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Abstract

We show that gauge invariant extensions of the local functionalO = 1
2

∫
d4x A2 have long range non-localities which can

only be “renormalised” with reference to a specific gauge. Consequently, there is no gauge independent way of claiming
perturbative renormalisability of these extensions. In particular, they are not renormalisable in the modern sense of
and Gomis. Critically, our study does not support the view that ghost fields play an indispensable role in the extension
operator into a non-local one as claimed recently in the literature.
 2004 Elsevier B.V.
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1. Introduction and summary

In recent years there has been an increasing inte
in the calculation of the square of the gauge poten
The idea that condensates in Yang–Mills encode n
perturbative effects has a long history. In particula
condensate ofA2 was considered some years ago[1]
but due to its gauge dependence it has not been th
cus of much investigation. However, it has been arg
in [2] that a non-local gauge invariant functional as
ciated toA2 contains information on topological stru
tures of the Yang–Mills vacuum which is revealed b
non-vanishing expectation value of the operator. T
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-

scenario is realised in the compactU(1) gauge theory
[3] where magnetic monopoles condense[2] for large
coupling.

The prospect thatA2 might indeed carry physicall
relevant information has motivated different grou
to calculate the expectation value of the local oper
ator O = 1

2

∫
d4x (Aa

µ)2 in covariant gauges. Ther
have been both analytic[4,5] and numerical studie
in the lattice[6]. The working model used has be
SU(2) Yang–Mills. The underlying idea is that th
presumed non-local gauge invariant operator ass
ated withA2 takes a local form in the particular gau
where the calculations are carried out. In many ca
what are actually considered are extensions ofO in-
volving ghost fields[4]. The introduction of the ghos
fields makes it possible to write the local gauge fix
operator as a BRS invariant operator. The expected
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vantages of this type of approach are the benefi
using the BRS invariance to guarantee the renorm
isability of the composite operator and the prosp
that due to BRST cohomology theorems an obse
able is associated to the BRS invariant operator.
latter expectation has been shown not to be fulfil
[7], more about which will be discussed below. T
question of renormalisability will be addressed in t
Letter.

The renormalisability of a non-local gauge inva
ant extension of a local operator (which is given b
local gauge non-invariant expression in a specific fi
gauge) is addressed here. To summarise our mai
sults, we present strong arguments that the meth
being used to evaluate the expectation value ofA2, or
its local extensions,require a renormalisation proce
dure that is slave to a particular gauge fixing. In other
words, we cannot extend the standard renormalisa
procedure, based in the introduction of counterte
order by order in perturbation theory, outside a uniq
fixed gauge. The particular gauge in question is the
where the non-local extension is expressed by a l
functional. When this occurs, there are no guaran
that the resulting renormalised expectation value of
non-local gauge invariant extension is gauge indep
dent. This kind of difficulty should not come as a su
prise. In fact, it would be surprising if the perturbati
methods on which the known renormalisation pro
dure is based could capture reliable information on
topological structure that is expected to be respo
ble for a non-vanishing expectation value of the ga
invariant extension ofA2 [2].

In our study we illustrate the properties of gauge
variant extensions of local functionals. We aim at cl
ifying, via specific examples, the relation between
functional which is local in a particular gauge (but n
necessarily gauge invariant), and its gauge invar
extension (which is not necessarily local). We sh
that the non-localities found are not perturbatively
cal because they cannot be expressed in terms of a
finite derivative expansion. We believe that the imp
cations of this observation have not been clearly e
phasised in the literature, as attested by the absen
any debate about it in recent works. It is precisely th
dangerous infrared modes that make it hard to de
a gauge independent renormalisation for the gauge in
variant extensions of local functionals. This obser
tion supports the remark in[2] that the expectation
-

-

f

value receives important contributions from both large
and small distances. Our arguments on renormalis
ity are based on the notion of renormalisation in
modern sense[8] which relies on BRST cohomolog
theorems. The BRST terminology will therefore
frequently used here, even though it is not always n
essary.

