Decomposable Bilinear Numerical Radii

Kenneth Moore Hughes Aircraft Company Culver City, California

Submitted by Richard A. Brualdi

ABSTRACT

Let A be an n-square normal matrix over \mathbb{C} , and $Q_{m,n}$ be the set of strictly increasing integer sequences of length m chosen from $1, \ldots, n$. For $\alpha, \beta \in Q_{m,n}$ denote by $A[\alpha|\beta]$ the submatrix obtained from A by using rows numbered α and columns numbered β . For $k \in \{0, 1, \ldots, m\}$ write $|\alpha \cap \beta| = k$ if there exists a rearrangement of $1, \ldots, m$, say $i_1, \ldots, i_k, i_{k+1}, \ldots, i_m$, such that $\alpha(i_i) = \beta(i_i), i = 1, \ldots, k$, and $\{\alpha(i_{k+1}), \ldots, \alpha(i_m)\} \cap \{\beta(i_{k+1}), \ldots, \beta(i_m)\} = \emptyset$. Let \mathfrak{A}_n be the group of n-square unitary matrices. Define the nonnegative number

$$\rho_k(A) = \max_{U \in \mathfrak{A}_n} \left| \det(U^*AU) \left[\alpha | \beta \right] \right|,$$

where $|\alpha \cap \beta| = k$. Theorem 1 establishes a bound for $\rho_k(A)$, $0 \le k \le m-1$, in terms of a classical variational inequality due to Fermat. Let A be positive semidefinite Hermitian, $n \ge 2m$. Theorem 2 leads to an interlacing inequality which, in the case n=4, m=2, resolves in the affirmative the conjecture that

$$\rho_m(A) \ge \rho_{m-1}(A) \ge \cdots \ge \rho_0(A).$$

I. INTRODUCTION

Let A be an n-square normal matrix over \mathbb{C} with eigenvalues $\lambda_1, \ldots, \lambda_n$. Denote by $Q_{m,n}$ the set of $\binom{n}{m}$ strictly increasing integer sequences of length m chosen from $1, \ldots, n$. For $\alpha, \beta, \gamma \in Q_{m,n}$, let $A[\alpha|\beta]$ be the *m*-square submatrix of A formed by selecting rows numbered α and columns β , and set $\lambda_{\gamma} = \lambda_{\gamma(1)} \cdots \lambda_{\gamma(m)}$. For $k \in \{0, 1, \ldots, m\}$, write $|\alpha \cap \beta| = k$ if there exists a rearrangement of $1, \ldots, m$, say $i_1, \ldots, i_k, i_{k+1}, \ldots, i_m$, such that $\alpha(i_i) = \beta(i_i)$,

LINEAR ALGEBRA AND ITS APPLICATIONS 42:253-260 (1982)

© Elsevier Science Publishing Co., Inc., 1982

52 Vanderbilt Ave., New York, NY 10017

253

 $j=1,\ldots,k$, and $\{\alpha(i_{k+1}),\ldots,\alpha(i_m)\}\cap\{\beta(i_{k+1}),\ldots,\beta(i_m)\}=\emptyset$. Thus, if $|\alpha\cap\beta|=k$, the submatrix $A[\alpha|\beta]$ intersects the main diagonal of A in k main diagonal places.

Consider the set

$$\Delta_{\alpha,\beta}^{k}(A) = \{\det(U^{*}AU) [\alpha|\beta] : U \in \mathfrak{A}_{n}\},\$$

where \mathfrak{A}_n is the group of *n*-square unitary matrices, and $|\alpha \cap \beta| = k$.

