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Abstract

We show that gauge invariant extensions of the local functiGhal %fd4x A2 have long range notocalities which can
only be “renormalised” with reference to a specific gauge. Caqunsetly, there is no gauge independent way of claiming the
perturbative renormalisability of these extensions. In particular, they are not renormalisable in the modern sense of Weinberg
and Gomis. Critically, our study does not support the view that ghost fields play an indispensable role in the extension of a local
operator into a non-local one as cteéd recently in th literature.
0 2004 Elsevier B.V. Open access under CC BY license.

PACS:11.15.-q

1. Introduction and summary scenario is realed in the compadt/ (1) gauge theory
[3] where magnetic monopoles condeffor large

In recent years there has been an increasing interestCOUp“ng' DY .
in the calculation of the square of the gauge potential. The pr_ospecttha&\ might m_deed carry physically
The idea that condensates in Yang—Mills encode non- relevant information has.motlvated different groups
perturbative effects has a long history. In particular, a to calculatle thf exgegtgnwalue_ of the local oper-
condensate ofiZ was considered some years dgp ator O = 3 Jdx (A})” In covariant gauges. Thgre
but due to its gauge dependence it has not been the fo_have bee_n both analyt[@l,&_i] and numerical studies
cus of much investigation. However, it has been argued in the Iattlce[6]_. The working m_ode! use(_j has been
in [2] that a non-local gauge invariant functional asso- SU2) Yang-Mills. The undgrlym_g idea is that the .
ciated toAZ contains information on topological struc- presumed 2non-|oca| gauge |nyarlant opgrator assoct-
tures of the Yang—Mills vacuum which is revealed by a ated withA< takes a local form in the particular gauge

non-vanishing expectation value of the operator. This where the calculations are carried out. In_ many cases,
what are actually considered are extensiongah-

volving ghost field44]. The introduction of the ghost
E-mail addressesesole@Iorentz.leidenuniv.nl (M. Esole), fields makes it possible to write the local gauge fixed
freire@lorentz.leidenuniv.nl (F. Freire). operator as a BRS invariant operator. The expected ad-
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vantages of this type of approach are the benefit of value receives importanbatributions from both large
using the BRS invariance to guarantee the renormal- and small distances. Our arguments on renormalisabil-
isability of the composite operator and the prospect ity are based on the notion of renormalisation in the
that due to BRST cohomology theorems an observ- modern sensf8] which relies on BRST cohomology
able is associated to the BRS invariant operator. The theorems. The BRST terminology will therefore be
latter expectation has been shown not to be fulfilled frequently used here, even though it is not always nec-
[7], more about which will be discussed below. The essary.
question of renormalisability will be addressed in this The expectation value of the extensions 4f
Letter. can only be claimed to be “renormalisable” in the
The renormalisability of a non-local gauge invari- particular gauge where they have a local expression.
ant extension of a local operator (which is given by a If we try to define renormalisability in any gauge
local gauge non-invariant expression in a specific fixed by going back to the gauge where the functional
gauge) is addressed here. To summarise our main re-takes a local form, we become tied to this gauge and
sults, we present strong arguments that the methodsrenormalisability is no longer a gauge independent
being used to evaluate the expectation valug §for property. Implicitly, this is what has been done to date
its local extensiongequire a renormalisation proce-  in the literature[4—6]. We emphasise the distinction
dure that is slave to a particular gauge fixing other between this situation and, for example, the case of
words, we cannot extend the standard renormalisationthe Standard Model where renormalisability can be
procedure, based in the introduction of counterterms guaranteed from gauge to gauge.
order by order in perturbation theory, outside a unique  The non-locality of a gauge invariant extension
fixed gauge. The particular gauge in questionis the one of O is unavoidable if the operator is to be asso-
where the non-local extension is expressed by a local ciated to an observable. In a recent analygiswe
functional. When this occurs, there are no guaranteeshave studied the operat@® in the powerful con-
that the resulting renormalised expectation value of the text of the antifield Batalin—Vilkovisky formalisri9]
non-local gauge invariant extension is gauge indepen- using local BRST extension and deformation tech-
dent. This kind of difficulty should not come as a sur- niques[10]. By analysing® with a ghost sector we
prise. In fact, it would be surprising if the perturbative have shown that ghost condensates are an artifact
methods on which the known renormalisation proce- of gauge fixed actions. A by-product of this analy-
dure is based could capture reliable information on the sis was the observation that there is no local ob-
topological structure that is expected to be responsi- servable associated with an on-shell BRS invariant
ble for a non-vanishing expectation value of the gauge mass dimension two local functional 8U(N) Yang—
invariant extension ofi? [2]. Mills theories. This observation has important conse-
In our study we illustrate the properties of gauge in- quences.
variant extensions of local functionals. We aim at clar- On the one hand, it illustrates that gauge-fixed BRS
ifying, via specific examples, the relation between a invariance and gauge invarianfEl] are not always
functional which is local in a particular gauge (but not equivalent. In this respect it is important to realise that
necessarily gauge invariant), and its gauge invariant the relation between classical observables and gauge-
extension (which is not necessarily local). We show fixed BRST cohomology is not a straightforward one,
that the non-localities found are not perturbatively lo- unlike the case for the gauge independent BRST co-
cal because they cannot be expressed in terms of an in-homology. Only in this last case are we guaranteed
finite derivative expansion. We believe that the impli- the existence of a one-to-one correspondence between
cations of this observation have not been clearly em- classical observables and elements of the BRST coho-
phasised in the literature, as attested by the absence ofnology at zero ghost number for both local and non-
any debate aboutitin recentworks. It is precisely these local functionals. Fonon-localfunctionals the corre-
dangerous infrared modes that make it hard to define spondence is one-to-one even for the gauge-fixed case,
a gauge independent renorimation for the gauge in-  while for local functionals extra conditions (see dis-
variant extensions of local functionals. This observa- cussion at end dsection § which are not fulfilled by
tion supports the remark if2] that the expectation O are requiredl11].
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On the other hand, it indicates that the only viable 2. Gaugeinvariant extension
extensions 0® ought to be non-locallhe possibility
of associating a non-local observable to a mass dimen-  consider a local functionad and a fixed gauge.

