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Previous studies from our group have demonstrated the protective effect of S-nitroso-N-acetylcysteine
(SNAC) on the cardiovascular system in dyslipidemic LDLr—/— mice that develop atheroma and left ven-
tricular hypertrophy after 15 days on a high fat diet. We have shown that SNAC treatment attenuates pla-
que development via the suppression of vascular oxidative stress and protects the heart from structural
and functional myocardial alterations, such as heart arrhythmia, by reducing cardiomyocyte sensitivity to

ﬁe};words: . catecholamines. Here we investigate the ability of SNAC to modulate oxidative stress and cell survival in
Sgper?(;g:ir(lj:erom ¢ cardiomyocytes during remodeling and correlation with B,-AR signaling in mediating this protection.

Ventricular superoxide (O; ) and hydrogen peroxide (H,0,) generation was measured by HPLC methods
to allow quantification of dihydroethidium (DHE) products. Ventricular histological sections were stained
using terminal dUTP nick-end labeling (TUNEL) to identify nuclei with DNA degradation (apoptosis) and
this was confirmed by Western blot for cleaved caspase-3 and caspase-7 protein expression. The findings
show that O, and H,0, production and also cell apoptosis were increased during left ventricular hyper-
trophy (LVH). SNAC treatment reduced oxidative stress during on cardiac remodeling, measured by
decreased H,0, and O, production (65% and 52%, respectively), and a decrease in the ratio of p-
Ser1177 eNOS/total eNOS. Left ventricle (LV) from SNAC-treated mice revealed a 4-fold increase in f,-
AR expression associated with coupling change to Gi; B,-ARs-S-nitrosation (B,-AR-SNO) increased 61%,
while apoptosis decreased by 70%. These results suggest that the cardio-protective effect of SNAC treat-
ment is primarily through its anti-oxidant role and is associated with B,-ARs overexpression and B,-AR-
SNO via an anti-apoptotic pathway.

S-nitroso-N-acetylscysteine
Ventricular hypertrophy
Betadrenoceptor-2
S-nitrosated
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Introduction

Left ventricular (LV) remodeling, often associated with heart
failure (HF), can be triggered as a secondary response to abnormal
cardiac pressure volume loading or neurohumoral stimuli. One
common finding in HF is increased activation of the sympatho-
adrenoceptor system [ 1] which mediates functional compensation
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and cardiac remodeling through the B-adrenoceptors [2]. Like B1-,
B2-ARs are G protein coupled receptors that activate the adenylate
cyclase/protein kinase A (AC-PKA) pathway. Interestingly, B,-ARs
also couples to the pertussis toxin-sensitive protein G inhibitor
(Gi) pathway which eventually inhibits G stimulatory (Gs). Gi pro-
motes cardiomyocyte survival through a protective PI3K-PKB
pathway [3], that is involved in the B,-AR-mediated cardiomyocyte
protection from hypoxia and reactive oxygen species (ROS).

The role of oxidative stress as a pathophysiological mechanism
in left ventricular remodeling and its participation in the progres-
sion of heart failure is well known [4]. Oxidative stress can induce
many of the changes that contribute to myocardial remodeling. For
example, the production of ROS [5] results in a phenotype
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characterized by hypertrophy and apoptosis of isolated cardiac
myocytes [6]. Increased apoptosis, or programmed cell death, plays
a major role in cell survival signaling pathways involved in cardiac
hypertrophy [7,8] and is one of the mechanisms that contributes to
the transition from left ventricular hypertrophy (LVH) to heart fail-
ure [7,9,10].

Nitric oxide (NO-) has surfaced as an endogenous inhibitor of
pathological hypertrophy [11] and treatments with NO* donors
and S-nitrosothiols (RSNOs) have been shown to exhibit a diverse
range of cardioprotective functions. We have previously shown
that in low-density lipoprotein-receptor-knockout (LDLr—/—) mice
that develop atheroma and left ventricular hypertrophy after
15 days on a high fat diet, treatment with an NO* donor, S-nitro-
so-N-acetylcysteine (SNAC), attenuates plaque development via
the suppression of vascular oxidative stress [12]. We have shown
that SNAC protects the heart from structural and functional myo-
cardial alterations, such as heart arrhythmia, by reducing myocyte
sensitivity to catecholamines [13].

NO- has been linked to G protein-coupled receptors (GPCRs) via
S-nitrosation, which is a process of signal transduction resulting
from the covalent modification of protein cysteine residue sites,
[14-16] and can stimulate adrenoceptor-beta overexpression
[17]. In this study we used LDLr—/— mice to assess the ability of
SNAC to modulate oxidative stress and cell survival in cardiac
remodeling and its correlation with B,-AR signaling in mediating
protection through an anti-apoptotic pathway.