In [6], it is shown that if X is an n-square matrix, $n \ge 2m$ and $|\alpha \cap \beta| = k$, then $\Delta_{\alpha,\beta}^k(X)$ is independent of α and β ; that is, $\Delta_{\alpha,\beta}^k(X) = \Delta^k(X)$, where

 $\Delta^{k}(X) = \left\{ \det(U^{*}XU) \left[12 \dots m | 12 \dots k m + 1 \dots 2m - k \right] : U \in \mathfrak{A}_{n} \right\}.$

Define the nonnegative number

$$\rho_k(A) = \max_{z \in \Delta^k(A)} |z|.$$

Let $\{e_1, \ldots, e_n\}$ be the standard basis in \mathbb{C}^n , the space of complex column *n*-tuples. Denote by $\bigotimes^m \mathbb{C}^n$ the *m*th tensor space over \mathbb{C}^n , and by $\wedge^m \mathbb{C}^n$ the *m*th exterior space over \mathbb{C}^n . For $\alpha \in Q_{m,n}$, denote by e_{α}^{\wedge} the skew-symmetric tensor $e_{\alpha(1)} \wedge \cdots \wedge e_{\alpha(m)}$. If $Q_{m,n}$ is ordered lexicographically, then $\{e_{\alpha}^{\wedge} : \alpha \in Q_{m,n}\}$, the standard basis in $\mathbb{C}\binom{n}{m}$, is an ordered orthonormal basis of $\wedge^m \mathbb{C}^n$. Set $G_{m,n} = \{u^{\wedge} = u_1 \wedge \cdots \wedge u_m \in \wedge^m \mathbb{C}^n : ||u^{\wedge}|| = 1\}$, the Grassmannian manifold. By the usual arguments it may be assumed that the vectors u_1, \ldots, u_m occurring in a unit length exterior product u^{\wedge} are orthonormal.

For any *n*-square matrix X define the induced matrix $\bigotimes^m X$ by $\bigotimes^m X v_1$ $\bigotimes \cdots \bigotimes v_m = X v_1 \bigotimes \cdots \bigotimes X v_m$ for arbitrary $v_1, \ldots, v_m \in \mathbb{C}^n$. Since $\wedge^m \mathbb{C}^n$ is a reducing subspace of $\bigotimes^m X$ the *m*th compound of X [1, p. 19] can be defined by $C_m(X) = \bigotimes^m X | \wedge^m \mathbb{C}^n$. Using the induced inner product in $\wedge^m \mathbb{C}^n$, it can be shown that $(C_m(X)e_{\beta}^{\wedge}, e_{\alpha}^{\wedge}) = \det X[\alpha|\beta]$. An important property of the *m*th compound is that $C_m(XY) = C_m(X)C_m(Y)$ for arbitrary X and Y. Clearly for any $u_{\alpha}^{\wedge} \in G_{m,n}$ a unitary U can be selected so that $C_m(U)u_{\alpha}^{\wedge} = Uu_{\alpha(1)}$ $\wedge \cdots \wedge Uu_{\alpha(m)} = e_{\alpha}^{\wedge}$. Hence, for any $\alpha, \beta \in Q_{m,n}$ with $|\alpha \cap \beta| = k$,

$$\Delta^{k}(A) = \left\{ \left(C_{m}(A) u_{\beta}^{\wedge}, u_{\alpha}^{\wedge} \right) : u_{1}, \dots, u_{n} \in \mathbb{C}^{n} \text{ o.n.} \right\}.$$

Let $\lambda_{\max} = \max_{\gamma \in Q_{m,n}} |\lambda_{\gamma}|$, $\lambda_{\min} = \min_{\gamma \in Q_{m,n}} |\lambda_{\gamma}|$. The normality of A implies that the numerical radius [2, p. 114] of $C_m(A)$ is λ_{\max} . Since the

eigenvectors of $C_m(A)$ are decomposable, $\rho_m(A) = \lambda_{\max}$. Thus $\rho_k(A)$ for $0 \le k \le m$ are decomposable bilinear numerical radii.

The main result of this paper establishes a bound for $\rho_k(A)$, $0 \le k \le m-1$, in terms of a classical variational inequality due to Fermat [4]. Let A be positive semidefinite, $n \ge 2m$. It is conjectured [6] that¹

$$\rho_m(A) \ge \rho_{m-1}(A) \ge \cdots \ge \rho_0(A). \tag{1}$$

The bound obtained here leads to an interlacing inequality which, in the case n=4 and m=2, resolves the conjecture (1) in the affirmative.

