View metadata, citation and similar papers_at core.ac.uk

provided by Elsevier - Publisher Connector

NH,
i REASONING
ELSEVIER International Journal of Approximate Reasoning 25 (2000) 169-186

www.elsevier.com/locate/ijar

INTERNATIONAL JOURNAL OF

Optimal scheduling of progressive processing
tasks

Shlomo Zilberstein **, Abdel-Illah Mouaddib °

& Department of Computer Science, University of Massachusetts, Amherst, MA 01002, USA
b CRIL/Université d'Artois, Rue de I'université, S.P. 16, 62307 Lens Cedex, France

Received 1 October 1999; accepted 1 May 2000

Abstract

Progressive processing is an approximate reasoning model that allows a system to
satisfy a set of requests under time pressure by limiting the amount of processing al-
located to each task based on a predefined hierarchical task structure. It is a useful
model for a variety of real-time tasks such as information retrieval, automated diag-
nosis, or real-time image tracking and speech recognition. In performing these tasks it is
often necessary to trade-off computational resources for quality of results. This paper
addresses progressive processing of information retrieval requests that are characterized
by high duration uncertainty associated with each computational unit and dynamic op-
eration allowing new requests to be added at run-time. We introduce a new approach to
scheduling the processing units by constructing and solving a particular Markov deci-
sion problem. The resulting policy is an optimal schedule for the progressive processing
problem. Evaluation of the technique shows that it offers a significant improvement over
existing heuristic scheduling techniques. Moreover, the framework presented in this
paper can be applied to real-time scheduling of a wide variety of task structures other
than progressive processing. © 2000 Elsevier Science Inc. All rights reserved.

Keywords: Progressive processing; Approximate reasoning; Scheduling; Real-time
control; Markov decision problems; Resource-bounded reasoning

’ Corresponding author. Tel.: +1-413-545-4189; fax: +1-413-545-1249.
E-mail addresses: zilberstein@cs.umass.edu (S. Zilberstein), mouaddib@cril.univ-artois.fr (A.-1.
Mouaddib).

0888-613X/00/$ - see front matter © 2000 Elsevier Science Inc. All rights reserved.
PII: S0888-613X(00)00049-9

https://core.ac.uk/display/82259335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

170 S. Zilberstein, A.-1. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186

1. Introduction

Progressive processing is a model of computation for approximate reasoning
that allows a system to satisfy a set of requests under time pressure [11,12]. The
model is based on structuring each problem-solving component as a hierarchy
of levels, each of which contributes to the overall quality of the result. Pro-
gressive processing is suitable for a wide range of applications such as hier-
archical planning [8], model-based diagnosis [1] and speech recognition [3].
This model complements a large body of work on computational methods that
offer a tradeoff between computational resources and quality of results. Closely
related techniques include anytime algorithms [2,15], imprecise computation [3],
flexible computation [7] and design-to-time [5]. However, the hierarchical
structure of progressive processing facilitates an efficient management of
computational resources and the ability to handle duration uncertainty effec-
tively.

The distinctive characteristic of progressive processing is that each task is
composed of a hierarchy of modules, each of which can produce an output of a
certain quality. Each task in this framework is handled by a progressive pro-
cessing unit or PRU. Each PRU includes multiple problem-solving modules
that are called execution levels. The first level is mandatory. It produces an
output with minimal acceptable quality. Each succeeding level of a given PRU
is capable of improving the output quality (or reducing error). We assume in
this paper that different tasks are independent and that each task has a
deadline. We also assume that each level of a PRU is a non-preemptable
module.

Progressive processing has been proved useful in real-time domains in which
it is not feasible (computationally) or desirable (economically) to compute the
best output for each task [11,12]. In order to use this approach, however, one
needs to address the following real-time scheduling problem (also referred to as
meta-level control). Given a set of PRUs, the question is how to decide what
quality of output should be produced for each task so as to guarantee minimal
quality for each task and maximize the overall performance (measured by the
cumulative quality).