sion two operator has since been exploited by Kondo The |atter is specified by the gauge fixing fermign
[12] in order to argue for a physical meaning@  following the prescription where the gauge fixing plus
in the Abelian gauge theory. In his study the author ghost sector of the action ifsw, with s the BRST
makes use of gauge-fixed cohomology to derive the gperator. The functionad can always be extended off
possible physical interpretation 6f. Some subtle as-  the gaugel in a gauge invariant way. The resulting
pects of Kondo’s arguments require re-evaluation. In fynctional, thegauge invariant extensioiwhich we
general, his line of reasoning would make any on-shell genote byO'¥ is by construction strongly gauge
BRS invariant operator a candidate for a physical ob- jnyariant[13]. UnlessO is itself gauge invariant the
servable. If we have in mind that one of the features of (g|ation betwee® and®¥ depends on the specified
gauge theories is their constrained structure this is too gaugeV, therefore we keepr as an upper script
generic. in the extension as a reminder. An important gauge

~We state here three key observations that conflict gependent identity that follows from the construction
with Kondo's view. Firstly, the vacuum expectation of the extensio©'? is the equality

value of O is only equivalent to that of its gauge in-

variant extension in a particular gauge and, therefore, (O)y = <OW>W’ 1)

this equivalence cannot be the origin for gauge inde-

pendent statements. Secondly, ghost fields are not eswhere(-)y denotes the expectation value evaluated in

sential to extend a local gauge variant operator into a the specific gaugg . We will return to(1) at a later

non-local invariant one. Thirdly, the way a gauge con- stage.

dition is implemented has an effect on the BRST trans-  Note that though the gauge invariant extension is

formations. All these issues will be discussed through- not necessarily unique for a given function@l in

out this Letter along side the central question of renor- a gauge¥, two different extension®©™ and o

malisation. always have the same expectation value. This follows
To avoid the technical difficulties involved in Yang— from the fact that the ambiguity is proportional to

Mills theories the explicit examples we use in this Let- terms that vanish modulo the equations of motion of

ter are in Maxwell’'s theory. However, all the properties thegauge invarianfction ors-exact terms.

of gauge invariant extensions we illustrate are generic,  In the examples discussed in this Letter the exten-

and also apply to the non-Abelian case.Saction 2 sions can be computed using only fields and ghosts.

we present a general discussion of gauge invariant ex-Moreover, the final explicit expressions for the gauge

tensions. This is followed by an explicit study of non- invariant extensions can be written without ghosts.