II. STATEMENTS OF RESULTS

THEOREM 1. Let $m \ge 2$, $n \ge 2m$; then

$$\rho_{k}(A) \leq \min_{z \in \mathbb{C}} \begin{cases} \frac{1}{4} \sum_{\gamma \in Q_{m,n}} |\lambda_{\gamma} - z| & \text{if } k = m - 2, \\ \frac{1}{2(m-k+1)} \sum_{\gamma \in Q_{m,n}} |\lambda_{\gamma} - z| & \text{if } k < m - 2. \end{cases}$$

$$(2)$$

THEOREM 2. Let A be Hermitian positive semidefinite, $\mu, \nu, \omega \in Q_{m,n}$, $\lambda_{\mu} = \lambda_{\max}$, and $\lambda_{\nu} = \lambda_{\min}$. If $m \ge 2$, $n \ge 2m$, then

$$\rho_{k}(A) \leq \begin{cases} \frac{1}{4} \left\{ \left(\lambda_{\mu} - \lambda_{\nu}\right) + \max_{\gamma, \omega \neq \mu, \nu} \left(\lambda_{\gamma} - \lambda_{\omega}\right) \right\} & \text{if } k = m - 2, \\ \frac{1}{2(m - k + 1)} \left\{ \left(\lambda_{\mu} - \lambda_{\nu}\right) + \max_{\gamma_{i}, \omega_{i} \neq \mu, \nu} \sum_{i=1}^{m-k} \left(\lambda_{\gamma_{i}} - \lambda_{\omega_{i}}\right) \right\} & \text{if } k < m - 2. \end{cases}$$

III. PROOFS OF RESULTS

The quadratic (Plücker) relations [3, p. 312] yield the following key lemma obtained in [5].

¹Interesting results concerning (1) may be found in [7].

LEMMA 1. Let $\alpha, \beta, \gamma \in Q_{m,n}$ $(n \ge 4), |\alpha \cap \beta| = k$. Then for any n-square unitary matrix U,

$$\left|\det U\left[\gamma|\alpha\right]\det U\left[\gamma|\beta\right]\right| \leq \begin{cases} \frac{1}{4} & \text{if } k=m-2, \\ \frac{1}{2(m-k+1)} & \text{if } k< m-2. \end{cases}$$
(3)

× 1

Now A and U^*AU share a common set of eigenvalues for any $U \in \mathfrak{A}_n$. So to obtain (2) A may be replaced by U^*AU , where A is diagonal. It follows that $C_m(A)$ is diagonal.

Proof of Theorem 1. For any $z \in \mathbb{C}$

$$\begin{aligned} \left| \det(U^*AU)[\alpha|\beta] \right| &= \left| \left(C_m(U^*AU)e_{\beta}^{\wedge}, e_{\alpha}^{\wedge} \right) \right| &= \left| \left(\left\{ C_m(U^*AU) - zI_{\binom{n}{m}} \right\} e_{\beta}^{\wedge}, e_{\alpha}^{\wedge} \right) \right| &\quad (\text{since } \alpha \neq \beta) \\ &= \left| \left(C_m(U^*) \left\{ C_m(A) - zI_{\binom{n}{m}} \right\} C_m(U)e_{\beta}^{\wedge}, e_{\alpha}^{\wedge} \right) \right| \\ &= \left| \sum_{\gamma, \ \omega \in Q_{m,n}} C_m(U^*)_{\alpha\gamma} \left\{ C_m(A) - zI_{\binom{n}{m}} \right\}_{\gamma\omega} C_m(U)_{\omega\beta} \right| \\ &= \left| \sum_{\gamma} \overline{\det U[\gamma|\alpha]} \left\{ \lambda_{\gamma} - z \right\} \det U[\gamma|\beta] \right| \\ &\leq \sum_{\gamma} \left| \det U[\gamma|\alpha] \det U[\gamma|\beta] \left| \left| \lambda_{\gamma} - z \right| \right| \\ &\leqslant \left\{ \frac{1}{4} \sum_{\gamma} \left| \lambda_{\gamma} - z \right| & \text{if } k = m - 2, \\ &\leq \left\{ \frac{1}{2(m - k + 1)} \sum_{\gamma} \left| \lambda_{\gamma} - z \right| & \text{if } k < m - 2 \end{aligned} \right. \end{aligned}$$

from Lemma 1. The theorem follows immediately upon minimizing (4) over C.