The expectation value of the extensions ofA2

can only be claimed to be “renormalisable” in t
particular gauge where they have a local express
If we try to define renormalisability in any gaug
by going back to the gauge where the functio
takes a local form, we become tied to this gauge
renormalisability is no longer a gauge independ
property. Implicitly, this is what has been done to d
in the literature[4–6]. We emphasise the distinctio
between this situation and, for example, the case
the Standard Model where renormalisability can
guaranteed from gauge to gauge.

The non-locality of a gauge invariant extensi
of O is unavoidable if the operator is to be ass
ciated to an observable. In a recent analysis[7] we
have studied the operatorO in the powerful con-
text of the antifield Batalin–Vilkovisky formalism[9]
using local BRST extension and deformation te
niques[10]. By analysingO with a ghost sector we
have shown that ghost condensates are an art
of gauge fixed actions. A by-product of this ana
sis was the observation that there is no local
servable associated with an on-shell BRS invar
mass dimension two local functional inSU(N) Yang–
Mills theories. This observation has important con
quences.

On the one hand, it illustrates that gauge-fixed B
invariance and gauge invariance[11] are not always
equivalent. In this respect it is important to realise t
the relation between classical observables and ga
fixed BRST cohomology is not a straightforward on
unlike the case for the gauge independent BRST
homology. Only in this last case are we guarant
the existence of a one-to-one correspondence betw
classical observables and elements of the BRST c
mology at zero ghost number for both local and n
local functionals. Fornon-localfunctionals the corre
spondence is one-to-one even for the gauge-fixed c
while for local functionals extra conditions (see d
cussion at end ofSection 6) which are not fulfilled by
O are required[11].
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On the other hand, it indicates that the only via
extensions ofO ought to be non-local. The possibility
of associating a non-local observable to a mass dim
sion two operator has since been exploited by Ko
[12] in order to argue for a physical meaning toO
in the Abelian gauge theory. In his study the aut
makes use of gauge-fixed cohomology to derive
possible physical interpretation ofO. Some subtle as
pects of Kondo’s arguments require re-evaluation
general, his line of reasoning would make any on-s
BRS invariant operator a candidate for a physical
servable. If we have in mind that one of the feature
gauge theories is their constrained structure this is
generic.

We state here three key observations that con
with Kondo’s view. Firstly, the vacuum expectatio
value ofO is only equivalent to that of its gauge in
variant extension in a particular gauge and, theref
this equivalence cannot be the origin for gauge in
pendent statements. Secondly, ghost fields are no
sential to extend a local gauge variant operator in
non-local invariant one. Thirdly, the way a gauge co
dition is implemented has an effect on the BRST tra
formations. All these issues will be discussed throu
out this Letter along side the central question of ren
malisation.

To avoid the technical difficulties involved in Yang
Mills theories the explicit examples we use in this L
ter are in Maxwell’s theory. However, all the properti
of gauge invariant extensions we illustrate are gene
and also apply to the non-Abelian case. InSection 2
we present a general discussion of gauge invarian
tensions. This is followed by an explicit study of no
local extensions ofO in Maxwell’s theory for arbi-
trary linear gauges inSection 3. We illustrate that the
properties of gauge invariant extensions are relate
those of the gauge in whichO is initially specified,
and emphasise the fact that locality is often not p
served by the extension procedure. InSection 4we dis-
cuss the two standard ways of implementing gauge
ing because of the importance of specifying the ga
from which the extension is constructed. InSection 5
we analyse the gauge dependent nature of the rela
between the expectation values ofO and its gauge
invariant extension. Various subtle issues concern
the renormalisation of non-local gauge invariant
tensions are discussed inSection 6. In Section 7we
present a final discussion on our analysis.
-

2. Gauge invariant extension

Consider a local functionalO and a fixed gauge
The latter is specified by the gauge fixing fermionΨ

following the prescription where the gauge fixing pl
ghost sector of the action is

∫
sΨ , with s the BRST

operator. The functionalO can always be extended o
the gaugeΨ in a gauge invariant way. The resultin
functional, thegauge invariant extension, which we
denote byO↑Ψ , is by construction strongly gaug
invariant[13]. UnlessO is itself gauge invariant th
relation betweenO andO↑Ψ depends on the specifie
gaugeΨ , therefore we keepΨ as an upper scrip
in the extension as a reminder. An important ga
dependent identity that follows from the constructi
of the extensionO↑Ψ is the equality

(1)〈O〉Ψ = 〈
O↑Ψ

〉
Ψ

,

where〈·〉Ψ denotes the expectation value evaluate
the specific gaugeΨ . We will return to(1) at a later
stage.