We demonstrated that SNAC treatment attenuated oxidative
stress and apoptosis responses induced by the hypertrophic phe-
notype and these protective mechanisms appear to be associated
with increased B,-AR expression/nitrosation mediated by Gi-cou-
pling. This study demonstrates cross-talk between hypertrophic
signaling and B,-AR signaling, which may represent an important
mechanism in the transition from compensatory myocardial
hypertrophy to ventricular dysfunction and heart failure.

Methods
Left ventricular hypertrophy model

Low-density lipoprotein-receptor-knockout (LDLr—/—) mice on
an atherogenic diet for 15 days have increased left ventricular
mass that was characterized by increased LV weight (mg) per body
weight (g) ratio, increased cardiomyocyte diameter and intersti-
tial/perivascular collagen deposition which was prevented by
SNAC treatment [13].

Animals

Three-month-old male C57BL6 and low-density lipoprotein-
receptor-deficient (LDLr—/—) mice (24 +3 g, n =60) from Jackson
Laboratory (Bar Harbor, ME) were used in the experiments. The
Institutional Committee for Ethics in Animal Experimentation
(CEEA/IB 2044-1-UNICAMP) approved the experimental protocols
in agreement with the guidelines of the Brazilian College for Ani-
mal Experimentation (COBEA). The 3 months old male mice were
randomly allocated to one of 3 groups and received food and water
ad libitum for 15 days: (i) control LDLr—/— mice fed a standard diet
(Nuvital CR1) and injected i.p. with a daily dose of 0.1 ml of PBS (C;
n = 20); (ii) hypercholesterolemic LDLr—/— mice fed a high fat diet
(containing: 20% fat, 1.25% cholesterol and 0.5% cholic acid) and in-
jected i.p. with a daily dose of 0.1 ml PBS (H; n = 20) and (iii) hyper-
cholesterolemic LDLr—/— mice fed a high fat diet (containing: 20%
fat, 1.25% cholesterol and 0.5% cholic acid) but injected i.p. with a
daily dose of 0.51 mmol/kg of SNAC (H+S; n = 20) (Fig. 1). The mice
were anesthetized with xylasine (Coopers, Sdo Paulo, Brazil) and

ketamine (Parke-Davis, Argentina), 6 and 40 mg/kg, respectively,
IP. The heart was gently perfused with PBS/DTPA buffer composed
of (in mM) 7.78 NayHPOy, 2.20 KH,PO4, 140 NaCl, and 2.73 KCl, pH
7.4, to remove the blood. The left ventricles were removed and cut
into segments which were used immediately for HPLC analysis and
DHE-derived fluorescence. Other left ventricle segments were used
for Western blotting analysis and TUNEL assays.

Synthesis of SNAC and in vitro stability of SNAC solution

The SNAC synthesis process, stability solution, and calculation
of the concentration and dose adopted were performed as de-
scribed [18].

In vitro analysis of inotropic responses to isoprenaline

After being anesthetized, each mouse was euthanized by cervi-
cal dislocation, the heart was removed, and the left atria were iso-
lated. The atria were suspended in 20 ml organ baths containing
Krebs-Henseleit solution with the following composition:
115 mM NacCl, 4.6 mM KCl, 2.5 mM CaCl,-2H,0, 1.2 mM KH,POy,,
12.4mM MgSO4-7H,0, 25.0 mM NaHCOs;, 11 mM glucose and
0.11 mM ascorbic acid. This solution was warmed (36.5 + 0.1 °C)
and continuously gassed with 95% O, and 5% CO,. The atria were
attached to isometric force transducers (Narco F-60, Narco Biosys-
tem, Houston, TX, USA) under a resting tension of 4.9 mN and con-
tractile responses were recorded on a Narco Biosystem polygraph.
The left atria were electrically paced at 1 Hz and 5 ms using a volt-
age stimulus 20% above the threshold [19]. The length of the left
atrium was set to obtain 80% of the resting tension associated with
the maximum developed force. The tissues were allowed to stabi-
lize for 60 min. Following stabilization, the atria were incubated
with phenoxybenzamine (10 uM) for 15 min to block a-adreno-
ceptors, extraneuronal uptake, and muscarinic receptors [20]. This
period was followed by 45 min of thorough washing [19]. After
recovery of the basal frequency and tension, corticosterone
(30 uM) and desipramine (0.1 M) were added to the bath and
maintained throughout the experiment to inhibit extraneuronal
uptake and neuronal reuptake, respectively. After this treatment,
cumulative concentration-response curves for isoprenaline (ISO)
were obtained. A selective B,-AR antagonist, 50 nM ICI118,551 (er-
ythro-(+)-1-(7-methylindan-4-yloxy)-3-isopropylaminobutan-2-
ol) [21], was then added and left in contact with the tissue for 2 h
before another concentration-response curve was obtained using
the same agonist (ISO) in the presence of antagonist (ICI118,551).
A maximum response was reported when a 0.5 log unit increase
in the agonist concentration produced no additional increase in
the atrial tension.