local extensions ofD in Maxwell’s theory for arbi- Therefore, contrary t¢12] we do not find evidence

trary linear gauges isection 3 We illustrate that the  that ghost condensates are necessary to convert local

properties of gauge invariant extensions are related to operators into non-local ones

those of the gauge in whic® is initially specified, The gauger which we shall call theBase gauge
and emphasise the fact that locality is often not pre- has an important role in determining which properties
served by the extension procedureSkction 4ve dis- and symmetries o are carried along t@'¥. For

cuss the two standard ways of implementing gauge fix- example, if we extend a covariant operatdifrom a

ing because of the importance of specifying the gauge non-covariant base gauge, the resulting extension is
from which the extension is constructed.Section 5 not expected to be covariant. This will be illustrated
we analyse the gauge dependent nature of the relationbelow. Independently of the base gauge, another prop-
between the expectation values Of and its gauge  erty of O that the gauge invariant extension does not
invariant extension. Various subtle issues concerning normally preserve is locality. Indeed, the extension is
the renormalisation of non-local gauge invariant ex- in general non-local unles® is local and gauge in-
tensions are discussed 8ection 6 In Section 7we variant modulo the equations of motion of thauge
present a final discussion on our analysis. invariantaction.
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The construction of a gauge invariant extensions of when the potential is shifted away from the base
a functional starting from a base gauge is very generic gauge. Then look at how to modif so it is parallel
and in this sense it is always possible to associate atransported along the gauge orbit. Here for later
gauge invariant quantity to an@. It should however,  convenience we consider the variations of the potential
be emphasised that the methods used here only applyto be of the form of a BRS transformation where a
for extensions on a local patch because it is still ghost field appears at the place of the infinitesimal
possible to have obstructions due to the topological variation of the gauge parameter.
structure of the configuration space. As long as one By applying the linear operatdy, on both sides of
works in perturbation theory these obstructions are sA, = 3, C we obtain a non-local expression for the
avoided. ghost field in terms of the gauge potential,

LA

3. The Ai functional in the Maxwell theory
For example, in the Lorentz gaugés = %4 =

Consider the free Abelian gauge theory in four
dimensions and let® denote the gauge dependent

mass dimension two local functional

— [d% %e”‘x + h.c., in the usual representation
using Fourier transforms and distribution theory.

Using (8) it is now straightforward to determine
O— %fd4x A2, @) O, From(3) and(8) we have

L-A
4
From the BRS transformation of the gauge potential, sO = _fd X9 AS(—Z . 8)
sA, =9,C, we have that the variation @ is given

A A
by =—/d4x<s(La-A>—LDC>
€9 €9

s(’):/d“xAMauCz—/d‘lxa.AC. 3 :_s/dz;x(ua%_}um@) ©
£-9 20-9 £-3)

It follows from (3) and the discussion ifr] that O and we arrive at the BRS invariant extension

cannot be added to the action as a mass term without

effectively changing the physical content of the theory. @o1t¥e — }/d‘lx (AZ + zﬂa CA— MDM),

The functional® is used in this Letter to construct 2 €0 t-a £-9

gauge invariant extensions from various base gauges. (10)

This will provide us with explicit examples to study which is also strongly gauge invariant in any local

some general properties of these extensions. patch. The functional if10) can be naturally identi-

We start by computing the gauge invariant exten- fied as the gauge invariant extension(fin a linear
sion of O for a general linear gaugg; as the gauge  gauge in the sense that

base. The gauge condition is given by

O], 4o=0. (11)

We can see fror(iL0) that the extension depends on the
wheref# is anA,, independent linear operator. Three base gauge has expected. In particular, for the Lorentz

€-A=("A, =0, (4)

familiar choices will be considered here, gauge we have
¢4 =9*, Lorentz gauged - A = 0), (5) oML _ }f a, (Az MEELPY A) (12)
(" =n"*, general axial gauge: - A =0), (6) 2 =

which is clearly non-local thoug® is local. We make
the important observation that the non-locality(ir2)
where n” is a fixed 4-vector. The idea behind the cannot be expanded in a Taylor series. This property
calculation of OT¥¢ is very simple. Consider the will be central to the discussion Bection 6 Similar
infinitesimal variation of© along the gauge orbit types of non-locality occur for extensions from other