Note that though the gauge invariant extension
not necessarily unique for a given functionalO in
a gaugeΨ , two different extensionsO↑Ψ andO′↑Ψ

always have the same expectation value. This follo
from the fact that the ambiguity is proportional
terms that vanish modulo the equations of motion
thegauge invariantaction ors-exact terms.

In the examples discussed in this Letter the ext
sions can be computed using only fields and gho
Moreover, the final explicit expressions for the gau
invariant extensions can be written without ghos
Therefore, contrary to[12] we do not find evidenc
that ghost condensates are necessary to convert l
operators into non-local ones.

The gaugeΨ which we shall call the “base gauge”
has an important role in determining which propert
and symmetries ofO are carried along toO↑Ψ . For
example, if we extend a covariant operatorO from a
non-covariant base gauge, the resulting extensio
not expected to be covariant. This will be illustrat
below. Independently of the base gauge, another p
erty of O that the gauge invariant extension does
normally preserve is locality. Indeed, the extension
in general non-local unlessO is local and gauge in
variant modulo the equations of motion of thegauge
invariantaction.



290 M. Esole, F. Freire / Physics Letters B 593 (2004) 287–295

s of
eric
te a
,
pply
till

ical
one
are

ur
nt

tial,

hout
ry.

ct
ges
y

en-

ee

e
e
it

se

ter
tial
a
al

f
he

n

e

al
-

he
entz

erty

er
The construction of a gauge invariant extension
a functional starting from a base gauge is very gen
and in this sense it is always possible to associa
gauge invariant quantity to anyO. It should however
be emphasised that the methods used here only a
for extensions on a local patch because it is s
possible to have obstructions due to the topolog
structure of the configuration space. As long as
works in perturbation theory these obstructions
avoided.

3. The A2
µ functional in the Maxwell theory

Consider the free Abelian gauge theory in fo
dimensions and letO denote the gauge depende
mass dimension two local functional

(2)O = 1

2

∫
d4x A2

µ.

From the BRS transformation of the gauge poten
sAµ = ∂µC, we have that the variation ofO is given
by

(3)sO =
∫

d4x Aµ∂µC = −
∫

d4x ∂ · AC.

It follows from (3) and the discussion in[7] that O
cannot be added to the action as a mass term wit
effectively changing the physical content of the theo
The functionalO is used in this Letter to constru
gauge invariant extensions from various base gau
This will provide us with explicit examples to stud
some general properties of these extensions.

We start by computing the gauge invariant ext
sion ofO for a general linear gaugeΨ� as the gauge
base. The gauge condition is given by

(4)� · A ≡ �µAµ = 0,

where�µ is anAµ independent linear operator. Thr
familiar choices will be considered here,

(5)�µ = ∂µ, Lorentz gauge(∂ · A = 0),

(6)�µ = nµ, general axial gauge(n · A = 0),

(7)�µ = ∂µ − δ
µ
0 ∂0, Coulomb gauge(�∂ · �A = 0),

where nµ is a fixed 4-vector. The idea behind th
calculation of O↑Ψ� is very simple. Consider th
infinitesimal variation ofO along the gauge orb
.

when the potential is shifted away from the ba
gauge. Then look at how to modifyO so it is parallel
transported along the gauge orbit. Here for la
convenience we consider the variations of the poten
to be of the form of a BRS transformation where
ghost field appears at the place of the infinitesim
variation of the gauge parameter.

By applying the linear operator�µ on both sides o
sAµ = ∂µC we obtain a non-local expression for t
ghost field in terms of the gauge potential,

(8)C = s

(
� · A
� · ∂

)
.

For example, in the Lorentz gauge,�·A
�·∂ = ∂·A

� =
− ∫

d4k
kµÃµ(k)

4π2k2 eikx + h.c., in the usual representatio
using Fourier transforms and distribution theory.