Sensitivity to isoprenaline was evaluated by determining the
concentration that produced 50% of the maximum response
(ECs0), and it was expressed as the negative logarithm of the ECsq
(pD2).

Treatment with pertussis toxin

In order to examine the involvement of Gi proteins in the re-
sponse to isoprenaline, C, H and H+S mice were treated with per-
tussis toxin (PTX; 30 pg/kg, i.p. 3 days before sacrifice) [22]. The
right and left atria were isolated and prepared for analysis of the
chronotropic and inotropic responses to isoprenaline, respectively,
as described below. To assess the effectiveness of the treatment
with PTX, the atria were incubated with 20 uM carbachol for
5 min, followed by washing and equilibration for 90 min
[19,23,24].
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Tissue extracts analysis by HPLC (separation of DHE, 2-
hydroxyethidium (EOH), and ethidium)

Left ventricle segments (~3 mm in length) were incubated in
0.5 ml of PBS/DTPA buffer containing 100 uM diethylenetriamine
pentaacetic acid (Sigma, St. Louis, MO, USA) (PBS/DTPA) for
15 min in a 1.5-ml Eppendorf vial. A volume of 2.5 pl of DHE
10 mM stock solution was added to the buffer to achieve a final
concentration of 50 pM and a final DMSO concentration of 0.5%
vol/vol and further incubation in the dark was carried out for
30 min at 37 °C. The segments were washed in PBS, transferred
to liquid nitrogen, and homogeneized with mortar and pestle.
The homogenate was resuspended in acetonitrile (0.5 ml), soni-
cated (3 cycles at 8 W for 10s), and centrifuged (12,000g for
10 min at 4 °C). The supernatant was dried under vacuum (Speed
Vac Plus model SC-110A, Thermo Savant) and the resulting pellets
were maintained at —20 °C in the dark until analysis when the
samples were resuspended in 120 ul PBS/DTPA and injected
(100 pl) into the HPLC system. Positive controls, elaboration of this
method and HPLC conditions of analysis, was performed as de-
scribed previously [15]. Simultaneous detection of DHE and its de-
rived oxidation products (EOH and ethidium) using, respectively,
ultraviolet and fluorescence detection, allowed the used of DHE
as an internal control during organic extraction. Thus, DHE-derived
products were expressed as a ratio of EOH and ethidium generated
per DHE consumed (initial DHE concentration minus remaining
DHE; EOH/DHE and ethidium/DHE, respectively). The data were
also normalized for tissue weight.

Western blotting

The frozen left ventricular tissue of the mice was pulverised in
liquid nitrogen with a mortar and pestle, it was then resuspended
in homogenization buffer, 1% Triton X-100 (Amresco, Solon, Ohio),
10 mmol/l sodium pyrophosphate, 100 mmol/l sodium fluoride,
10 pg/ml Aprotinin (Amresco, Solon, Ohio), 1 mmol/l PMSEF,
0.25 mmol/l sodium orthovanadate and 0.1% cocktail inhibitors
protease. The samples were centrifuged for 20 min at 11,000g
and the supernatant was collected and assayed for total protein
concentration using the Bradford method (Bio Rad, Hercules, CA,
USA). Samples were stored at —80 °C until assay. Protein expres-
sion was determined via SDS-polyacrylamide gel electrophoresis
under reducing conditions. Left ventricular tissue extracts (30 ng/
ml) from at least four animals of each group were boiled in equal
volumes of loading buffer (150 mM Tris-HCl, pH 6.8; 4% SDS;
20% glycerol; 15% B-mercaptoethanol; and 0.01% bromophenol
blue) and subjected to electrophoresis on 10% polyacrylamide gels.
Following electrophoretic separation, proteins were transferred to
Hybond-P membranes (Amersham Pharmacia Biotech, Bucking-
hamshire, England). Membranes were blocked with 5% non-fat
dry milk or bovine serum albumin (Sigma, St. Louis, MO, USA) in
buffer containing 10 mM Tris-HCI (pH 7.6), 10 mM NaCl, and
0.1% Tween 20 (Calbiochem, Darmstadt, Germany) (TBST) for 1 h.
Primary antibodies against the following were employed: eNOS
(rabbit polyclonal, 1:1000, 610299; BD Transduction Laboratories);
eNOSpS1177 (mouse monoclonal, 1:500, 612392; BD Transduction
Laboratories); betadrenoceptor-1 (rabbit polyclonal, 1:100, sc-568,
Santa Cruz Biotechnology, Santa Cruz, CA, USA), betadrenoceptor-2
(rabbit polyclonal, 1:100, sc570, Santa Cruz Biotechnology, Santa
Cruz, CA, USA), caspase-3 (rabbit polyclonal, 1:1000, sc7148, Santa
Cruz Biotechnology, Santa Cruz, CA, USA), nitrotyrosine (mouse
monoclonal, 1:1000, clone 1A6), and GAPDH (rabbit polyclonal,
1:2000, sc25778, Santa Cruz Biotechnology, Santa Cruz, CA, USA).
All antibodies were incubated at 4 °C overnight. After the blots
had been washed twice with TBST, secondary antibody horseradish
peroxidase conjugate (goat anti-rabbit polyclonal, 1:10,000,