Fig. 1 illustrates a progressive processing task structure that includes five
PRUs sorted by their deadlines. The number of levels per PRU ranges from
two to four in this example. Once a level is executed, the scheduler/controller
may decide to execute the next level so as to improve the output quality of the
same PRU or to start executing a different PRU. The framework developed in
this paper takes into account the duration uncertainty associated with each
module. That is, we assume that the distribution of execution time is provided
for each component of a PRU. The run-time selection of levels for execution is
affected by the actual run-time of previous levels. Problem-solving techniques
that rely on search have a high duration uncertainty. Therefore, taking into

S. Zilberstein, A.-I. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186 171

A
Level
4

3

2

1

»
»

1 2 3 4 5 PRU

Fig. 1. An illustration of a progressive processing task structure.

account duration uncertainty can improve the scheduling of resource-bounded
systems [5,6]. The solution presented in this paper is an improvement over a
previous heuristic approach to the problem [13]. Moreover, the approach
presented here can better handle dynamic environments under a high level of
duration uncertainty.

The solution to the scheduling problem is based on reformulating it as a
Markov decision problem (MDP) and finding an optimal policy (or schedule).
We demonstrate the applicability of the MDP scheduler and evaluate its
characteristics in the domain of intelligent information retrieval. Over the past
few years there has been a substantial growth in the number of real-time in-
formation servers (databanks) over the Internet providing a wide range of
scientific, economic and social services. The response to an information request
involves a local search process to find relevant information, filtering the results
to adapt them to the user needs and preparing the final response. In an attempt
to provide high-quality information, the information providers may need to
allocate a considerable amount of computational resource to each request. The
vast majority of today’s information providers uses a static strategy in order to
prepare the response so that the user receives the same data regardless of the
load on the system and the cost of satisfying the request. As a result, some
requests must be rejected or ignored when the server is faced with a high load.
A progressive processing approach to the problem leads to substantial per-
formance benefits. Unlike previous approaches to stochastic scheduling (that
maximize the likelihood that a schedule will be successfully executed), the
approach we develop leads to a conditional schedule that determines what
components will be executed based on the actual progress of the computation.

The rest of this paper describes our solution in detail and evaluates the
implementation of the scheduler. Section 2 describes the application and how
each problem instance is mapped into a progressive processing unit. Section 3
shows how a progressive processing problem can be mapped into a corre-
sponding Markov decision problem and solved using an efficient policy con-
struction algorithm. Section 4 describes the model of execution we used and

172 S. Zilberstein, A.-1. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186

extends the MDP scheduling approach to the case of a dynamic environment.
Section 5 illustrates and evaluates the implementation of the scheduler. Section
6 describes related work. We conclude with a summary of the benefits of the
approach and a description of current efforts to enhance the expressibility of
the model and make it suitable for a variety of approximate reasoning tasks.

2. Progressive processing of information queries

Many real-time Al tasks can benefit from a progressive processing approach
that addresses duration uncertainty and dynamic environments. Specifically, in
the domain of real-time intelligent information retrieval, each type of infor-
mation request can be mapped into a progressive processing unit in such a way
that the lowest level of the PRU generates a response of minimal quality and
each additional level improves the quality of the result. For example, a request
for publications in a certain area defined by keywords (e.g., imprecise compu-
tation and progressive processing) can be satisfied by a PRU with two levels:
the first level (that is mandatory) will search for information that includes only
title, authors’ names and link to content, while the second level will retrieve the
abstract of each article and the publication in which it appeared and perform
more intelligent filtering.

Quality improvement may be along several different dimensions: the degree
of relevance (filtering information that is not likely to be relevant), the level of
detail (adding more information to relevant data already included in the re-
sponse) and representation of the result (e.g., as a graph rather than a table).
Each level of processing can be assigned a quality that is defined either by some
subjective estimate of its contribution to the response or by a monetary charge
that the user has to pay for quality improvement. In addition, each request will
have its own deadline that is defined either by a fixed allowable processing time
associated with the request or by the actual deadline imposed by the consumer
of the information. The latter case would allow different users to bid for in-
formation offering to pay a certain amount of money that depends on both the
quality of the result and meeting the deadline.

The progressive processing approach offers several obvious advantages since
it allows the system to trade off computational resources against the quality of
the response. When operating under high load, the system can exhibit ro-
bustness and fairness, producing a response to every request with a minimal
quality. The system can also maximize the return to the server if quality at-
tached to each level of processing represents monetary rewards. The rest of
this section defines the progressive processing problem representation more
formally.

