Decomposable Bilinear Numerical Radii

Kenneth Moore *Hughes Aircraft Company Culver City, California*

Submitted by Richard A. Brualdi

ABSTRACT

Let A be an *n*-square normal matrix over C, and $Q_{m,n}$ be the set of strictly increasing integer sequences of length *m* chosen from $1, \ldots, n$. For $\alpha, \beta \in Q_{m,n}$ denote by $A[\alpha|\beta]$ the submatrix obtained from A by using rows numbered α and columns numbered β . For $k \in \{0, 1, ..., m\}$ write $|\alpha \cap \beta| = k$ if there exists a rearrangement of 1,..., *m*, say $i_1, ..., i_k, i_{k+1}, ..., i_m$, such that $\alpha(i_i) = \beta(i_i), i = 1, ..., k$, and $\{\alpha(i_{k+1}),\ldots,\alpha(i_m)\}\cap{\{\beta(i_{k+1}),\ldots,\beta(i_m)\}}=\emptyset$. Let \mathfrak{A}_n be the group of n-square unitary **matrices. Define the nonnegative number**

$$
\rho_k(A) = \max_{U \in \mathfrak{A}_n} \left| \det(U^*AU) \left[\alpha | \beta \right] \right|,
$$

where $|\alpha \cap \beta|=k$. Theorem 1 establishes a bound for $\rho_k(A)$, $0 \le k \le m-1$, in terms of a classical variational inequality due to Fermat. Let *A* be positive semidefinite Hermitian, $n \geq 2m$. Theorem 2 leads to an interlacing inequality which, in the case $n=4$, $m=2$, resolves in the affirmative the conjecture that

$$
\rho_m(A) \geq \rho_{m-1}(A) \geq \cdots \geq \rho_0(A).
$$

I. INTRODUCTION

Let A be an *n*-square normal matrix over C with eigenvalues $\lambda_1, \ldots, \lambda_n$. Denote by $Q_{m,n}$ the set of $\binom{n}{m}$ strictly increasing integer sequences of length *m* chosen from 1,..., *n*. For $\alpha, \beta, \gamma \in Q_{m,n}$, let $A[\alpha|\beta]$ be the *m*-square submatrix of A formed by selecting rows numbered α and columns β , and set $\lambda_{\gamma} = \lambda_{\gamma(1)} \cdots \lambda_{\gamma(m)}$. For $k \in \{0,1,\ldots,m\}$, write $|\alpha \cap \beta| = k$ if there exists a **rearrangement** of $1, \ldots, m$, say $i_1, \ldots, i_k, i_{k+1}, \ldots, i_m$, such that $\alpha(i_i) = \beta(i_i)$,

LINEAR ALGEBRA AND ITS APPLZCATIONS 42:253-260 (1982) 253

0 Elsevier Science Publishing Co., Inc., 1982

52 Vanderbilt Ave., New York, NY 10017 00243795/82/010253 + 8\$02.75

 $i=1,\ldots, k$, and $\{\alpha(i_{k+1}),\ldots,\alpha(i_m)\}\cap \{\beta(i_{k+1}),\ldots,\beta(i_m)\}=\emptyset$. Thus, if $|\alpha \cap \beta| = k$, the submatrix $A[\alpha|\beta]$ intersects the main diagonal of A in *k* main diagonal places.

Consider the set

$$
\Delta_{\alpha,\beta}^{k}(A) = \{ \det(U^*AU) \, \big[\, \alpha | \beta \, \big] : U \in \mathfrak{A}_n \},
$$

where \mathcal{U}_n is the group of *n*-square unitary matrices, and $|\alpha \cap \beta| = k$.