G21234 or goat anti-mouse 81-6520, Invitrogen, Molecular Probes,
Oregon, USA) was applied at 1:10,000 for 1 h. Blots were washed in
TBST twice over 30 min, incubated using an enhanced Super Signal
chemiluminescent reagent detection kit (Pierce, Rockford, IL, USA),
and exposed to Kodak O-OMAT-AR photographic film (Kodak,
Rochester, NY, USA). Band intensity of original blots was quantified
using Image ] software.

Assessment of S-nitrosation using chemical derivatization biotin-
switch (BST) coupled to immunoprecipitation and Western blotting

S-nitrosated proteins were labeled with biotin in the lysates, as
previously described [25,26]. Left ventricles were rinsed with PBS
containing 0.1 mM EDTA and 0.01 mM neocuproine (Sigma, St.
Louis, MO, USA), cut into segments, which were pulverised in li-
quid nitrogen with a mortar and pestle, immediately resuspended
in HEN lyses buffer containing 0.1% SDS, 0.5% CHAPS, and 20 mM
NEM (N-ethylmaleimide) (Sigma, St. Louis, MO, USA), and lysed
by rocking for 30 min, at 4 °C. The lysates were centrifuged for
10 min at 14,000g and 4 °C and the excess NEM used to block sulf-
hydryl groups [4]| was removed by protein precipitation with ace-
tone. The resulting pellets were resuspended in HEN buffer
containing 1% SDS (HENS) and the S-nitrosothiols were reduced
and biotinylated by the simultaneous addition of 10 mM sodium
ascorbate and 0.05 mM of the sulfhydryl-specific biotinylating
agent, MPB [N-(3-maleimidylpropionyl) biocytin, Molecular
Probes], for 1 h at room temperature (RT). The extra label was re-
moved by a second acetone precipitation, and the proteins resus-
pended in HENS buffer and assayed for total protein
concentration then a small amount was saved to perform GAPDH
expression by Western blot and 100 pg were used to immunopre-
cipitate the biotinylated proteins. Left ventricular tissue extracts
(100 pg/ml) were incubated overnight in 50 pl streptavidin-aga-
rose. Immunoprecipitates were washed three times with 800 pl
of HEN buffer and resuspended in 25 pl of HEN, followed by the
addition of 20 pl of 2x Laemmli sample buffer (150 mM Tris—
HCl, pH 6.8; 4% SDS; 20% glycerol and 0.01% bromophenol blue);
Western blotting was then performed as described above and re-
vealed with antibodies against betadrenoceptor-2 (rabbit poly-
clonal, 1:100, sc570, Santa Cruz Biotechnology, Santa Cruz, CA,
USA) or caspase-3 (rabbit polyclonal, 1:1000, sc7148, Santa Cruz
Biotechnology, Santa Cruz, CA, USA). Control experiments were
also performed in which the sodium ascorbate was omitted, thus
preventing the reduction of S-nitrosothiols. All samples were pro-
tected from light during all procedures prior to electrophoresis;
densities were analyzed by Image ] software.

DNA fragmentation detection by terminal deoxynucleotidyl
transferase mediated-dUTP nick end labeling (TUNEL)

Each left ventricle was weighed, and the ratio of LV weight (mg)
per body weight (g) was calculated. Briefly the mice were anesthe-
tized, and their hearts were perfused in situ with PBS followed by
10% PBS buffered formaldehyde. The LVs were fixed in 10% formal-
dehyde for at least 2 days and then washed in 70% alcohol, they
were then processed for paraffin inclusion using standard meth-
ods: cross-sections of 3 um were cut and mounted on silanized
glass slides, dewaxed with xylene, and rehydrated in a decreasing
ethanol series. Endogenous peroxidase activity was blocked with
3% hydrogen peroxide in water for 30 min and assayed for DNA
fragmentation using a TUNEL assay (In Situ Cell Death Detection
Kit, POD-Roche Mannheim, Germany) according to the manufac-
turer’s instructions. After extension of the fluorescein-labeled
deoxy-UTP tail with the TdT enzyme, a peroxidase-labeled anti-
fluorescein antibody was used and peroxidase activity was re-
vealed with 3,30-diaminobenzidine. Twenty microscopic fields
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Fig. 1. Experimental outline of SNAC treatment in LDLr—/— mice (n=12).