Using (8) it is now straightforward to determin
O↑Ψ� . From(3) and(8) we have

sO = −
∫

d4x ∂ · As

(
� · A
� · ∂

)

= −
∫

d4x

(
s

(
� · A
� · ∂ ∂ · A

)
− � · A

� · ∂ �C

)

(9)= −s

∫
d4x

(
� · A
� · ∂ ∂ · A − 1

2

� · A
� · ∂ �� · A

� · ∂
)

,

and we arrive at the BRS invariant extension

(10)

O↑Ψ� = 1

2

∫
d4x

(
A2 + 2

� · A
� · ∂ ∂ · A − � · A

� · ∂ �� · A
� · ∂

)
,

which is also strongly gauge invariant in any loc
patch. The functional in(10) can be naturally identi
fied as the gauge invariant extension ofO in a linear
gauge in the sense that

(11)O↑Ψ�
∣∣
�·A=0 =O.

We can see from(10)that the extension depends on t
base gauge has expected. In particular, for the Lor
gauge we have

(12)O↑ΨL = 1

2

∫
d4x

(
A2 + ∂ · A

� ∂ · A
)

,

which is clearly non-local thoughO is local. We make
the important observation that the non-locality in(12)
cannot be expanded in a Taylor series. This prop
will be central to the discussion inSection 6. Similar
types of non-locality occur for extensions from oth
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base gauges. For the axial gauge we have

O↑ΨA = 1

2

∫
d4x

(
A2 + 2

n · A
n · ∂ ∂ · A

(13)− n · A
n · ∂ �n · A

n · ∂
)

,

and for the Coulomb gauge

O↑ΨC = 1

2

∫
d4x

(
A2 + 2

�∂ · �A
�∂2

∂ · A

(14)− �∂ · �A
�∂2

�
�∂ · �A
�∂2

)
.

Another property of the extensions concerns the
fect the base gauge has upon the symmetries oO.
In the above examples we always started with a
variant operator but only the extension(12) preserves
covariance. The covariance in(13) and(14) is lost in
the process of extendingO away from a non-covarian
base gauge.

4. Gauge fixing implementation

By definition the gauge invariance extension
quires the choice of a specific base gauge as a s
ing point. It is therefore interesting to analyse how
extension might be affected by the gauge fixing p
cedure. When BRS techniques are used there are
standard implementations to fix the gauge, the d
function and the Gaussian average.

So far we have implemented the gauge fixing by
quiring a gauge condition to be explicitly satisfied,(4).
In a path integral representation this correspond
implementing the gauge condition via a delta fun
tion. As an example, for the Lorentz gauge,(5), the
gauge fermion isΨ (δ)

L = C̄(∂ · A). The correspond
ing gauge fixing and ghost sector of the action∫

sΨ
(δ)
L = ∫

b(∂ · A) − C̄�C, whereb is the auxiliary
Nakanishi–Laudrup scalar. It follows∫

D[Aµ, C̄,C,b]expi

(
S +

∫
sΨ

(δ)
L

)

(15)=
∫

D[Aµ]det�δ(∂ · A)expiS.

We consider now the other common way of im
plementing gauge fixing: Gaussian averaging of
gauge condition. This implementation is equivalen
the delta function one at the level of the gauge
dependent BRST antifield formalism. However, t
Gaussian averaging is the appropriate one to introd
the gauge-fixed BRST cohomology and analyse its
lation to the off-shell gauge invariant formulation[11].
As we will see, this implementation is more general a
it contains the previous in a specified limit.

The gauge fermion that implements the Lore
condition by Gaussian averaging isΨ (Gauss)

L = C̄(∂ ·
A − α

2b), whereα is the gauge fixing parameter.
follows from the gauge-fixed action that the equat
of motion for the auxiliary field isb = 1

α
∂ ·A. The on-

shell gauge-fixed BRS transformations are obtai
after integrating overb, i.e., by implementing theb
equation of motion. As an example, in the Loren
gauge the off-shell BRS transformationssC̄ = b, sb =
0 becomesC̄ = 1

α
∂ · A, sb = 0. For a delta function

implementation of a gauge fixing condition these o
shell transformations cannot be derived becauseb only
enters linearly in the gauge-fixed action.