The (dynamic) progressive processing task consists of a set P = {P,,...,P,}
of individual problems (information requests) such that:

S. Zilberstein, A.-I. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186 173

e Pisconstructed dynamically: an old problem is removed from the set when a
response is sent, and a new problem is added to the set when a new request
arrives,

e cach problem P has a deadline D; to respect,

e cach problem P, could be solved at varying levels through a progressive pro-
cessing unit u based on a hierarchy of processing levels {/}, 2,3, ... ¥},

e cach processing level L is characterized by the tuple (C(L),q(L)). C(L) is a
discrete distribution of the duration of processing. This distribution is repre-
sented by a set of tuples {(4],p1),(47,p2),..., (4%, p)}, where (45 p)
means the level L takes A} units time with the probability p;. (L) represents
the quality improvement of the overall response when the level is executed.
Given P, the problem is how to construct a schedule of the PRUs that

maximizes the comprehensive utility of the system and how to revise that

schedule when new problems are added. The following two sections answer
these questions.

3. Constructing an optimal schedule

The problem of scheduling and monitoring progressive processing can be
viewed as a control problem of a Markov decision process. The states of the
MDP represent the current state of the computation in terms of the unit/level
being executed and the time. The rewards associated with a state are simply the
rewards for executing each level or unit. The two possible actions are to execute
the next level of the current unit or to move to the next processing unit. The
transition model is defined by the duration uncertainty associated with the level
selected for execution. This section gives a formal definition of the resulting
MDP and describes an algorithm for constructing an optimal policy for action
selection.

3.1. State representation

Let % be a set of units {u;,u,,...u,} and l{ the jth processing level of unit u;.
Each unit ; in the set % has a deadline D; for finishing its processing. The units
in % are sorted by their deadlines. 4/ is a random variable representing the
duration of processing level //. We model the execution of the entire set of units
as a stochastic automaton with a finite set of world states & = {[I/,] | u; € U}
where 0 < j<MaxLevel(x;) and ¢ > 0 represents the remaining time to the
deadline of u;. When the system is in state [/, 7], the jth level of unit u; has been
executed (since the first level is 1, j = 0 is used to indicate the fact that no level
has been executed).

174 S. Zilberstein, A.-1. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186

3.2. Transition model

The initial state of the MDP is [/}, D; — T], where 7 is the current time. This
state indicates that the system is ready to start executing the first level of the
first unit. The terminal states are all the states of the form: [/, 0] or [/, f] where
m is the last level of the last unit n. The former set includes states that reach the
deadline of the last unit and the latter set includes states that complete the
execution of the last unit (possibly before the deadline).

In every nonterminal state there are two possible actions: E (execute) and M
(move). The E action continues the execution of the next level of the current
PRU and the M action moves to the initial state of the next PRU. Note that,
by limiting the actions to this set, we exclude the possibility of executing levels
of previous PRUs, even if the deadlines allow such actions. In other words, we
make the monotonicity assumption that execution must be performed PRU by
PRU in the order of their deadlines. Enforcing this monotonicity constraint
seems reasonable for applications characterized by high time pressure and
rapid change such as the information retrieval problem. In such applications, it
is desirable to report the best result generated for a particular request as soon
as the system completes its work on the request.

The transition model is a function that maps each element of & x {E, M}
into a discrete probability distribution over .%. Egs. (1)—(3) define the transi-
tion probabilities for a given nonterminal state [Z/, #]:

The M action is deterministic. It moves the MDP to the next processing unit
and updates the remaining time to the deadline of the new unit.

Pr([l°

i+1

Digy — D +1] | [, 1],M) = 1. (1)

The E action is probabilistic. Duration uncertainty defines the new state.
Eq. (2) determines the transitions following successful execution and Eq. (3)
determines the transition to the next PRU when the deadline of the current
PRU is reached.

Pr([/"',t — 8] | [1},1),E) = Pr(4/"' =) when 6<¢, (2)
Pr([l?Jrl’DiJrl _Di] ‘ [1{71‘]7]3) = PI‘(A{H > t)' (3)

3.3. Rewards and the value function

Rewards are associated with each state based on the quality gain by exe-
cuting the most recent level. Recall that each level of a unit has a predetermined
quality. Therefore,

R([l?,t]) =0, (4)

S. Zilberstein, A.-I. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186 175

R([,1) = q(L)). (5)

Now, we can define the value function (expected reward-to-go) for non-
terminal states of the MDP as follows [14]:

V(s) = R(s) + m:le(s/\s, a)V(s'). (6)

Using our former notation we get:
)) V([l?+]>Di+l _Di+t]7
V([#],1]) = R([1],4]) + max Pr(4l"" >)V ([1),, Disy — D)) ()

+ 05, Pr(al™ = oy ([- 9)).