In [6], it is shown that *if* X is an *n*-square matrix, $n \ge 2m$ and $|\alpha \cap \beta| = k$, *then* $\Delta_{\alpha,\beta}^{k}(X)$ *is independent of* α *and* β ; *that is*, $\Delta_{\alpha,\beta}^{k}(X) = \Delta^{k}(X)$ *, where*

 $\Delta^{k}(X) = \{ \det(U^*XU) \mid 12...m|12...k m+1...2m-k \} : U \in \mathfrak{A}_n \}.$

Define the nonnegative number

$$
\rho_k(A) = \max_{z \in \Delta^k(A)} |z|.
$$

Let $\{e_1, \ldots, e_n\}$ be the standard basis in \mathbb{C}^n , the space of complex column n-tuples. Denote by $\otimes^m \mathbb{C}^n$ the mth tensor space over \mathbb{C}^n , and by $\wedge^m \mathbb{C}^n$ the mth exterior space over \mathbb{C}^n . For $\alpha \in Q_{m,n}$, denote by e_α^\wedge the skew-symmetric tensor $e_{\alpha(1)} \wedge \cdots \wedge e_{\alpha(m)}$. If $Q_{m,n}$ is ordered lexicographically, then $\{e_{\alpha}^{\wedge} : \alpha \in$ $Q_{m,n}$, the standard basis in $\mathbb{C}^{\{n\}}$, is an ordered orthonormal basis of $\wedge^m \mathbb{C}^n$. Set $G_{m,n} = \{u^{\wedge}=u_1 \wedge \cdots \wedge u_m \in \wedge^m \mathbb{C}^n : ||u^{\wedge}||=1\}$, the Grassmannian manifold. By the usual arguments it may be assumed that the vectors u_1, \ldots, u_m occurring in a unit length exterior product u^{\wedge} are orthonormal.

For any *n*-square matrix X define the induced matrix $\otimes^m X$ by $\otimes^m Xv_1$ $\otimes \cdots \otimes v_m = Xv_1 \otimes \ldots \otimes Xv_m$ for arbitrary $v_1, \ldots, v_m \in \mathbb{C}^n$. Since $\wedge^m \mathbb{C}^n$ is a reducing subspace of $\mathcal{D}^m X$ the mth compound of X [1, p. 19] can be defined by $C_m(X) = \bigotimes^m X \mid \bigwedge^m \mathbb{C}^n$. Using the induced inner product in $\bigwedge^m \mathbb{C}^n$, it can be shown that $(C_m(X)e_\beta^\wedge, e_\alpha^\wedge) = \det X[\alpha|\beta]$. An important property of the mth compound is that $C_m(XY) = C_m(X)C_m(Y)$ for arbitrary X and Y. Clearly for any $u_{\alpha}^{\wedge} \in G_{m,n}$ a unitary U can be selected so that $C_m(U)u_{\alpha}^{\wedge} = Uu_{\alpha(1)}$ $\wedge \cdots \wedge U_{u_{\alpha(m)}} = e_{\alpha}^{\wedge}$. Hence, for any $\alpha, \beta \in Q_{m,n}$ with $|\alpha \cap \beta|=k$,

$$
\Delta^k(A) = \left\{ \left(C_m(A) u_\beta^\wedge, u_\alpha^\wedge \right) : u_1, \dots, u_n \in \mathbb{C}^n \text{ o.n.} \right\}.
$$

Let $\lambda_{\max} = \max_{\mathbf{v} \in \Omega_{\text{max}}} |\lambda_{\mathbf{v}}|$, $\lambda_{\min} = \min_{\mathbf{v} \in \Omega_{\text{max}}} |\lambda_{\mathbf{v}}|$. The normality of A implies that the numerical radius [2, p. 114] of $C_m(A)$ is λ_{max} . Since the eigenvectors of $C_m(A)$ are decomposable, $\rho_m(A) = \lambda_{\max}$. Thus $\rho_k(A)$ for 0~ *k -C m* are *decomposable bilinear numerical* radii.

The main result of this paper establishes a bound for $\rho_k(A)$, $0 \le k \le m-1$, in terms of a classical variational inequality due to Fermat [4]. Let *A* be positive semidefinite, $n \ge 2m$. It is conjectured [6] that¹

$$
\rho_m(A) \geq \rho_{m-1}(A) \geq \cdots \geq \rho_0(A). \tag{1}
$$

The bound obtained here leads to an interlacing inequality which, in the case $n=4$ and $m=2$, resolves the conjecture (1) in the affirmative.