The path integral representation for the Gauss
averaging of the Lorentz condition is∫

D[Aµ, C̄,C,b]expi

(
S +

∫
sΨ

(Gauss)
L

)

(16)=
∫

D[Aµ]det�expi

(
S + 1

2α

∫
(∂ · A)2

)
.

In the limit α → 0 the delta function implementatio
is recovered.

5. The expectation value of O↑Ψ�

Let us consider for the moment the Gaussian
erage gauge fixing implementation. The phase sp
needs to be extended to include the antighost
the auxiliary field and the general linear gauge co
sponds to the conditionαb = � ·A. Then, following an
analogous approach to the one ofSection 3, the gauge
invariant extension ofO for a base gauge specified b
this condition is

O↑Ψ� = 1

2

∫
d4x

(
A2 + 2

�(A,b;α)

� · ∂ ∂ · A

(17)− �(A,b;α)

� · ∂ ��(A,b;α)

� · ∂
)

,

with �(A,b;α) = � · A − αb. Note that theα = 0
choice corresponds to the extension(10). Moreover,
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the right-hand sides of(10) and(17) are equal up to
s-exact terms as they only differ by terms involvin
the auxiliary field. They correspond therefore to t
same gauge invariant functionals and we will
using the simpler form(10). At this point, it is also
important to note that if we modify the integrand
the functional by adding a ghost sector,1

2A2 → 1
2A2−

αCC̄ , and compute the gauge invariant extension,
resulting extension will only differ by ans-exact term,
−αs

∫
C̄(� ·∂)−1�(A,b;α). It should be remarked tha

this is not a specific property for this functionalO, as
it follows alone from the fact that the non-local gau
invariant extension of any term involvingCC̄, or for
this purpose any other auxiliary fields, will always gi
trivial elements on the cohomology ofs. Moreover,
as it has been shown in[7] CC̄ does not have loca
extensions.

For a general linear gauge,Ψ� = � · A − 1
2αb, the

equation of motion ofb reduces to

(18)b = 1

α
� · A,

and therefore�(A,b;α) = 0. From(18) it follows that
the on-shell gauge-fixed BRS symmetry in the lin
gauge is expressed by

(19)sΨ� C̄ = 1

α
� · A,

where sΨ� is the corresponding gauge-fixed BR
operator. At this level the equation of motion has be
already implemented or equivalently, theb field has
been integrated over. By taking(19) into account, the
non-local terms on the right-hand side of(10) can be
expressed as

(20)
� · A
� · ∂ ∂ · A = αC̄

�
� · ∂ C + sΨ�

(
αC̄

� · ∂ ∂ · A
)

,

and

(21)
� · A
� · ∂ �� · A

� · ∂ = αC̄
�

� · ∂ C + sΨ�

(
αC̄

� · ∂ �� · A
� · ∂

)
.

Inserting(20), (21) into (10)gives the explicit relation
betweenO andO↑Ψ� ,

(22)O↑Ψ� =O + α

2

∫
d4x C̄

�
� · ∂ C + sΨ�B,

whereB = α
∫

d4x C̄
�·∂ (∂ · A − 1

2� �·A
�·∂ ) is a functional

of the fields and ghosts. If we use(17) instead of(10)
as the expression for the gauge invariant extension
relation(22)remains valid butB is different. From this
equation the expectation value ofO is in general not
equal toO↑Ψ� and an equality is only guaranteed in t
gaugeΨ�. Therefore, no gauge independent statem
can be made between〈O↑Ψ�〉 and〈O〉.

In order to clarify this point we take a closer loo
at the last two terms in the right-hand side of(22).
Let us first recall the standard principle behind Wa
identities. Considerδ to denote a classical symmet
of the action. Then for any functionalF we have
〈δF〉 = 0. As far assΨ� is concerned, as this refe
solely to a symmetry of the gauge-fixed action forΨ =
Ψ� we can only state that〈sΨ�F〉Ψ� = 0. Therefore,
〈sΨ�B〉Ψ� = 0, but in general〈sΨ�B〉Ψ �= 0.

Next, consider the identity

(23)sΨ�

(
C̄

∂ · A
� · ∂

)
= 1

α
� · A∂ · A

� · ∂ − C̄
�

� · ∂ C.