REMARK. If $U \in \mathfrak{A}_n$, then $C_m(U) \in \mathfrak{A}_{\binom{n}{m}}$. Therefore, the columns of $C_m(U)$ are unit vectors. It follows that $\sum_{\gamma \in Q_{m,n}} \left| \det U[\gamma | \alpha] \det U[\gamma | \beta] \right| \leq 1.$

Take $U \in \mathfrak{A}_n$, $\alpha, \beta, \gamma \in Q_{m,n}$, and $|\alpha \cap \beta| = k < m$. The orthogonality of the columns of $C_m(U)$, the Remark, and (3) imply the three following conditions:

$$\sum_{\gamma} \overline{\det U[\gamma|\alpha]} \det U[\gamma|\beta] = 0,$$

$$\sum_{\gamma} \left| \det U[\gamma|\alpha] \det U[\gamma|\beta] \right| \leq 1,$$

and

$$\left|\det U\left[\gamma|\alpha\right]\det U\left[\gamma|\beta\right]\right| \leq \begin{cases} rac{1}{4} & \text{if } k=m-2,\\ rac{1}{2(m-k+1)} & \text{if } k< m-2. \end{cases}$$

LEMMA 2. Let $N \ge 6$, $a \ge 2$, b = 2a < N be integers, $l_1 \ge l_2 \ge \cdots \ge l_N \ge 0$ be real numbers, and

$$\mathfrak{D} = \left\{ (d_1, \dots, d_N) \in \mathbb{C}^N : \sum_{i=1}^N d_i = 0, \sum_{i=1}^N |d_i| \le 1, |d_i| \le \frac{1}{b} \right\}.$$

Then

$$\max_{d \in \mathbb{Q}} \left| \sum_{i=1}^{N} l_{i} d_{i} \right| = \frac{1}{b} \left\{ (l_{1} - l_{N}) + \dots + (l_{a} - l_{N-a+1}) \right\}.$$

Proof. For any $z = \sum_{i=1}^{N} l_i d_i$ there is a ξ , $|\xi| = 1$, such that $|z| = \xi z = \sum_{i=1}^{N} l_i \xi d_i \ge 0$. Since $\xi(d_1, \dots, d_N) \in \mathbb{O}$, we may assume $\sum_{i=1}^{N} l_i d_i \ge 0$. Moreover, $0 \le \sum_{i=1}^{N} l_i d_i = \operatorname{Re} \sum_{i=1}^{N} l_i d_i = \sum_{i=1}^{N} l_i \operatorname{Re}(d_i)$ and $(\operatorname{Re}(d_1), \dots, \operatorname{Re}(d_N)) \in \mathbb{O}$. So we assume d_i is real, $i = 1, \dots, N$. Suppose $l_i = l_i$, some $i \ne j$. Select $\epsilon > 0$, and form $\hat{l}_i = l_i + \epsilon$, $\hat{l}_i = l_i$, $i \ne j$. Then $|\sum_{i=1}^{N} l_i d_i - \sum_{i=1}^{N} l_i d_i| \le \epsilon$. Therefore, any maximal sum is arbitrarily close to a sum in which the l_i are distinct. So we may assume $l_1 > l_2 > \dots > l_N > 0$.

Suppose $\sum_{i=1}^{N} |d_i| < 1$. Since b < N, we can find $i_1 < i_2$ such that $|d_{i_1}| < 1/b$ and $|d_{i_2}| < 1/b$. Then there exist $\varepsilon > 0$, $\hat{d}_{i_1} = d_{i_1} + \varepsilon$, $\hat{d}_{i_2} = d_{i_2} - \varepsilon$, $\hat{d}_i = d_i$ for $i \neq i_1, i_2$ such that $(\hat{d}_1, \dots, \hat{d}_N) \in \mathbb{O}$, and $\sum_{i=1}^{N} l_i \hat{d}_i = \sum_{i=1}^{N} l_i d_i + (l_{i_1} - l_{i_2})\varepsilon > \sum_{i=1}^{N} l_i d_i$. So we may assume $\sum_{i=1}^{N} |d_i| = 1$. Suppose there is an i_0 with $|d_{i_0}| \notin \{0, 1/b\}$. Then there are at least two indices i_1, i_2 with $i_0 \in \{i_1, i_2\}, i_1 \le i_2$, and

$$|d_{i_1}|, |d_{i_2}| \notin \left\{0, \frac{1}{b}\right\}.$$
 (5)