et =9 —558°% Coulomb gaugéd - A =0), (7)
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base gauges. For the axial gauge we have the delta function one at the level of the gauge in-
1 n-A dependent BRST antifield formalism. However, the
oA =2 /d4x <A2 +2——9-A Gaussian averaging is the appropriate one to introduce
2 n-d the gauge-fixed BRST cohomology and analyse its re-
_n-An: A) (13) lation to the off-shell gauge invariant formulatifi].
n-d n-9) As we will see, this implemntation is more general as
and for the Coulomb gauge it contains the previous in a specified limit.
.o The gauge fermion that implements the Lorentz
ot¥e — }/d“x <A2 12045 4 condition by Gaussian averagingds ®®** = € (d -
2 02 A — $b), wherew is the gauge fixing parameter. It
5.A 3-A follows from the gauge-fixed action that the equation
52 ?> (14)  of motion for the auxiliary field i$ = 3 - A. The on-

shell gauge-fixed BRS transformations are obtained
after integrating oveb, i.e., by implementing thé
equation of motion. As an example, in the Lorentz
gauge the off-shell BRS transformatior = b, sb =
0 becomesC = 51[8 - A, sb = 0. For a delta function
implementation of a gauge fixing condition these on-
shell transformations cannot be derived becausely
enters linearly in the gauge-fixed action.

The path integral representation for the Gaussian

averaging of the Lorentz condition is
. S _ /D[AM,C,C,b]expi(S—l—/sg/L(Gaus$)
By definition the gauge invariance extension re-
quires the choice of a specific base gauge as a start- ) 1 5
ing point. It is therefore interesting to analyse how the =/D[Aﬂ]detlj expi <S+ % /(3 - A) ) (16)
extension might be affect(_ad by the gauge fixing pro- In the limit « — O the delta function implementation
cedure. When BRS techniques are used there are two.
. ) . is recovered.
standard implementations to fix the gauge, the delta
function and the Gaussian average.
So far we have implemented the gauge fixing by re-
quiring a gauge condition to be explicitly satisfiéd).
In a path integral representation this corresponds to

implementing the gauge condition via a delta func- o546 gauge fixing implementation. The phase space
tion. As an .exa_mp!?), for the Lorentz gaug®), the  oes 1o be extended to include the antighost and
gauge fermion isy; ™ = C(d - A). The correspond-  he guxiliary field and the general linear gauge corre-
ing gauge fixing and ghost sector of the action is gponds to the conditiomh = ¢ - A. Then, following an
Js¥® = [b(®-A)— COC, whereb is the auxiliary  analogous approach to the oneSgction 3the gauge

Another property of the extensions concerns the ef-
fect the base gauge has upon the symmetrie® of

In the above examples we always started with a co-
variant operator but only the extensi¢i®?) preserves
covariance. The covariance (&3) and(14)is lost in

the process of extendin@ away from a non-covariant
base gauge.

4. Gauge fixing implementation

5. The expectation value of O1%

Let us consider for the moment the Gaussian av-

Nakanishi-Laudrup scalar. It follows invariant extension of) for a base gauge specified by
/ _ ® this condition is
D[AM,C,C,b]expi(S+fswL ) 1 A b
oM = E/d4x<A2+27( e’ 8’0‘)3 A

= / D[A,]det15(3 - A) expiS. (15)

_ L(A,b;a) _L(A,Db; a))

We consider now the other common way of im- €9 €9
plementing gauge fixing: Gaussian averaging of the with £(A,b;«) = ¢ - A — ab. Note that thew =0
gauge condition. This implementation is equivalent to choice corresponds to the extensid®). Moreover,

(17)
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the right-hand sides dfL0) and(17) are equal up to
s-exact terms as they only differ by terms involving
the auxiliary field. They correspond therefore to the
same gauge invariant functionals and we will be
using the simpler forn{10). At this point, it is also
important to note that if we modify the integrand of
the functional by adding a ghost sectps? — A% —
«CC, and compute the gauge invariant extension, the
resulting extension will only differ by asrexact term,
—as [C(L-3)"L(A, b; @). It should be remarked that
this is not a specific property for this function@l as

it follows alone from the fact that the non-local gauge
invariant extension of any term involvingC, or for
this purpose any other auxiliary fields, will always give
trivial elements on the cohomology ef Moreover,
as it has been shown 7] CC does not have local
extensions.