The top expression is the value of a move action and the bottom one is the
expected value of an execute action. Note that, in states of the form [/,], it is
not possible to execute a move action to the next unit, and hence their value
function is simply the result of attempting to execute the next level.

Finally, we need to define the value function for terminal states:

vz) = R((1. 1) (8)
and

V([£,0]) = R([£,, 0). ©)

3.4. Optimal schedule

The above MDP is a case of a finite-horizon MDP with no loops. This is due
to the fact that every transition moves “forward” in the state space by always
incrementing the unit/level number. This class of MDPs can be solved easily for
relatively large state spaces because the value function can be calculated in one
sweep of the state space (backwards, starting with terminal states). In addition,
substantial computational savings result from the fact that each processing unit
has its own deadline and because many states of the MDP are not reachable by
an optimal policy.

Theorem 1. Given a monotonic progressive processing problem P, the optimal
policy for the corresponding MDP is an optimal schedule for P.

Proof. Monotonicity of the progressive reasoning problem (see Section 3.2)
limits the space of possible schedules to exactly the space of transitions of the
corresponding MDP. The expected value of a given schedule is the same as the
sum of the rewards over the states of the MDP. Therefore, the optimal policy
represents an optimal schedule for P. [

176 S. Zilberstein, A.-I. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186

We have implemented an algorithm that computes the value function and
the optimal policy. Fig. 2 shows a simple example of a set of two PRUs and the
resulting policy. The states of the policy are denoted by circles on grids (one
grid per PRU) with the horizontal axis showing the remaining time to the
deadline of the PRU and the vertical axis showing the level and its value. Each
state includes the best action (E or M) and the expected utility (reward-to-go).
Outgoing arrows show the transitions, with small circles showing the proba-
bility of each transition. The duration is implicit in the graph (by counting the
number of time steps for each transition). The dashed lines indicate termina-
tion of execution of a PRU. Transitions marked with an F represent failure of
an execute action (e.g. duration exceeds the deadline), in which case execution
of the level is aborted and control is moved to the next PRU. The initial state is
the bottom left state with an expected utility of 8.0. Note that the utility of each
state is calculated using Eq. (7).

Level/Value #
|

2/3

S PRU#2

&)

1/2

0/0

PRU #1
2/2
.
0/0
4 3 2 1 0

Remaining Time

Fig. 2. An optimal monitoring policy with two PRUs.

S. Zilberstein, A.-I. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186 177

4. Execution and monitoring of dynamic policies

In the previous section, we presented an optimal solution to the control
problem of monotonic progressive processing. However, our solution did not
address two fundamental issues. First, our system must operate in a dynamic
environment with new requests for information constantly arriving. As a result,
the existing policy needs to be revised to incorporate the new requests. Second,
the time needed to construct the policy is short, but not negligible. To resolve
the latter problem (when policy revision takes a non-negligible amount of
time), we assume that policy construction is done in parallel to policy execution
using a dedicated processor. The rest of this section presents our solution to the
former problem of continuous operation in a dynamic environment.

4.1. Policy revision requests

In order to handle a dynamic environment, we modified the policy con-
struction algorithm so that it can handle revision requests. Each revision re-
quest includes:

e Tp — the earliest start time of the revised policy.

e T, — the latest start time of the policy.

o A list of new PRUs to be added to the policy.

Ty and T, reflect the uncertainty regarding the time at which the controller will
start using the new policy. In general, the difference between 7, (earliest start
time) and the deadline of the last PRU (latest completion time) is limited by a
system parameter which is the largest allowable scheduling horizon. The time
and space complexity of the policy revision algorithm grows linearly with this
constant.

4.2. Generating a new policy

Once a revision request is generated, the policy revision algorithm sorts the
new and existing PRUs by deadline and recomputes the policy (backwards). If
there are n new PRUs and the nth PRU (with the latest deadline) is inserted at
position i, then it is necessary to recompute the policy for PRUs 1...7 only.
This observation can yield substantial computational savings over a complete
reconstruction of the policy for the current set of PRUs. However, our im-
plementation simply reconstructs the policy after each revision request, since
the overall computation time of a new policy is sufficiently small.

