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ABSTRACT 

Let A be an n-square normal matrix over C, and Q,,,,_ be the set of strictly 
increasing integer sequences of length m chosen from 1,. . . , n. For o, p E Qm, n denote 
by A [ c$?] the submatrix obtained from A by using rows numbered a and columns 
numbered /I. For k E {0, 1, . , m) write ]a n/3\ = k if there exists a rearrangement of 
l,..., m, say i, ,..., i,, ik+r ,..., i,, such that a($)=&$), i=l,..., k, and 
{a(i,+,),...,a(i,)}n{p(i,+,),..., p( i,,)) = 0. Let %, be the group of n-square 
unitary matrices. Define the nonnegative number 

P,(A)= “2% Idet(U*AU) [@]I~ 
” 

where IanPl=k. Theorem 1 establishes a bound for ok(A), OGk<m-1, in terms of 
a classical variational inequality due to Fermat. Let A be positive semidefinite 
Hermitian, na2m. Theorem 2 leads to an interlacing inequality which, in the case 
n=4, m=2, resolves in the affirmative the conjecture that 

p,,(A)ap,n-,(A)> ... &‘--p,(A). 

I. INTRODUCTION 

Let A be an n-square normal matrix over C with eigenvalues h,, . . . , A,. 

Denote by Q,,,, tl the set of ( g ) strictly increasing integer sequences of length 

m chosen from 1 ,...,n. For ~,B,YEQ,,,~, let A[+] be the m-square 
submatrix of A formed by selecting rows numbered OL and columns fi, and set 
hv=X,,(r). . . hycmj. For kE{O,l,..., m}, write le n PI =k if there exists a 
rearrangement of l,..., m, say i, ,..., i,, ik+l ,..., i,, such that a(i,)=~(i,), 
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i=l,..., k, and {a(&+i) ,..., cw(i,)} n {/3(ik+i) ,..., p(i,)}= 0. Thus, if 
lclln/3[ = k, the submatrix A[@] intersects the main diagonal of A in k main 
diagonal places. 

Consider the set 

AtJA)= {det(U*AU) [alp] : UE%,}, 

where QzL, is the group of n-square unitary matrices, and lo n /3] = k. 
In [6], it is shown that if‘x is an n-square matrix, na2m and (an PI = k, 

then At,@(X) is independent of a ad j3; that is, A”,, s( X) = Ak( X), where 

Ak(X)={det(U*XU)[12...m]12...km+1...2m-k]:UE%,}. 

Define the nonnegative number 

p,(A)= mu 14. 
ZEAL 

Let {e,,..., e,,} be the standard basis in C”, the space of complex column 
n-tuples. Denote by BmC” the mth tensor space over C”, and by A”Q=” the 
mth exterior space over Q=“. For (Y EQ,,_, denote by e,^ the skew-symmetric 
tensor e,(,)r\ . * . Ae,(,,,). If Qm n is ordered lexicographically, then (ec : (Y E 

Q,, ,,}, the standard basis in Q= (i) , is an ordered orthonormal basis of A”Q)“. 
Set G,,.={uA==uiA ..a Au, E r\“Q=” : (1 u” II = l}, the Grassmannian 
manifold. By the usual arguments it may be assumed that the vectors 
ui, . . . , u, occurring in a unit length exterior product uA are orthonormal 

For any n-square matrix X define the induced matrix @*X by @mXv, 
@ . . . @vu,=Xv,@.... @Xv, for arbitrary v,,...,v,~C”. Since A”%” is a 
reducing subspace of BmX the mth compound of X [l, p. 191 can be defined 
by C,(X) = @“‘XI A “C n. Using the induced inner product in A “@ “, it can 
be shown that (C,( X)eF , e,^ ) = det X [ a( /3]. An important property of the 
mth compound is that C,,,(XY)= C,( X)C,(Y) for arbitrary X and Y. Clearly 
for any ZJ,^ E G,, n a unitary U can be selected so that C,(U)u,^ = UU~(~) 
A . . . A tJuacrnj = e,^. Hence,foranyo,PEQ,,,with]anfi]=k, 

A’(A)= {(C,(A)Z$,U~): ui ,..., u,EC”o.n.}. 