from the LV of three animals per group were selected randomly at
100x objective. The frequency of apoptotic cells was counted and
expressed as a percentage of the total. Observations and photomi-
crographs were made with an Olympus microscope equipped for
fluorescence microscopy (Fig. 1).

Statistical analysis

The results were expressed as mean + SEM and were compared
by Analysis of Variance (ANOVA) followed by the Tukey test, with
P < 0.05 indicating a statistically significant difference.

Results
ROS species reduction and eNOS activation

Because oxidative stress generates a wide array of deleterious
processes that synergize to contribute to adverse cardiac remodel-
ing, we investigated superoxide and hydrogen peroxide amounts in
the LV by using HPLC analysis and quantification of the DHE-de-
rived fluorescent products to increase our understanding of redox
events during LV remodeling. HPLC analysis of the left ventricle re-
vealed an increase in the EOH/DHE (Fig. 2a) and ethidium/DHE
(Fig. 2b) ratio for the hypertrophied left ventricles from animals
of the H group compared to those in the control group. SNAC treat-
ment revealed decreased ratios of EOH/DHE and ethidium/DHE
(52% and 65% respectively) in relation to those of the H group
(Fig. 2a and b).

We also examined the expression of activated eNOS in this sit-
uation. The ratio of p-Ser1177 eNOS/total eNOS on the left ventri-
cle from control and H mice was not changed. However, SNAC
treatment revealed approximately a 50% reduction of this ratio
on H+S mice, as seen in Fig. 2c.

To check for the possibility of toxicity caused by SNAC-donated
nitric oxide reacting with superoxide resulting in peroxynitrite
(ONOO-) formation, we analyzed the expression of nitrotyrosine
(NT) which is used as a biomarker of reactive nitrogen species

formation [27]. No changes in NT expression were observed in
the left ventricle from animals treated with SNAC compared to
those in the H group (Fig. 2d).

B-Adrenoceptors involvement

To explore the pathway mediating the pro-apoptotic effect in
the cardiomyocytes of the left ventricle, we first analyzed initial
B1-AR protein expression by Western blot, and found no significant
differences (Fig. 3a). We then evaluated B,-AR protein expression
to verify the effects of SNAC treatment in the mediation of the
anti-apoptotic effect. We found that 15 days on a high fat diet
(LVH) plus treatment with SNAC lead to a 4-fold increase in B,-
AR expression (P < 0.001; n=7; Fig. 3b).

B2-ARs coupled to Gi proteins are active by SNAC in the left atrium

Left atria of LDLr—/— mice (C group) exhibit lower basal tension
and maximum response to isoprenaline than left atria of C57BL6
mice. Feeding them with high-fat diet with or without SNAC treat-
ment (H+S and H groups, respectively) did not modify the atrial
contractile performance.

In left atria of LDLr—/— mice, the sensitivity to isoprenaline was
not different from that of the C57BL6 mice. However, when LDLr—/
— mice were fed with cholesterol-enriched diet (H), the concentra-
tion-response curves to isoprenaline were shifted to the left
revealing that the atria were supersensitive to isoprenaline when
compared with C57BL6. The treatment with SNAC of LDLr—/— mice
fed with cholesterol-enriched diet cancelled the left atria super-
sensitivity to isoprenaline (Table 1).

In vitro incubation of left atria with 50 nM ICI118,551, a selec-
tive By-adrenoceptor antagonist, had no effect on the basal tension
or the response to isoprenaline in left atria isolated of C57BL6 mice.
Nevertheless, the B,-adrenoceptor antagonist reversed the contrac-
tile deficit in left atria of LDLr—/— mice fed or not with cholesterol-
enriched diet as well as the supersensitivity to isoprenaline in left
atria of mice of the H group. In left atria of LDLr—/— mice fed with
cholesterol enriched diet and treated with SNAC, the presence of
ICI118,551 shifted to the left the concentration response curve to
isoprenaline (Table 1).

These data suggest that in left atria of LDLr—/— mice fed with
cholesterol-enriched diet, the response to isoprenaline is mediated
by a mixed population of B;-ARs coupled to Gs protein and B,-ARs
coupled to Gi protein.