II. STATEMENTS OF RESULTS

THEOREM 1. Let $m \geq 2$, $n \geq 2m$; then

OREM 1. Let
$$
m \geq 2
$$
, $n \geq 2m$; then

\n
$$
\rho_k(A) \leq \min_{z \in \mathbb{C}} \begin{cases}\n\frac{1}{4} \sum_{\gamma \in Q_{m,n}} |\lambda_{\gamma} - z| & \text{if } k = m - 2, \\
\frac{1}{2(m - k + 1)} \sum_{\gamma \in Q_{m,n}} |\lambda_{\gamma} - z| & \text{if } k < m - 2.\n\end{cases} \tag{2}
$$

 $\lambda_{\mu} = \lambda_{\text{max}}$, and $\lambda_{\nu} = \lambda_{\text{min}}$. If $m \ge 2$, $n \ge 2m$, then

THEOREM 2. Let A be Hermitian positive semidefinite,
$$
\mu, \nu, \omega \in Q_{m,n}
$$
,
\n
$$
\lambda_{\mu} = \lambda_{\max}, \text{ and } \lambda_{\nu} = \lambda_{\min}. \text{ If } m \ge 2, n \ge 2m, \text{ then}
$$
\n
$$
\rho_{k}(A) \le \begin{cases}\n\frac{1}{4} \left\{ (\lambda_{\mu} - \lambda_{\nu}) + \max_{\gamma, \omega \neq \mu, \nu} (\lambda_{\gamma} - \lambda_{\omega}) \right\} & \text{if } k = m - 2, \\
\frac{1}{2(m - k + 1)} \left\{ (\lambda_{\mu} - \lambda_{\nu}) + \max_{\gamma_i, \omega_i \neq \mu, \nu} \sum_{i = 1}^{m - k} (\lambda_{\gamma_i} - \lambda_{\omega_i}) \right\} & \text{if } k < m - 2.\n\end{cases}
$$

III. PROOFS OF RESULTS

The quadratic (Plücker) relations [3, p. 312] yield the following key lemma obtained in [5].

^{&#}x27;Interesting results concerning (1) may be found in [7].

LEMMA 1. Let $\alpha, \beta, \gamma \in Q_{m,n}$ ($n \geq 4$), $|\alpha \cap \beta| = k$. Then for any n-square *unitary matrix U,*

$$
\left|\det U\left[\gamma|\alpha\right]\det U\left[\gamma|\beta\right]\right| \leq \begin{cases} \frac{1}{4} & \text{if } k=m-2, \\ \frac{1}{2(m-k+1)} & \text{if } k < m-2. \end{cases}
$$
 (3)

 $\sqrt{1}$

Now A and U*AU share a common set of eigenvalues for any $U \in \mathcal{U}_n$. So to obtain (2) A may be replaced by U^*AU , where A is diagonal. It follows that $C_m(A)$ is diagonal.

Proof of Theorem 1. For any $z \in \mathbb{C}$

$$
|\det(U^*AU)[\alpha|\beta]| = |(C_m(U^*AU)e_\beta^\wedge, e_\alpha^\wedge)|
$$

\n
$$
= |(\{C_m(U^*AU) - zI_{\binom{n}{m}}\}e_\beta^\wedge, e_\alpha^\wedge)| \text{ (since } \alpha \neq \beta)
$$

\n
$$
= |(C_m(U^*)\{C_m(A) - zI_{\binom{n}{m}}\}C_m(U)e_\beta^\wedge, e_\alpha^\wedge)|
$$

\n
$$
= |\sum_{\gamma,\omega \in Q_{m,n}} C_m(U^*)_{\alpha\gamma}\{C_m(A) - zI_{\binom{n}{m}}\}_{\gamma\omega}C_m(U)_{\omega\beta}|
$$

\n
$$
= |\sum_{\gamma}\det U[\gamma|\alpha] \{\lambda_\gamma - z\} \det U[\gamma|\beta] |
$$

\n
$$
\leq \sum_{\gamma} |\det U[\gamma|\alpha] \det U[\gamma|\beta] ||\lambda_\gamma - z|
$$

\n
$$
\leq |\frac{1}{4} \sum_{\gamma} |\lambda_\gamma - z| \text{ if } k = m - 2,
$$

\n
$$
\leq |\frac{1}{2(m-k+1)} \sum_{\gamma} |\lambda_\gamma - z| \text{ if } k < m - 2
$$
 (4)

from Lemma 1. The theorem follows immediately upon minimizing (4) over $\mathbb C$.

