 0.345 or δ � 69◦. (33)

In this case, the resulting lepton mixing matrix is given by

V MNSP =
( 0.820 0.551 0.157ei0.57π

−0.407 − 0.135i 0.642 + 0.024i 0.639
−0.378 + 0.052i 0.518 + 0.132i −0.757

)

×
( e0.11i 0 0

0 e−0.24i 0
0 0 1

)
. (34)

To show manifestly such an interesting situation, it is useful to
plot the leptonic Wolfenstein parameters in a parameter space as
shown in Fig. 5. It is easily seen that when fixing the parameter
λe � λ � 0.225, the whole parameters space for Ae , ρe and δe is
almost located on two planes with δe ∼ ±π/2. The above analysis
implies that only a large or nearly maximal leptonic CP violation is
favorable in a large region of parameter space when λe > 0.15.
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The above results indicate a strong correlation between charged
leptons and quarks. An assumption that V e � V CKM and V MNSP �
V †

CKM V TB was discussed early in [51–53].

5. Conclusions and remarks

We have shown that the lepton mixing can be parametrized
by the Wolfenstein parametrization method based on a general
structure of lepton mixing matrix, where the mixing matrix from
neutrino sector is a tri-bimaximal mixing and the mixing matrix
from charged lepton has small mixing. Such a structure of lep-
ton mixing has been shown to be resulted from the SUF (3) gauge
family model [16] when considering the appropriate vacuum struc-
ture of SUF (3) gauge symmetry breaking. Where the tri-bimaximal
mixing can be yielded from the residual Z2-permutation symme-
try in the neutrino sector and the small mixing in the charged-
lepton sector is led by requiring the vacuum structure of spon-
taneous symmetry breaking to possess approximate global U(1)
family symmetries. We have demonstrated that the small mix-
ing matrix in the charged-lepton sector characterizes the deviation
from tri-bimaximal mixing in the lepton mixing matrix, and can
be parametrized by the Wolfenstein parametrization method. As
the spontaneous CP-violating phases in the vacuum are in general
not restricted by the considered symmetries, so that they can in
principle be large and maximal.

Based on the input values of lepton mixing angles θ13, θ23 and
θ12 indicated from various neutrino experiments, we have made
a general analysis for the allowed leptonic CP-violating phase δe

and leptonic Wolfenstein parameters λe , Ae , ρe . It has explicitly
been shown how the leptonic CP violation correlates to the lep-
tonic Wolfenstein parameters which characterize the deviation of
tri-bimaximal lepton mixing. For a reasonable range of parame-
ter λe � 0.11–0.40, there appear two typical regions, i.e., one with
λe � 0.11–0.15, and other with λe � 0.15–0.40. For the small val-
ues of λe � 0.11–0.15, the mixing angles θi j are insensitive to δe ,
thus the CP-violating phase δe is not well constrained, its allowed
region can range from |δe| ∼ π to |δe| ∼ π/2. While for the large
values of λe � 0.15–0.40, the CP-violating phase δe has strongly
been constrained, only a large or nearly maximal leptonic CP vio-
lation with |δe| � (3π/4)–(π/2) is allowed.

It has been demonstrated that when taking the leptonic
Wolfenstein parameter λe to be the Cabibbo angle in quark sec-
tor, λe � λ � 0.225, we are able to obtain a sensible result with
λe � 0.225, Ae = 1.40, ρe = 0.20, δe ∼ 101.76◦ , which is compat-
ible with the Wolfenstein parameters in quark sector: λ � 0.225,
A = 0.811, ρe = 0.131, δ � 69◦ . Such a correlation implies a pos-
sible common origin of masses and mixing angles for the charged
leptons and quarks.

In conclusion, the lepton mixing matrix can well be charac-
terized by leptonic Wolfenstein parameters in the basis of tri-
bimaximal neutrino mixing. The leptonic CP violation has a strong
correlation to the leptonic Wolfenstein parameters, a large or
nearly maximal leptonic CP violation is favorable in a large region
of parameters. More precise measurements for the lepton mixing
angles are very helpful. It is essential to have a direct measure-
ment for the leptonic CP violation in near future.
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