In order to test the hypothesis that LDLr—/— mice fed with com-
mercial diet or cholesterol enriched diet and treated or not with
SNAC were also treated with PTX. In left atria of C, H and H+S mice
treated with PTX there was an increase in the basal tension and to
isoprenaline (Fig. 3¢) so that the contractile deficit previously de-
tected was eliminated. The sensitivity to isoprenaline was not dif-
ferent between C (pD, value 8.44 +0.10) and H mice (pD, value
8.74 £ 0.11). On the other hand, in the H+S group, treatment with
PTX revealed supersensitivity to the inotropic effect of isoprenaline
in the left atria (pD, value 9.11 £0.11).

The effect of C, H mice treatment with PTX in the tension devel-
oped by left atria before the agonist has been added to the organ
bath (basal tension) suggested that Gi-coupled-p,-ARs might exhi-
bit constitutive activity. However the effect of treatment with PTX
in the sensitivity to isoprenaline developed by left atria was only
observed in the H + S mice, what suggest that in this group SNAC
might be induced Gi-coupled-f,-ARs additional activity.

p-Adrenoceptor S-nitrosation

Since S-nitrosothiols (RSNOs) are reported to modulate G-pro-
tein coupled receptor signaling via reversible, thiol-sensitive
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mechanisms, we assessed the S-nitrosation status of p,-AR at cys-
teine residues in heart tissue by a biotin-switch followed by immu-
noprecipitation and western blotting. B,-AR nitrosation in the H+S
group exceeded that of the H group by 61% (Fig. 3d).

Left ventricles were subject to the biotin-switch and probed for
S-nitrosated GAPDH (GAPDH-SNO), along with an ascorbate con-
trol. Notably, omission of ascorbate lead to a nearly complete loss
of the biotinylation signal. (Supplemental Fig. 1).

Inhibition of apoptosis

To investigate the viability of myocardial cells in the left ven-
tricular regions, and the in vivo anti-apoptotic effect of SNAC, we
performed TUNEL staining on the different experimental groups.
Representative photographs of TUNEL-positive nuclei in the heart
are shown in Fig. 4a. Quantitative analysis showed a significantly
higher proportion of TUNEL-positive cells in the myocardia of H
mice those in that of control mice whereas very few or no TUN-
EL-positive cells could be detected in the hearts the H mice after
SNAC treatment (Fig. 4b). These cell apoptosis results were con-
firmed by western blotting with a specific antibody to cleaved cas-
pase-3 (Fig. 4c) and caspase-7 (Fig. 4d). Cell apoptosis was
confirmed by cleaved caspase-3 protein expression since it in-
creases in response to diverse intrinsic and extrinsic death stimuli.
As expected, LVH increased levels of cleaved caspase-3 and cas-
pase-7 protein in the mouse hearts (Fig. 4c and d). However, this
increase was significantly blocked by treatment with SNAC.

As the Bax translocation to the mitochondria is a key event,
which leads to downstream apoptotic events, we next investigated

whether SNAC altered Bax protein in the LVH. SNAC treatment
inhibited expression of Bax (Fig. 4e).

Because ER stress induced apoptosis is partly mediated by the
transcription factor CHOP, we evaluate the effects of SNAC treat-
ment on ER stress-induced apoptosis. We found that 15 days on
a high fat diet (LVH) plus treatment with SNAC lead to a decreased
CHOP expression (Fig. 4f). Collectively, these data indicated that
SNAC played an antiapoptotic role at the mitochondrial and the
ER level by reducing Bax and CHOP expression (see Fig. 6).

To confirm whether the protective effect of SNAC may be par-
tially mediated through the inhibition of caspase-3 activity by
NO--mediated S-nitrosation, we assessed S-nitrosation of procas-
pase-3 and cleaved caspase-3. The results indicated no changes
in caspase-3 S-nitrosation after treatment with SNAC (Fig. 5).

Discussion

In the present study, we set out to elucidate the cardio protec-
tive role of SNAC and its role in cell survival in the hypertrophied
heart. Our results provide evidence that SNAC protects the heart
by reducing sensitivity to catecholamines thereby preventing
excessive adrenergic stimulation due to an increase in p,-AR cou-
pling to Gi. It also increases S-nitrosation of the B,-AR, which
may explain the anti-apoptotic effect of SNAC treatment.