Let X,, =maxyE9”t,JIhy], Xmin=minyEOm,,]hy]. The normality of A 
implies that the numerical radius [2, p. 1141 of C,(A) is X,,. Since the 
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eigenvectors of C,(A) are decomposable, p,(A)= h,,. Thus pk( A) for 
0~ k -C m are decomposable bilinear numerical radii. 

The main result of this paper establishes a bound for p,(A), OG k<m- 1, 
in terms of a classical variational inequality due to Fermat [4]. Let A be 
positive semidefinite, na2m. It is conjectured [6] that’ 

The bound obtained here leads to an interlacing inequality which, in the case 
n = 4 and m = 2, resolves the conjecture (1) in the affirmative. 

II. STATEMENTS OF RESULTS 

THEOREM 1. Let m32, na2m; then 

I + ,E: I$-zl if k=m-2, 

pk(A)Gz; n”n 
1 (2) 

2 Ihy-zl if k<m-2. 
2(m-k+l) uEo In” 

THEOREM 2. 

A, = A,,, 

Let A be Hermitian positive semidefinite, p, v, w E Q,,,,, 
andh,=X,,. Zfm>2,n>2m, then 

I + ((+Q+ y Fpj pA)) if k=m-2, 
, I 

P,(A) G 1 m-k 

2(m-k+l) (+%) + @x-U 

if k<m-2. 

III. PROOFS OF RESULTS 

The quadratic (Plucker) relations [3, p. 3121 yield the following key lemma 
obtained in [5]. 

‘Interesting results concerning (1) may be found in [7]. 
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LEMMA 1. Let a,p,y~Q~,~ (na4), lanpl=k. Then for any n-square 

unitary matrix U, 

if k=m-2, 

if k<m-2. (3) 

Now A and U*AU share a common set of eigenvalues for any U E%,. So 
to obtain (2) A may be replaced by U*AU, where A is diagonal. It follows 
that C,,(A) is diagonal. 

Proof of Theorem 1. For any z E C 

=I( (~.(u”Au)-~Z(~))e~,e~)l (since (Y # p) 

= 2 detU[y]a] {A,-z}detU[y]P] 
Y 

< 
Y 

2(mlk+l) z Ihy-ZI if k<m-2 

(4) 

Y 

if k=m-2, 

from Lemma 1. The theorem follows immediately upon minimizing (4) 
over Q=. n 

REMARK. If UE%,, then C,(U) E%(E). Therefore, the columns of 

C,(U) are unit vectors. It follows that ZvEQ.8,.]det U [ yla] det U [ yip] 1 Gl. 
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Take U@JL,, ~,B,YEQ,,,+, and ]LI npl =k<m. The orthogonality of the 
columns of C,(U), the Remark, and (3) imply the three following conditions: 

E detU[y]cu] detU]yJfi]=O, 

and 

if k=m-2, 

if k<m-2. 

LEMMA 2. Let N26, 
be real numbers, and 

a>2, b=2a<N be integers, 1,3&a . . . >I,20 

N N II 

o= (d,,..., 1 d,)ECN: 2 d,=O, 2 (d,lGl, Idil+. 
i=l i=l “1 

Then 

g lidi =;{(zl-zN)+~~~ +(za-zN--a+l)}. 
i=l 

proof. For any z= ZfJ=,Zidi there is a ,$‘, It] = 1, such that ]zI =,$z= 
ZyzrZitdi20. Since &d,,..., d,)~q, we may assume I$rlidi~O. More- 
over, O~~~=N=Zidi=Re~~=v=lZidi=Z~‘=lZiRe(di) and (Re(d,),...,Re(d,))E~. 
So we assume di is real, i=l,. . . , N. Suppose li=li, some i#i. Select e>O, 
and form Q=$+E, (=Zi, i#i. Then IC~rf;,di-Z~rZidi]~s. Therefore, any 
maximal sum is arbitrarily close to a sum in which the Zi are distinct. So we 
may assume Z,>Z,> . . . >Z,>O. 