For a general linear gaug#, = ¢ - A — Sab, the
equation of motion ob reduces to
1
b==¢-A, (18)
o

and thereford (A, b; o) = 0. From(18)it follows that
the on-shell gauge-fixed BRS symmetry in the linear
gauge is expressed by
sy, C = 1£~A, (19)

o
where sy, is the corresponding gauge-fixed BRS
operator. At this level the equation of motion has been
already implemented or equivalently, thefield has
been integrated over. By takir{9) into account, the
non-local terms on the right-hand side (@D) can be
expressed as

¢ A O e

Sy A=aC—C 9-A 20
) 1 +sw‘*(z 3 ) (20)
and

C-A_£-A _ O aC _(-A
ARt e —c Lol @
9 ¢a o J“w"(z.a z-a) (21)

Inserting(20), (21) into (10) gives the explicit relation
between® andO¥e,

oOWe =0 g/
+2

whereB = ozfd4x—a(8 A — 304 is a functional
of the fields and ghosts. If We u$137) instead of(10)

_ O
d*xC—cC

7.9 +s‘1’187

(22)
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as the expression for the gauge invariant extension, the
relation(22) remains valid bus is different. From this
equation the expectation value ©6fis in general not
equal to01¥¢ and an equality is only guaranteed in the
gaugey,. Therefore, no gauge independent statement
can be made betwee®¥¢) and(©).

In order to clarify this point we take a closer look
at the last two terms in the right-hand side (@R).
Let us first recall the standard principle behind Ward
identities. Consideé to denote a classical symmetry
of the action. Then for any functiongt we have
(6F) = 0. As far assy, is concerned, as this refers
solely to a symmetry of the gauge-fixed actiondoe=
¥, we can only state thafsy, )y, = 0. Therefore,
(sg, B)w, =0, but in generalsy, B)y # 0.

Next, consider the identity

d-A

( - A) 1
C— |=—t-A—

-9 o £-9
The expectation value of the left-hand side vanishes in
the gaugel,. The same also applies to the first term
on the right-hand side. This follows from the off-shell
identity (p34) = (sau(C4)) = 0, Wheresaux = s
when acting onC andb and gives zero on the other
fields. Because tha field only enters linearly in this
identity (¢ - A%)% = 0. Therefore, we have from
(23) that in the general linear gaugé‘%C)w( =0
for the Maxwell theory. We then arrive at tlde facto
gauge dependent equality

= (OT%)%

as expected fror(il) which is a direct consequence of
the construction of gauge invariant extensions.

O

é—c (23)

(O)We (24)

6. Ontherenormalisation of non-local functionals

In this section we discuss the perturbative renor-
malisability of the operato® in the modern sensas
introduced by Gomis and Weinbe[@j. This criterion
extends the Dyson one by allowing terms that are not
power counting renormalisable. A theory is said to be
renormalisable in the modern sense, if the symmetries
of the bare action provide constraints that are sufficient
to eliminate all the infinities. The symmetries of the
bare action are encoded in the BRST symmetry of the
gauge invariant action in the antifield formalism which
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is gauge independent. Gauglependent statements the last sentence, to emphasise that for the consis-
on the renormalisability of a given gauge theory are tency of the renormalisation procedure, locality should
made possible by the close link between this renor- not be restricted to a particular gauge. However, this
malisation criterion and the cohomology of the BRST is not guaranteed in the present examples and there-
transformations generated by the action. Well estab- fore the quantum action principle, which requires all
lished local BRST cohomology theoreifd€,15] pro- the counterterm to be local is not ensured for other
vide the criteria to identify all the possible local coun- gauges.
terterms. Contrary to the power-counting renormalisa- It is interesting to see that starting from a gauge
tion criterion, there is no limit on the mass dimension whereQ is multiplicatively renormalisable, the covari-
of the allowed terms in the bare action. Therefore, an ant gauge withw = 0, that the renormalisability can-
infinite number of counterterms are viable. not be “extended” t@?¥ without having to redefine

A sufficient condition for the renormalisability of  the standard renormalisation procedu#local func-
the theory is the existence of an independent coupling tional can be associated to a gauge invariant quantity
in the action for each non-trivial element of the BRST if it fulfills the two following conditions[11]:
cohomology. It is important to note that we can add
any local term to the action compatible with the theory (1) it must be on-shell BRS invariant;
symmetries. In particular, we can add a non-local term (2) it must not break the nilpotency of the BRS
in the form of an infinite number of derivative terms. symmetry when it is added to the gauge-fixed
It is still possible in this case to have a theory that action.
is renormalisable in the modern sense because each
derivative term is local, as required by the quantum In order for these conditions to hold, one must use
action principle[16]. An example occurs when the the Gaussian averaging implementation of the gauge

non-locality enters through terms of the forinl + fixing. With a delta function implementation the first
m?)~1 which can be expressed as an infinite sum of condition is not even satisfied (for non-gauge invariant
local termsz,fozom*(z”*z)(—m)”, as long asn # 0. functionals). For example, considér in the gauge

In this sense, even the Wilson loop is a perturbatively d-A = 0. From(3) we see that the BRS variation 6f
local quantity because it can be expressed in terms of cannot vanish on-shell as the equations of motion in
an infinite series of local ternf&7]. the gaugeplf5) are 9" F,, + d,b = 0C = OC = 0.