The development of oxidative stress in LVH is a multifactorial
process caused by variety of mechanisms. Superoxide anions O,
are probably the most important free oxygen radicals generated
in vivo, and it is highly likely that they are derived from more than
one source. One major source is NADPH oxidase, but ROS can also
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Fig. 3. SNAC decreases ISO sensitivity by promoting f,AR-Gs uncoupling and B,AR-Gi coupling. (a) Western blot of betadrenoceptor-1 from tissue lysates from left ventricle.
(b) Western blot of betadrenoceptor-2 from tissue lysates from left ventricle. (c) Baseline tension to isoprenaline (ISO) in the left atria of LDLr—/— mice fed with commercial
diet C, or cholesterol enriched diet H. Where indicated, mice were treated with Pertussis toxin (PTX) 30 pg/kg, i.p., 3 days before sacrifice. (d) Left ventricular tissue was
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Table 1

Baseline tension (mN/mg wet tissue, BT) and pD, values of isoprenaline (ISO) in the left atrium of C57BL6 and LDLr—/— (C) mice fed with cholesterol enriched diet (H) and treated

with SNAC (H+S).

Without ICI118,551 With ICI118,551 With PTX
BT pD, BT pD, BT pD,
C57BL6 51.93+3.79 8.66 +0.10 58.63 +5.54 8.87+0.17 - -
C 25.21 +8.06 9.05+0.17 71.56 +9.45% 9.05+0.23 - -
H 27.93+3.44' 9.56 +0.22" 62.25 + 5.46" 9.07 £+0.17 54.90" 9.45
H+S 26.55+4.31" 8.79+0.10 72.09 + 14.56* 9.48 +0.26" 35.26+2.51% 9.11+0.11%

pD, = (—logM of the isoprenaline concentration that gives a response equal to 50% of the maximum response).

* P<0.05 in compared to C57BL6 mice.
° P<0.05 vs H mice.

# P<0.05 vs the same group without ICI 118,551 (ANOVA followed by Tukey test). Data are the mean * S.E.M. of 5-7 experiments done in the absence or the presence of

50 nM ICI118,551.

be produced intracellularly through electron leakage from the
mitochondria during oxidative phosphorylation and through the
activation of various cellular enzymes including xanthine oxidase,
nitric oxide synthase uncoupling, and/or cyclooxygenase [28-32].
Superoxide is subject to dismutation by superoxide dismutase
(SOD) into H,0,, a compound that may mediate the compensatory
responses involved in cardiac remodeling. Our data showed in-
creased levels of oxidative stress in left ventricular hypertrophy,
demonstrated by the presence of O, and H;O, in the LV of
LDLr—/— mice fed a high fat diet. However, DHE oxidized to a com-
pound characterized as ethidium represents the overlapping of
oxidation products due to specific (H,0,) and nonspecific sources

(heme proteins) [33,34]. SNAC treatment resulted in a decrease
in oxidative stress levels by decreasing H,O0, and O, production
by approximately 65% and 52%, respectively. Similar levels in the
cardiac remodeling of the ROS reduction by antioxidants have been
shown in vivo [35,36].

Our previous studies [13] in LDLr—/— mice have shown that
SNAC can suppress cardiac remodeling; and in the present study
we have demonstrated that these effects are due to suppression
of ROS generation in the LV of this animal model fed a high fat diet.
We suggest that this reduction in ROS may be due to the well-
known scavenging action of RSNOs or the N-acetylcysteine per se
activity as an antioxidant in vivo and in vitro. N-acetylcysteine also
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Fig. 4. SNAC inhibits apoptosis triggered by left ventricular remodeling. (a) Immunohistochemical staining for apoptosis by tunel (brown) in left ventricle of LDLr—/— mice.
(Bar, 10 um). (b) Index of apoptotic cells per field expressed as percentage of apoptotic/total cells ratio. (c) Western blot of Cleaved-caspase-3, (d) caspase-7, (e) Bax or (f)
CHOP in tissue lysate from left ventricle. Data are mean of triplicate samples + S.E.M. for at least 3 independent experiments. P < 0.05.

reacts with hydroxyl radicals at a rate constant of
[1.36 x 10(10) M~ ' s~ '] [37]. But reacts slowly with H,0O, and
superoxide (0;).

The induction of eNOS phosphorylation and its consequent acti-
vation through the Akt-phosphorylation pathway [38] can be in-
duced by a range of factors, including H,0, [38-41]. Oxidative
stress in the myocardium, represented by H,0, levels in the LV,
were decreased due to SNAC treatment, concomitant with a de-
crease in the ratio of p-Ser1177 eNOS/total eNOS may be due a
feedback mechanism after treatment with NO- donor (SNAC). Pre-
vious studies in the aortas of these animals showed that the loca-
tion of elevated superoxide levels is associated with constitutive
NOS overexpression [12].