4.3. Execution model

The execution model defines the interaction between the two parallel pro-
cesses of policy construction and control of the progressive processing units. In

178 S. Zilberstein, A.-1. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186

particular, the execution model determines the answers to the following

questions:

e At what point along the execution of the current policy will a request for a
revised policy be issued?

e What will be the earliest start time and the latest start time of the request?

e How will execution be controlled during the construction of the new policy?

e How will execution be altered once the new policy is available?

Progressive processing treats each level of a PRU as an atomic unit of ex-
ecution. Therefore, in our model of execution, the above decisions are made
only between executing individual levels. If new requests for information ar-
rive, a request to revise the policy is issued as soon as the current level ter-
minates. We assume that the revised policy will be ready after the execution of
the next level based on the current policy. At that time, the monitor will simply
continue to select levels based on the new policy. To guarantee consistency (i.e.,
that the monitor will be able to find the continuation state in the new policy),
we include the currently executing PRU in the revised policy. All the termi-
nated PRUs are deleted and the new requests are added.

Based on the above execution model, the earliest start time and the latest
start time of the request are simply the actual start time of the current PRU
(which is known). Once a revision request is issued, the monitor makes one
last decision based on the existing policy. When the execution of the selected
level terminates, the monitor continues to make decisions based on the re-
vised policy (and possibly issues a new revision request). Note that it is
possible for the monitor to observe a state (/,7) that is reachable by the old
policy but is not reachable by the new policy. In such a case, the monitor
selects the move action and continues with the next PRU following the new
policy.

5. Experimental evaluation

We have implemented the execution model described above and the policy
construction and revision algorithms. This section illustrates the operation of
the resulting system and examines two fundamental questions. The first goal is
to compare the performance of our approach to a baseline approach similar to
the scheduling of imprecise computation [9]. This approach is based on a
strategy that assigns each PRU a new deadline that allows the first level of all
the remaining PRUs (the PRUs with the greater deadlines) to be executed
based on the worst-case duration. This strategy allows the insertion of the new
PRUs with all their levels and discards levels with the lowest values when the
schedule becomes infeasible. The baseline approach constructs a pessimistic,
but safe, schedule using the worst-case duration. The resulting schedule is not
optimal.

S. Zilberstein, A.-I. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186 179

The second goal of the experimental evaluation is to assess the benefit of our
approach in domains characterized by a high-level of duration uncertainty and
rapid change, such as intelligent information retrieval.

5.1. Experimental design

The information retrieval requests are specified in a rich PRU language,
allowing the system to create the necessary processing units for this applica-
tion. For example, when a request for publications is received, a PRU, named
Publication-PRU, is created and instantiated by the data of the request (e.g.
area). We have collected experimental data on the performance of both our
approach and the baseline approach. The quality of result for each problem
instance is the sum of the qualities of all the levels that were executed.

We collected data by generating random problem instances while varying
two important parameters. The first parameter is the number of the inserted new
PRUs over a short time segment. This number reflects the degree to which an
approach is suitable for handling dynamic PRUs. The second parameter is the
degree of duration uncertainty measured by the standard deviation. This pa-
rameter allows us to assess the relevance of our approach to applications
characterized by a high level of uncertainty, such as information retrieval.

5.2. Handling dynamic PRUs

This experiment compares the comprehensive value of our approach and the
baseline approach. We measure the value as a function of the number of in-
serted new PRUs. Problem instances (10 instances) were generated with one
PRU in the current policy. For each problem instance, we developed 10 cases
(modifying the probability distribution of durations), and we measured the
average over these 10 cases. The average number of levels per PRU is three.
Fig. 3 shows the difference between the values of our approach and the baseline
approach over the number of inserted PRUs.

The figure confirms the fact that our approach leads to a substantial quality
gain over the baseline heuristic approach. The main reason for this is that the
policy that we construct covers all possible run-time execution paths, including
unlikely situations (short durations), that allow the system to execute addi-
tional processing levels. This strategy leads to a substantial quality gain not
only over the baseline approach but also over all similar scheduling approaches
that use a single duration, such as the average duration [5], the most likely
duration [13] or the worst-case duration [3]. Furthermore, the baseline ap-
proach is based on a pessimistic strategy that discards all the levels that may
violate the deadline, while our approach takes “risks’” when they are justified in
terms of expected quality. This explains the substantially slower growth of the
comprehensive quality of the baseline approach.

180 S. Zilberstein, A.-I. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186

100 T T

Optimal Scheduler —
Base-Line Approach —--

90

80

70

60

50

40

Average comprehensive quality

30

20

10

Number of inserted PRUs

Fig. 3. Comprehensive quality with dynamic PRUs.