Here we are interested, in particular, in the renor- The only way to havee® = 0 is to setd - A = 0,
malisability of a non-local gauge invariant functional j.e., impose the gauge condition “by hand”. The subtle
like the extensiongl2)—(14) The non-localityinthese  distinction on the implications of these different gauge
extensions cannot be expressed in terms of an in-fixing implementations was not clearly distinguished
finite series of local terms. From the discussion in in[12].
the previous paragraph we conclude that there is no  The first condition can be satisfied by considering
gauge independent way in whiéd™ is renormalis- the modified operatodg = O — afd4x cC in the
a}ble in tue modggn sense. Bgcause qf thegormal rela-gauge fixed bpr(Gauss’ where nows Ao = 0 modulo
tion (O1) = iy [ D¢ expli S[4] +.lJOT )ls=0, the equation of motion df, b= 29 - A. However, this
as far as the r_ole .O.f the non-locality IS concerned, the operator does not fulfill the second condition because
non-renormalisability of0™¥ can be inferred from 2 A :

: . s C no longer vanishes on-shell.
that of theory where the function& is coupled to
a source/ and inserted to the action.

This, of course, is not in contradiction with the fact
that an extensio®'? can be perturbatively renormal-
isable in the base gauge e it takes a local form.
What happens in this particular case is thz “lo- In this Letter we have analysed the properties
cal” counterterms that make the functional renormal- of non-local gauge invariant functionals by studying
isable in this gauge cannot be expressed as a seriessome simple examples. We used general extension
of local terms in other gaugedVe used “local” in methods to compute gauge invariant functior@f¢’

7. Discussion



294

by transporting a local functionaD defined in a
specified base gaugeaway from this gauge. We have
looked explicitly at gauge invariant extensions for the
mass dimension two function& = 1 [ d%x A2 in
Maxwell’s theory. From our previous analydig] in
Yang-Mills theories it follevs that these extensions
have to be non-local.

The non-local functionals encountered in our com-
putation of gauge invariant extensions from general
linear gauge$10) are not of the type that can be han-
dled perturbatively. The non-localities result from long

M. Esole, F. Freire / Physics Letters B 593 (2004) 287-295

In addition, by constructing non-local gauge invari-
ant extensions from local functionals there is, in prin-
ciple, an endless line of candidates for observables.
Each can be made local in a particular “proper” gauge,
as our examples illustrate. The extension procedure is
too generic and does not provithg itself and with-
out the constraint of perturbative localiy], a strong
claim to support the physical relevance for a functional
that it is not gauge invariant.

We conclude that a well defined meaning of such
functionals without reference to the gauge where they

range fluctuations that cannot be renormalised by per- are local and polynomial is missing. The current meth-
turbative methods even when one calls for an infinite ods used to compute renormalised functionals require
set of local counterterms. In this sense, the functionals assumptions that are only known to be fulfilled by
in our examples are not renormalisable in the mod- perturbatively local functionals but not by the type
ern sense. The situation for gauge invariant extensionsof non-local functionals found in the present Letter.

in Yang—-Mills theories for a functional of the form
O =3 [ d?x (A%)? is even more problematic. Besides
having to deal with the same type of long range non-
localities the various non-localities interact in a non-
polynomial way.

We are well used to the idea that we need to fix the
gauge in perturbation theory. However, when dealing
with (perturbatively) local functionals we know that by
changing the gauge all the counterterms remain local
in accordance to the quantuamtion principle. For the
non-local gauge invariant extensions it is only in the

The development of the non-perturbative methods to
renormalise non-local functionals in a gauge indepen-
dent manner without the constraint of the quantum ac-
tion principle might help to improve our understand-
ing about the relevance of gauge invariant extensions
which are not perturbatively local.
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Therefore, renormalisability can only be claimed
with reference to one particular gauge-6]. In other
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