REMARK. If $U \in \mathcal{U}_n$, then $C_m(U) \in \mathcal{U}_{\binom{n}{m}}$. Therefore, the columns of $C_m(U)$ are unit vectors. It follows that $\sum_{\gamma \in Q_{m,n}} \left| \det U[\gamma | \alpha] \det U[\gamma | \beta] \right| \leq 1$.

Take $U \in \mathcal{U}_n$, $\alpha, \beta, \gamma \in Q_{m,n}$, and $|\alpha \cap \beta| = k < m$. The orthogonality of the columns of $C_m(U)$, the Remark, and (3) imply the three following conditions:

$$
\sum_{\gamma} \overline{\det U[\gamma|\alpha]} \det U[\gamma|\beta] = 0,
$$

$$
\sum_{\gamma} |\det U[\gamma|\alpha] \det U[\gamma|\beta]| \le 1,
$$

and

$$
|\det U[\gamma|\alpha] \det U[\gamma|\beta]| \leq \begin{cases} \frac{1}{4} & \text{if } k=m-2, \\ \frac{1}{2(m-k+1)} & \text{if } k < m-2. \end{cases}
$$

LEMMA 2. Let $N \ge 6$, $a \ge 2$, $b = 2a < N$ be integers, $l_1 \ge l_2 \ge \cdots \ge l_N \ge 0$ be real numbers, and

$$
\mathbb{Q} = \left\{ (d_1, \dots, d_N) \in \mathbb{C}^N \colon \sum_{i=1}^N d_i = 0, \sum_{i=1}^N |d_i| \leq 1, |d_i| \leq \frac{1}{b} \right\}.
$$

Then

$$
\max_{d \in \mathcal{P}} \left| \sum_{i=1}^{N} l_i d_i \right| = \frac{1}{b} \left\{ (l_1 - l_N) + \dots + (l_a - l_{N-a+1}) \right\}.
$$

Proof. For any $z = \sum_{i=1}^{N} l_i d_i$ there is a ξ , $|\xi| = 1$, such that $|z| = \xi z = \sum_{i=1}^{N} l_i \xi d_i \ge 0$. Since $\xi(d_1, \ldots, d_N) \in \mathcal{D}$, we may assume $\sum_{i=1}^{N} l_i d_i \ge 0$. More- $\Delta_{i=1}^{i_1}$ cu_i...., α_N ∞ , we may assume $\Delta_{i=1}^{i_1}$ v_i \sim where one over, $0 \le \sum_{i=1}^{N} l_i d_i = \text{Re}\sum_{i=1}^{N} l_i d_i = \sum_{i=1}^{N} l_i \text{Re}(d_i)$ and $(\text{Re}(d_1), \dots, \text{Re}(d_N)) \in \mathcal{D}$.
So we assume d_i is real, $i = 1$ maximal sum is arbitrarily close to a sum in which the l_i are distinct. So we

may assume $l_1 > l_2 > \cdots > l_N > 0$.
Suppose $\sum_{i=1}^{N} |d_i| < 1$. Since $b < N$, we can find $i_1 < i_2$ such that $|d_i| < 1/b$. and $|d_{i_2}| < 1/b$. Then there exist $\varepsilon > 0$, $d_{i_1} = d_{i_1} + \varepsilon$, $d_{i_2} = d_{i_2} - \varepsilon$, $d_i = d_i$ for $i \neq i_1, i_2$ such that $(d_1, ..., d_N) \in \mathcal{D}$, and $\Sigma_{i=1}^{N} l_i d_i = \Sigma_{i=1}^{N} l_i d_i + (l_{i_1} - l_{i_2}) \varepsilon > \Sigma_{i=1}^{N} l_i d_i$. So w

Suppose there is an i_0 with $|d_{i_0}| \notin \{0, 1/b\}$. Then there are at least two indices i_1, i_2 with $i_0 \in \{i_1, i_2\}, i_1 \le i_2$, and

$$
|d_{i_1}|, |d_{i_2}| \notin \left\{0, \frac{1}{b}\right\}.
$$
 (5)