The expectation value of the left-hand side vanishe
the gaugeΨ�. The same also applies to the first te
on the right-hand side. This follows from the off-sh
identity 〈b ∂·A

�·∂ 〉 = 〈saux(C̄
∂·A
�·∂ )〉 = 0, wheresaux = s

when acting onC̄ andb and gives zero on the othe
fields. Because theb field only enters linearly in this
identity 〈� · A∂·A

�·∂ 〉Ψ� = 0. Therefore, we have from

(23) that in the general linear gauge〈C̄ �
�·∂ C〉Ψ� = 0

for the Maxwell theory. We then arrive at thede facto
gauge dependent equality

(24)〈O〉Ψ� = 〈
O↑Ψ�

〉
Ψ�

as expected from(1) which is a direct consequence
the construction of gauge invariant extensions.

6. On the renormalisation of non-local functionals

In this section we discuss the perturbative ren
malisability of the operatorO in themodern senseas
introduced by Gomis and Weinberg[8]. This criterion
extends the Dyson one by allowing terms that are
power counting renormalisable. A theory is said to
renormalisable in the modern sense, if the symme
of the bare action provide constraints that are suffic
to eliminate all the infinities. The symmetries of t
bare action are encoded in the BRST symmetry of
gauge invariant action in the antifield formalism whi
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is gauge independent. Gaugeindependent statemen
on the renormalisability of a given gauge theory
made possible by the close link between this ren
malisation criterion and the cohomology of the BR
transformations generated by the action. Well es
lished local BRST cohomology theorems[14,15]pro-
vide the criteria to identify all the possible local cou
terterms. Contrary to the power-counting renormal
tion criterion, there is no limit on the mass dimensi
of the allowed terms in the bare action. Therefore,
infinite number of counterterms are viable.

A sufficient condition for the renormalisability o
the theory is the existence of an independent coup
in the action for each non-trivial element of the BRS
cohomology. It is important to note that we can a
any local term to the action compatible with the theo
symmetries. In particular, we can add a non-local te
in the form of an infinite number of derivative term
It is still possible in this case to have a theory th
is renormalisable in the modern sense because
derivative term is local, as required by the quant
action principle[16]. An example occurs when th
non-locality enters through terms of the form(� +
m2)−1 which can be expressed as an infinite sum
local terms

∑∞
n=0 m−(2n+2)(−�)n, as long asm �= 0.

In this sense, even the Wilson loop is a perturbativ
local quantity because it can be expressed in term
an infinite series of local terms[17].

Here we are interested, in particular, in the ren
malisability of a non-local gauge invariant function
like the extensions(12)–(14). The non-locality in these
extensions cannot be expressed in terms of an
finite series of local terms. From the discussion
the previous paragraph we conclude that there is
gauge independent way in whichO↑Ψ is renormalis-
able in the modern sense. Because of the formal r
tion 〈O↑Ψ 〉 = −i δ

δJ

∫
Dφ exp(iS[φ] + iJO↑Ψ )|J=0,

as far as the role of the non-locality is concerned,
non-renormalisability ofO↑Ψ can be inferred from
that of theory where the functionalO is coupled to
a sourceJ and inserted to the action.

This, of course, is not in contradiction with the fa
that an extensionO↑Ψ can be perturbatively renorma
isable in the base gauge where it takes a local form
What happens in this particular case is thatthe “lo-
cal” counterterms that make the functional renorm
isable in this gauge cannot be expressed as a se
of local terms in other gauges. We used “local” in
the last sentence, to emphasise that for the con
tency of the renormalisation procedure, locality sho
not be restricted to a particular gauge. However,
is not guaranteed in the present examples and th
fore the quantum action principle, which requires
the counterterm to be local is not ensured for ot
gauges.

It is interesting to see that starting from a gau
whereO is multiplicatively renormalisable, the covar
ant gauge withα = 0, that the renormalisability can
not be “extended” toO↑Ψ without having to redefine
the standard renormalisation procedure. A local func-
tional can be associated to a gauge invariant qua
if it fulfills the two following conditions[11]:

(1) it must be on-shell BRS invariant;
(2) it must not break the nilpotency of the BR

symmetry when it is added to the gauge-fix
action.