5.3. Handling duration uncertainty

This experiment shows the value returned by our approach and a baseline
approach, similar to imprecise computation, for different degrees of uncer-
tainty. In order to compare the results with the imprecise computation model,
all PRUs have two levels representing the mandatory part and optional part of
imprecise computation. The experiment assesses the suitability of our approach
to environments with high levels of duration uncertainty. In addition, it shows
the advantage over the imprecise computation model as duration uncertainty
grows. This is due to the use of the worst-case duration by the latter model.
When duration uncertainty is very high, the worst-case duration is significantly
larger than the average, and it becomes more beneficial to apply our approach.
The baseline approach is pessimistic and it discards the levels that may violate
the deadline. The number of these levels becomes larger as duration uncer-
tainty increases.

Problem instances were generated with 10 PRUs (with two levels each) and a
variation of duration uncertainty from 0% to 100%. Fig. 4 shows that the
comprehensive value (quality) is stable for our approach, while it is signifi-
cantly affected by uncertainty in the baseline approach. Interestingly, after a
short decline of expected quality for low variance, in our approach, quality
continues to grow with duration uncertainty. The intuitive explanation is that,
with high uncertainty, there is a chance for substantial time savings and our
reactive approach takes advantage of this. Of course, there is also a chance that

S. Zilberstein, A.-I1. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186

Our approach
base-line Approach

30 f

Comprehensive quality

20

\
10 |

!
40

Il
60 80
Degree of Uncertainty

Fig. 4. Comprehensive quality for different degrees of uncertainty.

100

levels will take more time, but then our approach will skip the least valuable
units and, therefore, the net effect on expected value is positive. This obser-
vation makes our approach particularly advantageous in situations with high
duration uncertainty.

To summarize, our experimental evaluation examines two fundamental
questions. The first question is the the degree of performance gain by our
approach with respect to a baseline approach based on a pessimistic, but safe,
strategy using the worst-case duration. We show that, in dynamic situations,
the performance gain is substantial because a pessimistic strategy discards all
levels that may violate the deadline. The second question is the robustness of
the approach under different levels of duration uncertainty. While the perfor-
mance of the baseline approach deteriorates under a high level of uncertainty,
our approach exhibits stable performance. These results suggest that the MDP
scheduler offers an effective way to deal with duration uncertainty in real-time
progressive processing.

6. Related work

In previous work, Mouaddib and Zilberstein have constructed an incre-

mental scheduler to address the static version of the scheduling problem (a
fixed set of PRUs) [13]. In this heuristic approach, scheduling can be seen as the
problem of finding an optimal path that visits the maximum number of levels

181

182 S. Zilberstein, A.-I. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186

A
Level

! Fringe

Envelop

Fig. 5. An illustration of the operation of an incremental scheduler for progressive processing.

in the graph shown in Fig. 5 without violating any deadline. The scheduler
starts its processing by building the schedule with the lowest quality (the
minimal envelope) and refining it by inserting additional levels into the graph
as long as all the deadlines are respected. The incremental processing of the
scheduler is guided by the progressive structure of the PRUs and by the (easy
to construct) fringe.

More formally, the overall task structure is represented as a graph, ¢, with
the following components:

e The envelope, &, is a subgraph of % containing all the levels scheduled for
execution (nodes drawn within the lower (bold border) region in Fig. 5).
This is similar to the notion of a closed list in search algorithms. The enve-
lope is a dynamic structure that can be revised during execution.

e The fringe, 7, is the set of direct successors to the nodes in & (nodes drawn
within the upper (dashed border) region in Fig. 5). This is similar to the no-
tion of an open list in a search that contains nodes on the frontier of the
search tree that are candidates for expansion.

o The frozen space, &, is a set of branches pruned during the scheduling
cycle. It contains the levels that violate some deadlines during the schedul-
ing phase. These levels are saved because, during the revision of the sched-
ule, they may be added to the search space and eventually added to the
schedule.

The construction of the schedule is based on a series of cycles of expansion
of the current envelope. This expansion consists of inserting levels of the fringe
into the envelope. The process is repeated until a maximal envelope is reached
(i.e., any further expansion leads to a violation of a deadline) or until an ex-
ternal event causes the interruption of scheduling. At each cycle, a schedule is
available, and its quality is improved from one cycle to another. The pro-
gressive processing task structure allows one to perform a utility-based
scheduling by incrementally inserting nodes (processing levels) into the current
schedule. The inserted node is the one with the highest contribution to the
overall quality.