and 
SupposeZ~==,Idi/<1.Sinceb<N,wecanfindil<izsuchthat/di,I<l/b 
)dizl<l/b. Then there exist .s>O, (Zi,=di,+e, Qi2=diz-s, di=di for 

i#i,,i, such that (J,,...,CZN)Eq, and Z~rZi~i=E~“=lZidi +(Zi,- li2)&> 
ZyzY=,Zidi. So we may assume Z~,jd,]=l. 
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Suppose there is an i, with Idi @ {0,1/b}. Then there are at least two 
indices i,, i, with i,~ {ir, ia}, i,<i,, and 

O&e&se, O=CyE’=ldi=dio. Moreover, di, and di2 may be chosen so that 
di,.diP>O. For if not, then 

di;di2c0, (6) 

and we cannot find Idi,l<l/b such that di;di3>0 or di2.di3>0. Thus 
ldil ~{O,l/b} for if i,, i,, and l=Z~~Vf,,ieldil+Idi,l+Idi,l=(b-l)/b+Idi,l 
+ Idi,]. Since b is even, 

0= $ di+di,+di2= k$ +di,+di2. 
i#i,, i, 

(7) 

But (5) and (6) imply 

ldilfdi,l=~Idi,l-ldi,l~ 

$-ldi21 if Idi,l>Idi,I~ 

$ - Idi, if Idi,I 2 Idi,/ 

which contradicts (7). Therefore d i, . d i, > 0, and for any 0 -C 6 < 
min{ld,,l, Idi,l, Id,, + 61 + Idi2- 61 =Idi,l + Idi,l. As above, there exist 

e>O, di,=dil+e, $iz=di2-~, di=di, i#i,,i,, such that (d, ,..., dN)Eq, 
and X~zY=lZidi>Z~x)i=lZidi. So we assume (dilE{O,l/b}, i=l,...,N. Since 
J$zId i =O, the di’s must pair off with opposite signs. In other words, there 
exist i 1 ,..., i,,i; ,..., i: such that 

; lidi= i dif(lii-‘ii) 
i=l j=l 

+{(zl-zN)+ ..- +(z,-zN--a+l)}. n 
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Proof of Theorem 2. Take N=(g). If k= m-2, set a=2 and b=2a 
=4<6GN. If O<k<m-2, set a=m-k+l>4 and b=2a=2(m-k 
+l); since n >2m, it follows that b< N. Select yip Q,,+ so that h, = Zi, 

where I,>&,~ ... 21, 20, and let di(U)=detU[yi]a] detU[y,]P], i= 
1 , . . . , N, where UE %,, 1 a II /I I= k. Hence from Lemma 1 and Lemma 2 

P,(A)= $_J?$ iFIA, detU[yila] detU[YilPI 

= max 
WE%” I I i lid,(U) 

i=l 

f((~l-~N)+(~~-~N-l)~ k=m-2, 

< 
2(mJk+l) {(Zl-ZN)+ ... +(Z*-ktl-ZN--m+dL k<m-2. 

The result follows immediately upon replacing the Zi ‘s with the X y’s. n 

IV. APPLICATIONS 

It is shown in [5] that if A is an n-square rwrnwZ matrix, ma2, n>2m, 
then 

L(Iw4.I) 

E,&Y.,lh,l) 

if k=m-2, 

(8) 

2(m-k+l) 
if k<m-2, 

where E,(tl,...,t,)=CyEQ,,” II?= ,tycij is the m th elementary symmetric 

polynomial. Since min sEc~yIhy-~I~Em(lAII,...,IX,I), (2) refines (8). 
Let A be Hermitian, k E (0, 1 , . . . , m - l}. From Mirsky [8] it is immediate 

that p,(A)Gj(X,, - Amin). In [6], (1) is conjectured for positive semidefi- 
nite A. This conjecture is resolved here in the affirmative for the case n ~4, 
m =2. 

Assume A=diag(h,,..., h4), A,> . . . >h,aO, Xii=AiXi for lGi, jG4. 
Since the eigenvectors of C,(A) may be chosen from Gs,,, we have ps( A) = 
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x max=X12. Clearly h,,>g(X,,-A,), so p,(A)>p,(A). If 

01 1 0 

then det(U,*AUo)[12]13]=f{(X,,--h,)+(Xis-A,,)} EA’(A). Therefore 

pz(A)~pl(A>~~((hlz-h34)+(h,,-A,,)) 

%I(4 from Theorem 2. 
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