S-nitrosothiols are known to induce betadrenoceptor overex-
pression, and these RSNOs are able to prevent agonist-stimulated
receptor downregulation [42] as reported by Whalen [15] et al.
in mice. The cardioprotective action of SNAC in the left ventricle
(LV) can be attributed to the induction of the overexpression of
B2-AR. Moreover, in cardiomyocytes, S-nitrosothiols can also be
responsible for changes in G-protein coupling. For example, Wha-
len et al. showed a decrease B-AR phosphorylation mediated by the
G-protein coupled receptor kinase 2 (GRK2) and the subsequent
recruitment of B-arrestin to the receptor, resulting in the attenua-
tion of receptor desensitization and internalization. This kind of
coupling change on G-proteins from a P,-adrenergic receptor
mechanism was also seems to be induced by 3-morpholinosydnon-
imine (SIN-1), which releases NO* and superoxide simultaneously
[43]. A similar mechanism may be responsible for the S-nytrosa-
tion of B,-ARs by SNAC, which would increase the coupling of these
adrenoceptors to Gi.

n
o
J

-
o
'l

SNO-Pro-caspase-3 (fold change)

o
L

H+S

H+S

+~— Pro-caspase-3
+~— Cleaved-caspase-3

[ ] Gapan

Fig. 5. SNO-Caspase-3 expression during left ventricle hypertrophy. Typical biotin
switch detects both endogenous and exogenous S-nitrosation in left ventricle
tissue. Left ventricular tissue was subjected to the Biotin Switch and Western
blotting revealed with anti-caspase-3. Data are the means of triplicate samples and
are representative of 2 independent experiments.

Caspase3-SNO

Betadrenoceptor overexpression can be associated with
changes in coupling mechanisms. Studies have described that acti-
vation of the B,AR protects myocytes against apoptosis induced by
a wide array of assaulting factors such enhanced B,AR signaling,
hypoxia, and ROS [44-46]. The activation of B,AR-coupled Gi pro-
teins has been described under various experimental conditions
[47-50] and protects cardiac myocytes from apoptosis via the
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Fig. 6. Potential role of SNAC preventing left ventricular hypertrophy. In cardiomyocytes, nitric oxide (NO) influx leading to betadrenoceptor-2 S-nitrosylation results in a Gi
coupling. The activation of eNOS is negatively regulated. Therapeutic treatment with SNAC might result in conditions of low oxidative stress reducing levels of H,0, and O,

and decreased cell death due the reduced expression of caspase-3 and caspase-7.

downstream target (PI3K)-AKT (also known as protein kinase B)
survivor pathway [44,45]. We have demonstrated that SNAC treat-
ment promotes B,AR-Gs coupling to Gi and also protects cardio-
myocytes from apoptosis.

Studies have also shown exacerbated myocyte apoptosis during
cardiac remodeling [51,52] and cardiomyocyte apoptosis increased
70% during LVH in our model. The prevention of cardiac remodel-
ing by SNAC treatment led to a decrease in the number of apoptotic
cardiomyocytes. We provided new information suggesting that
SNAC regulates the mitochondrial apoptotic pathway likely also
regulate apoptotic pathways at the ER.

It has been recognized that S-nitrosation (cGMP-independent)
reactions can modulate a wide range of cell functions [53,54]. This
is the result of the covalent modification of Cys thiols, which are
important in cardio protection [5,55,56]. The present study has
shown that SNAC treatment increases S-nitrosation in the B,-AR.
To our knowledge, this is the first finding of B,AR S-nitrosation.
We understand the modification of this protein as evidence of cou-
pling change. This is in agreement with the results of studies from
Adam et al. [43] showing NO- effects on the depalmitoylation of
B>AR including reduction of the potency of a B-adrenergic agonist
in the stimulation of adenylyl cyclase uncoupling B,AR to the Gs
pathway. Indeed, even LDLr—/— mice show Gi-coupled-B,-ARs
constitutive activity, we have demonstrated that SNAC treatment
decrease ISO sensitivity in left atria by promoting B,AR-Gs uncou-
pling and B,AR-Gi coupling. We suggest that this phenomenon
may be mediated by B,AR-SNO. Therefore, we investigated the
mechanism of caspase inhibition because it is reported that caspas-
es are also reversibly inhibited by NO related S-nitrosation [57].
The caspases are a family of cysteine proteases and NO' can modify
enzyme function by S-nitrosation of protein thiol groups [54,58].
However, our findings did not show differences in the S-nitrosated
status of procaspase-3 under NO' donation from SNAC treatment.

In conclusion, the present study has, for the first time, demon-
strated that administration of SNAC suppresses cardiac remodeling

in LDLr—/— mice fed a high fat diet via the inhibition of oxidative
stress and apoptosis, which is the result of B,AR overexpression
and coupling changes brought about by S-nitrosation. Moreover,
we showed that treatment with SNAC leads to the coupling of
B2-AR to Gi.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.niox.2013.12.003.
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