S. Zilberstein, A.-I. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186 183

While the above approach is suitable for real-time scheduling (because it is
very fast computationally), it has two major limitations. First, the utility-di-
rected greedy scheduling algorithm is a local optimization approach to the
scheduling problem. In addition, this approach is suitable for applications with
duration uncertainty, but its effectiveness diminishes under a high level of
uncertainty. The MDP scheduler presented in this paper addresses these limi-
tations effectively.

The results reported in this paper are closely related to a large body of work
on the imprecise computation model [3,4,10]. Each task in this model is de-
composed into a mandatory subtask and an optional subtask. The mandatory
subtask must be executed to produce results of some initial value; the optional
subtask may be executed to increase the value of the results. With a few ex-
ceptions, tasks in this model are assumed to be independent and to have in-
dividual deadlines. Several scheduling algorithms have been developed for
imprecise computation under certain assumptions about the optional part. For
example, precision of the result can be assumed to improve linearly or by steps
through the execution of the optional part [9]. In comparison, progressive
processing can be viewed as a type of imprecise computation in which the
optional part is a sequence of steps (or what we call levels). Unlike classical
approaches to scheduling, the schedule constructed by the MDP scheduler is a
conditional schedule. The selection of computational modules is conditioned on
the actual execution times of previous modules. As a result, the system can
react quickly (without rescheduling) to unlikely events (such as slower-than-
expected progress in problem-solving).

7. Conclusion

This paper presents a new approach to scheduling progressive processing
units in domains characterized by real-time, dynamic operation and by dura-
tion uncertainty, such as intelligent information retrieval. Our approach is
based on formulating the scheduling problem as a Markov decision problem
and finding an optimal policy. This approach is a major improvement over the
incremental scheduler (a local optimization approach) presented in [13]. The
policy revision algorithm allows us to apply this approach to dynamic envi-
ronments that require response to new, as well as existing, problem-solving
requests. Experimental evaluation shows that, for the progressive processing
units that we considered, the optimal scheduling approach has significant ad-
vantages over a heuristic baseline approach.

We are currently extending the MDP approach to address a more general
type of progressive processing task structures. These extensions focus on the
following three aspects of the model.

184 S. Zilberstein, A.-1. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186

7.1. Handling quality uncertainty

The standard model of progressive processing assumes that the output
quality of each processing unit is static and is defined as part of the task
structure. This enabled us to have a simple reward structure by which executing
a processing unit results in a fixed, predefined increase in the overall utility. A
more flexible model must address quality uncertainty and allow us to represent
a possible distribution of output quality for each processing unit.

This extension can be handled by replacing the current set of state transi-
tions that includes only duration uncertainty with a set of transitions that in-
cludes both duration and quality uncertainty. In order to be able to associate a
fixed reward with each MDP state, the state must also include the actual
quality produced by the most recent level. The new state representation is:
s = (1},q}, 1), where ¢/ is the output quality of the most recent level. This is a
relatively simple modification which will increase the size of the MDP by a
constant factor.

7.2. Handling quality dependency

The standard model assumes that the output quality of each level is inde-
pendent of previously executed levels. There are two useful ways to relax this
assumption. One generalization allows the output quality of each level to de-
pend on the output quality of the previous level of the same PRU. If we adopt
the enhanced state representation mentioned above, we will have the output
quality of the most recently executed level readily available. All we need to
define the new transitions is the conditional probability distribution of output
quality. This information can be part of the new task structure definition.
While this extension models only a simple form of quality dependency, it will
allow us to represent useful dependencies that arise in the information retrieval
domain. For example, it will allow us to model the fact that, when an initial
search for relevant publications produces lower quality (less relevant publica-
tions), it is more likely that the outcome of a complex filtering applied to the
results will be of lower quality.

Another, more general, form of quality dependency would allow the output
quality of each level to depend on the output qualities of a set of other levels
(considered its parents) that may belong to the same PRU or different PRUs. If
we limit inter-task dependency to the first level of each PRU being dependent
on the last level of the previous PRU, then the solution proposed above is
sufficient. However, in general, this extension is substantially more complicated
to implement both in terms of the specifications of the task structure and in
terms of the size and complexity of the resulting MDP. It also implies a de-
viation from the linear hierarchical structure of the standard model. Additional
task structure modifications are discussed below.