Otherwise, $0 = \sum_{i=1}^{N} d_i = d_{i_0}$. Moreover, d_{i_1} and d_{i_2} may be chosen so that $d_{i_1} \cdot d_{i_2} > 0$. For if not, then

$$
d_{i_1} \cdot d_{i_2} < 0,\tag{6}
$$

and we cannot find $|d_{i_2}|<1/b$ such that $d_{i_1} \cdot d_{i_2}>0$ or $d_{i_2} \cdot d_{i_3}>0$. Thus $|d_i| \in \{0, 1/b\}$ for $i \neq i_1, i_2$, and $1 = \sum_{i=1}^{N} |d_i| + |d_i| + |d_i| = (b-1)/b + |d_i|$ $+|d_{i_2}|$. Since *b* is even,

$$
0 = \sum_{i \neq i_1, i_2}^{N} d_i + d_{i_1} + d_{i_2} = \pm \frac{1}{b} + d_{i_1} + d_{i_2}.
$$
 (7)

But (5) and (6) imply

$$
|d_{i_1} + d_{i_2}| = | |d_{i_1}| - |d_{i_2}| |
$$

$$
< \begin{cases} \frac{1}{b} - |d_{i_2}| & \text{if} \quad |d_{i_1}| > |d_{i_2}|, \\ \frac{1}{b} - |d_{i_1}| & \text{if} \quad |d_{i_2}| > |d_{i_1}| \\ < \frac{1}{b}, \end{cases}
$$

which contradicts (7). Therefore d_{i_1} , $d_{i_2} > 0$, and for any $0 < \delta <$
min{ $|d_{i_1}|$, $|d_{i_2}|$, $|d_{i_1} + \delta| + |d_{i_2} - \delta| = |d_{i_1}| + |d_{i_2}|$. As above, there exist $\varepsilon > 0$, $d_{i_1} = d_{i_1} + \varepsilon$, $d_{i_2} = d_{i_2} - \varepsilon$, $d_i = d_i$, $i \neq i_1, i_2$, such that $(d_1, ..., d_N) \in \mathcal{D}$,
and $\sum_{i=1}^{N} l_i d_i > \sum_{i=1}^{N} l_i d_i$. So we assume $|d_i| \in \{0, 1/b\}$, $i = 1, ..., N$. Since $\sum_{i=1}^{N} d_i = 0$, the d_i 's must pair off with opposite signs. In other words, there exist $i_1, \ldots, i_a, i'_1, \ldots, i'_a$ such that

$$
\sum_{i=1}^{N} l_i d_i = \sum_{j=1}^{a} d_{i_j} (l_{i_j} - l_{i'_j})
$$

$$
\leq \frac{1}{b} \{ (l_1 - l_N) + \dots + (l_a - l_{N-a+1}) \}.
$$

258

Proof of Theorem 2. Take $N = \binom{n}{m}$. If $k = m - 2$, set $a = 2$ and $b = 2a$ $=4<6\leq N$. If $0\leq k\leq m-2$, set $a=m-k+1\geq 4$ and $b=2a=2(m-k)$ +1); since $n \ge 2m$, it follows that $b < N$. Select $\gamma_i \in Q_{m,n}$ so that $\lambda_{\gamma_i} = l_i$, where $l_1 \ge l_2 \ge \cdots \ge l_N \ge 0$, and let $d_i(U) = \det U[\gamma_i | \alpha] \det U[\gamma_i | \beta], i =$ $1, \ldots, N$, where $U \in \mathcal{U}_n$, $|\alpha \cap \beta| = k$. Hence from Lemma 1 and Lemma 2

$$
\rho_{k}(A) = \max_{U \in \mathcal{P}_{u_{n}}} \left| \sum_{i=1}^{N} \lambda_{\gamma_{i}} \frac{\det U[\gamma_{i}|\alpha]}{\det U[\gamma_{i}|\beta]} \right|
$$

=
$$
\max_{U \in \mathcal{P}_{u_{n}}} \left| \sum_{i=1}^{N} l_{i} d_{i}(U) \right|
$$

$$
\leq \left\{ \frac{\frac{1}{4} \{ (l_{1} - l_{N}) + (l_{2} - l_{N-1}) \}, \frac{k=m-2}{2(m-k+1)} \{ (l_{1} - l_{N}) + \dots + (l_{m-k+1} - l_{N-m+k}) \}, \quad k \leq m-2. \right\}
$$

The result follows immediately upon replacing the l_i 's with the λ_{γ} 's.