Otherwise, $0 = \sum_{i=1}^{N} d_i = d_{i_0}$. Moreover, d_{i_1} and d_{i_2} may be chosen so that $d_{i_1} \cdot d_{i_2} > 0$. For if not, then

$$d_{i_1} \cdot d_{i_2} < 0,$$
 (6)

and we cannot find $|d_{i_3}| < 1/b$ such that $d_{i_1} \cdot d_{i_3} > 0$ or $d_{i_2} \cdot d_{i_3} > 0$. Thus $|d_i| \in \{0, 1/b\}$ for $i \neq i_1, i_2$, and $1 = \sum_{i \neq i_1, i_2}^N |d_i| + |d_{i_1}| + |d_{i_2}| = (b-1)/b + |d_{i_1}| + |d_{i_2}|$. Since b is even,

$$0 = \sum_{i \neq i_1, i_2}^{N} d_i + d_{i_1} + d_{i_2} = \pm \frac{1}{b} + d_{i_1} + d_{i_2}.$$
 (7)

But (5) and (6) imply

$$\begin{split} |d_{i_1} + d_{i_2}| = & \left| |d_{i_1}| - |d_{i_2}| \right| \\ < & \left\{ \begin{aligned} \frac{1}{b} - |d_{i_2}| & \text{if } |d_{i_1}| \geqslant |d_{i_2}|, \\ \frac{1}{b} - |d_{i_1}| & \text{if } |d_{i_2}| \geqslant |d_{i_1}| \\ < & \frac{1}{b}, \end{aligned} \right. \end{split}$$

which contradicts (7). Therefore $d_{i_1} \cdot d_{i_2} > 0$, and for any $0 < \delta < \min\{|d_{i_1}|, |d_{i_2}|, |d_{i_1} + \delta| + |d_{i_2} - \delta| = |d_{i_1}| + |d_{i_2}|$. As above, there exist $\varepsilon > 0$, $d_{i_1} = d_{i_1} + \varepsilon$, $d_{i_2} = d_{i_2} - \varepsilon$, $d_i = d_i$, $i \neq i_1, i_2$, such that $(d_1, \ldots, d_N) \in \mathfrak{D}$, and $\sum_{i=1}^N l_i d_i > \sum_{i=1}^N l_i d_i$. So we assume $|d_i| \in \{0, 1/b\}$, $i = 1, \ldots, N$. Since $\sum_{i=1}^N d_i = 0$, the d_i 's must pair off with opposite signs. In other words, there exist $i_1, \ldots, i_a, i'_1, \ldots, i'_a$ such that

$$\sum_{i=1}^{N} l_{i}d_{i} = \sum_{j=1}^{a} d_{i_{j}}(l_{i_{j}} - l_{i_{j}})$$

$$\leq \frac{1}{b} \{ (l_{1} - l_{N}) + \dots + (l_{a} - l_{N-a+1}) \}.$$

258

Proof of Theorem 2. Take $N = \binom{n}{m}$. If k = m - 2, set a = 2 and $b = 2a = 4 < 6 \le N$. If $0 \le k < m - 2$, set $a = m - k + 1 \ge 4$ and b = 2a = 2(m - k + 1); since $n \ge 2m$, it follows that b < N. Select $\gamma_i \in Q_{m,n}$ so that $\lambda_{\gamma_i} = l_i$, where $l_1 \ge l_2 \ge \cdots \ge l_N \ge 0$, and let $d_i(U) = \det U[\gamma_i | \alpha] \det U[\gamma_i | \beta]$, $i = 1, \ldots, N$, where $U \in \mathfrak{A}_n$, $|\alpha \cap \beta| = k$. Hence from Lemma 1 and Lemma 2

$$\rho_{k}(A) = \max_{U \in \mathcal{Q}_{l_{n}}} \left| \sum_{i=1}^{N} \lambda_{\gamma_{i}} \overline{\det U[\gamma_{i}|\alpha]} \det U[\gamma_{i}|\beta] \right|$$

$$= \max_{U \in \mathcal{Q}_{l_{n}}} \left| \sum_{i=1}^{N} l_{i}d_{i}(U) \right|$$

$$\leqslant \begin{cases} \frac{1}{4} \{ (l_{1} - l_{N}) + (l_{2} - l_{N-1}) \}, & k = m-2, \\ \frac{1}{2(m-k+1)} \{ (l_{1} - l_{N}) + \dots + (l_{m-k+1} - l_{N-m+k}) \}, & k < m-2. \end{cases}$$

The result follows immediately upon replacing the l_i 's with the λ_{γ} 's.