In order for these conditions to hold, one must u
the Gaussian averaging implementation of the ga
fixing. With a delta function implementation the fir
condition is not even satisfied (for non-gauge invari
functionals). For example, considerO in the gauge
∂ ·A = 0. From(3) we see that the BRS variation ofO
cannot vanish on-shell as the equations of motion
the gaugeΨ (δ)

L are ∂µFµν + ∂νb = �C = �C̄ = 0.
The only way to havesO = 0 is to set∂ · A = 0,
i.e., impose the gauge condition “by hand”. The sub
distinction on the implications of these different gau
fixing implementations was not clearly distinguish
in [12].

The first condition can be satisfied by consider
the modified operatorA0 = O − α

∫
d4x CC̄ in the

gauge fixed byΨ (Gauss)
L , where nowsA0 = 0 modulo

the equation of motion ofb, b = 1
α
∂ ·A. However, this

operator does not fulfill the second condition beca
s2
Ψ C̄ no longer vanishes on-shell.

7. Discussion

In this Letter we have analysed the propert
of non-local gauge invariant functionals by studyi
some simple examples. We used general exten
methods to compute gauge invariant functionalsO↑Ψ
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by transporting a local functionalO defined in a
specified base gaugeΨ away from this gauge. We hav
looked explicitly at gauge invariant extensions for t
mass dimension two functionalO = 1

2

∫
d4x A2

µ in
Maxwell’s theory. From our previous analysis[7] in
Yang–Mills theories it follows that these extension
have to be non-local.

The non-local functionals encountered in our co
putation of gauge invariant extensions from gene
linear gauges(10) are not of the type that can be ha
dled perturbatively. The non-localities result from lo
range fluctuations that cannot be renormalised by
turbative methods even when one calls for an infin
set of local counterterms. In this sense, the function
in our examples are not renormalisable in the m
ern sense. The situation for gauge invariant extens
in Yang–Mills theories for a functional of the form
O = 1

2

∫
ddx (Aa

µ)2 is even more problematic. Besid
having to deal with the same type of long range n
localities the various non-localities interact in a no
polynomial way.

We are well used to the idea that we need to fix
gauge in perturbation theory. However, when dea
with (perturbatively) local functionals we know that b
changing the gauge all the counterterms remain lo
in accordance to the quantumaction principle. For the
non-local gauge invariant extensions it is only in t
base gauge that the counterterms are guaranteed
local.

Therefore, renormalisability can only be claim
with reference to one particular gauge[4–6]. In other
words, the only known way to make gauge invari
extensions renormalisable is by redefining renorm
isability by constructionin the base gauge of the e
tension, i.e.,〈O↑Ψ 〉Ψ ′ = 〈O〉Ψ for any gaugeΨ ′. In
this way there is a clear prescription to claim〈O↑Ψ 〉 to
be “renormalisable”—however, the procedure is ga
dependent. As a result, the theory only lives in o
gauge with reference to which any calculation of qu
tities involving insertions ofO↑Ψ is possible. A well-
known example of this situation is illustrated by t
Curci–Ferrari model[18,19].

This makes unclear the status of the physical
evance ofO↑Ψ although it is gauge invariant. At th
very least, a necessary condition for the relevanc
the constructed gauge invariance ofO↑Ψ is the exis-
tence of a renormalisation procedure without referenc
to a specific gauge.
e

In addition, by constructing non-local gauge inva
ant extensions from local functionals there is, in pr
ciple, an endless line of candidates for observab
Each can be made local in a particular “proper” gau
as our examples illustrate. The extension procedu
too generic and does not provideby itself, and with-
out the constraint of perturbative locality[7], a strong
claim to support the physical relevance for a functio
that it is not gauge invariant.

We conclude that a well defined meaning of su
functionals without reference to the gauge where t
are local and polynomial is missing. The current me
ods used to compute renormalised functionals req
assumptions that are only known to be fulfilled
perturbatively local functionals but not by the ty
of non-local functionals found in the present Lett
The development of the non-perturbative method
renormalise non-local functionals in a gauge indep
dent manner without the constraint of the quantum
tion principle might help to improve our understan
ing about the relevance of gauge invariant extens
which are not perturbatively local.
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