IV. APPLICATIONS

It is shown in [5] that if A is an *n*-square normal matrix, $m \ge 2$, $n \ge 2m$, then

$$
\rho_k(A) \leq \begin{cases} \frac{E_m(|\lambda_1|, \dots, |\lambda_n|)}{4} & \text{if} \quad k = m - 2, \\ \frac{E_m(|\lambda_1|, \dots, |\lambda_n|)}{2(m - k + 1)} & \text{if} \quad k < m - 2, \end{cases} \tag{8}
$$

where $E_m(t_1,...,t_m)=\sum_{\gamma\in Q_{m,n}}\prod_{i=1}^m t_{\gamma(i)}$ is the m_{th} elementary symmetric polynomial. Since $\min_{z \in C} \sum_{\gamma} |\lambda_{\gamma} - z| \le E_m(|\lambda_1|, \dots, |\lambda_n|)$, (2) refines (8).

Let A be Hermitian, $k \in \{0, 1, ..., m-1\}$. From Mirsky [8] it is immediate that $\rho_k(A) \leq \frac{1}{2}(\lambda_{\text{max}} - \lambda_{\text{min}})$. In [6], (1) is conjectured for positive semidefinite A. This conjecture is resolved here in the affirmative for the case $n=4$. $m=2$.

Assume $A = diag(\lambda_1, ..., \lambda_4), \lambda_1 \ge ... \ge \lambda_4 \ge 0, \lambda_{ij} = \lambda_i \lambda_j$ for $1 \le i, j \le 4$. Since the eigenvectors of $C_2(A)$ may be chosen from $G_{2,4}$, we have $\rho_2(A)$ = $\lambda_{\text{max}} = \lambda_{12}$. Clearly $\lambda_{12} \ge \frac{1}{2}(\lambda_{12} - \lambda_{34})$, so $\rho_2(A) \ge \rho_1(A)$. If

then det($U_0^* A U_0$)[12][13] = $\frac{1}{4}$ {($\lambda_{12} - \lambda_{34}$) + ($\lambda_{13} - \lambda_{24}$)} $\in \Delta^1(A)$. Therefore

$$
\rho_2(A) \ge \rho_1(A) \ge \frac{1}{4} \left(\left(\lambda_{12} - \lambda_{34} \right) + \left(\lambda_{13} - \lambda_{24} \right) \right)
$$

 $\geq \rho_0(A)$ from Theorem 2.

REFERENCES

- F. R. Gantmacher, *The Theory of Matrices*, Vol. 1, Chelsea, New York, 1959. 1
- $\mathbf{2}$ P. Halmos, *A Hilbert Space Problem Book*, Van Nostrand, Princeton, N.J., 1967.
- W. V. D. Hodge and D. Pedoe, *Methods of* Algebraic Geometry, Vol. 1, Canbridge U. P. London, 1947.
- H. W. Kuhn, "Steiner's" problem revisited, *MAA Studies in Math.* 10:52-70 (1974).
- M. Marcus and I. Fihppenko, Inequalities connecting eigenvalues and nonprincipal subdeterminates, in *Proceedings of the Second lnternationul Conference on* General *Inequalities at Oberwolfuch,* Vol. 2, 1980, pp. 91-105.
- M. Marcus and K. Moore, A subdetenninant inequality for normal matrices, *Linear AZgebru Appl.* 31:129-143 (1980).
- M. Marcus and H. Robinson, Bilinear functionals on the Grassmannian manifold, *Linear and Multilinear Algebra 3:215-225* (1975).
- L. Mirsky, Inequalities for normal and Hermitian matrices, *Duke Math. J.* 14:591- 599 (1957).

Aeceioed 20 October 1980; revised 22 *June 1981*