IV. APPLICATIONS

It is shown in [5] that if A is an n-square normal matrix, $m \ge 2$, $n \ge 2m$, then

$$\rho_{k}(A) \leq \begin{cases}
\frac{E_{m}(|\lambda_{1}|, \dots, |\lambda_{n}|)}{4} & \text{if } k = m - 2, \\
\frac{E_{m}(|\lambda_{1}|, \dots, |\lambda_{n}|)}{2(m - k + 1)} & \text{if } k < m - 2,
\end{cases}$$
(8)

where $E_m(t_1,...,t_m) = \sum_{\gamma \in Q_{m,n}} \prod_{i=1}^m t_{\gamma(i)}$ is the *m*th elementary symmetric polynomial. Since $\min_{z \in \mathbb{C}} \sum_{\gamma} |\lambda_{\gamma} - z| \leq E_m(|\lambda_1|,...,|\lambda_n|)$, (2) refines (8).

Let A be Hermitian, $k \in \{0, 1, ..., m-1\}$. From Mirsky [8] it is immediate that $\rho_k(A) \leq \frac{1}{2}(\lambda_{\max} - \lambda_{\min})$. In [6], (1) is conjectured for positive semidefinite A. This conjecture is resolved here in the affirmative for the case n = 4, m = 2.

Assume $A = \text{diag}(\lambda_1, ..., \lambda_4)$, $\lambda_1 \ge \cdots \ge \lambda_4 \ge 0$, $\lambda_{ij} = \lambda_i \lambda_j$ for $1 \le i, j \le 4$. Since the eigenvectors of $C_2(A)$ may be chosen from $G_{2,4}$, we have $\rho_2(A) =$

 $\lambda_{\max} = \lambda_{12}$. Clearly $\lambda_{12} \ge \frac{1}{2}(\lambda_{12} - \lambda_{34})$, so $\rho_2(A) \ge \rho_1(A)$. If

	0	1	1	0]
$U_0 = \frac{1}{\sqrt{2}}$	1	0	0	1
	1	0	0	-1 '
	0	1	-1	0

then det $(U_0^*AU_0)[12|13] = \frac{1}{4} \{ (\lambda_{12} - \lambda_{34}) + (\lambda_{13} - \lambda_{24}) \} \in \Delta^1(A)$. Therefore

$$\rho_{2}(A) \ge \rho_{1}(A) \ge \frac{1}{4} \{ (\lambda_{12} - \lambda_{34}) + (\lambda_{13} - \lambda_{24}) \}$$

 $\geq \rho_0(A)$ from Theorem 2.

REFERENCES

- 1 F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1959.
- 2 P. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, N.J., 1967.
- 3 W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. 1, Cambridge U. P. London, 1947.
- 4 H. W. Kuhn, "Steiner's" problem revisited, MAA Studies in Math. 10:52-70 (1974).
- 5 M. Marcus and I. Filippenko, Inequalities connecting eigenvalues and nonprincipal subdeterminates, in *Proceedings of the Second International Conference on General Inequalities at Oberwolfach*, Vol. 2, 1980, pp. 91–105.
- 6 M. Marcus and K. Moore, A subdeterminant inequality for normal matrices, *Linear Algebra Appl.* 31:129–143 (1980).
- 7 M. Marcus and H. Robinson, Bilinear functionals on the Grassmannian manifold, Linear and Multilinear Algebra 3:215–225 (1975).
- 8 L. Mirsky, Inequalities for normal and Hermitian matrices, *Duke Math. J.* 14:591–599 (1957).

Received 20 October 1980; revised 22 June 1981