S. Zilberstein, A.-I. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186 185

7.3. Enhanced task structures

The standard model requires all tasks to be sequential and all PRUs to have
a linear hierarchy of levels. This simple task structure can be enhanced in
several useful ways. First, each PRU can be generalized to include a set of
levels with precedence constraints imposed on the levels. Each level can in-
crease the overall quality as long as it is executed in an order that satisfies those
constraints. A similar assumption can be made about the overall set of tasks to
be executed. We are currently studying a variety of task structures that are both
useful (in terms of modeling practical applications) and efficient (in terms of
our ability to compute the optimal monitoring policy).

Another aspect of the task structure that can be generalized is the form of
time-dependent utility function that we use. The standard model imposes strict
deadlines on each task and assumes that the comprehensive utility is the sum of
qualities produced by all executed levels. We are currently examining more
general time-dependent utility functions that would allow us to model situa-
tions in which no strict deadlines are imposed on each task and the overall
utility is time-dependent.

Our work on the extended task structure indicates that the MDP approach
is suitable and relatively easy to apply to a wide variety of real-time compu-
tational models. The approach effectively handles the uncertainty about solu-
tion quality and duration and allows the system to construct an optimal
schedule.

Acknowledgements

Victor Danilchenko helped with the implementation of the policy
construction algorithm. Support for this work was provided in part by the
National Science Foundation under grants IRI-9634938, IRI-9624992 and
INT-9612092, and by the Ganymedell Project of Plan Etat/Nord-Pas-De-
Calais, and by IUT de Lens.

References

[1] D. Ash, G. Gold, A. Siever, B. Hayes-Roth, Guaranteeing real-time response with limited-
resources, Artificial Intelligence in Medicine 5 (1) (1993) 49-66.

[2] T.L. Dean, M. Boddy, An analysis of time-dependent planning, in: The Seventh National
Conference on Artificial Intelligence, 1988, pp. 49-54.

[3] W. Feng, J. Liu, An extended imprecise computation model for time-constrained speech
processing and generation, IEEE Workshop on Real-Time Applications, 1993, pp. 76-80.

[4] W. Feng, J. Liu, Algorithms for scheduling tasks with input error and end-to-end deadlines,
Technical Report UIUCDCS-R-94-1888, Department of Computer Science, University of
Illinois at Urbana-Champaign, 1994.

186 S. Zilberstein, A.-I. Mouaddib | Internat. J. Approx. Reason. 25 (2000) 169-186

[5] A. Garvey, V. Lesser, Design-to-time real-time scheduling, IEEE Transactions on Systems,
Man, and Cybernetics 23 (6) (1993) 1491-1502.

[6] E.A. Hansen, S. Zilberstein, Monitoring the progress of anytime problem-solving, in: The 13th
National Conference on Artificial Intelligence, 1996, pp. 1229-1234.

[7]1 E. Horvitz, Reasoning about beliefs and actions under computational resource constraints, in:
Workshop on Uncertainty in Artificial Intelligence, 1997.

[8] C. Knoblock, Automatically generating abstractions for planning, Artificial Intelligence 68
(1994) 243-302.

[9] J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, W. Zao, Algorithms for scheduling imprecise
computations, IEEE Transactions on Computer 24 (5) (1991) 58-68.

[10] V. Lopez-Millan, W. Feng, J.W.-S. Liu, Using the imprecise-computation technique for
congestion control on a real-time traffic switching element, in: The International Conference
on Parallel and Distributed Systems, 1994.

[11] A.-I. Mouaddib, Contribution au raisonnement progressif et temps réel dans un univers multi-
agents, PhD thesis, University of Nancy I, 1993 (in French).

[12] A.I. Mouaddib, S. Zilberstein, Knowledge-based anytime computation, in: The 14th
International Joint Conference on Artificial Intelligence, 1995, pp. 775-781.

[13] A.I. Mouaddib, S. Zilberstein, Handling duration uncertainty in meta-level control of
progressive reasoning, in: The 15th International Joint Conference on Artificial Intelligence,
1997, pp. 1201-1206.

[14] R. Sutton, A. Barto, Reinforcement Learning: An Introduction, MIT Press/Bradford Books,
Cambridge, MA, 1998.

[15] S. Zilberstein, Using anytime algorithms in intelligent systems, Al Magazine 17 (3) (1996)
73-83.

