
Artificial Intelligence 87 (1996) 343-385

Artificial
Intelligence

Combining qualitative and quantitative constraints
in temporal reasoning *

Itay Meiri *
Cognitive Systems Laboratory, Computer Science Department, University of California,

Los Angeles, CA 90024, USA

Received October 1995

Abstract

This paper presents a general model for temporal reasoning that is capable of handling both
qualitative and quantitative information. This model allows the representation and processing
of many types of constraints discussed in the literature to date, including metric constraints
(restricting the distance between time points) and qualitative, disjunctive constraints (specifying
the relative position of temporal objects). Reasoning tasks in this unified framework are formulated
as constraint satisfaction problems and are solved by traditional constraint satisfaction techniques,
such as backtracking and path consistency. New classes of tractable problems are characterized,
involving qualitative networks augmented by quantitative domain constraints, some of which can
be solved in polynomial time using arc and path consistency.

1. Introduction

In recent years, several constraint-based formalisms have been proposed for temporal
reasoning, most notably Allen’s interval algebra [11, Vilain and Kautz’s point algebra
[291, Dean and McDermott’s time map [21, and metric networks (Dechter, Meiri, and

Pearl [41). In these formalisms, temporal reasoning tasks are formulated as constraint
satisfaction problems, where the variables are temporal objects such as points and inter-
vals, and temporal statements are viewed as constraints on the location of these objects

along the time line. Unfortunately, none of the existing formalisms can conveniently

*This work was supported in part by grants from the Air Force Office of Scientific Research, AFOSR
900136, and the National Science Foundation, IRI 8815522.
* Current address: Epilog Advanced Technologies Ltd., PO. Box 48332, Tel-Aviv 61483, Israel. E-mail:

epilog@actcom.co.il.

0004-3702/96/$15.00 Copyright @ 1996 Elsevier Science B.V. All rights reserved.
SSD10004-3702(95)00109-3

344 I. Meiri/Artijiciul Intelligence 87 (1996) 343-385

handle all forms of temporal knowledge. Qualitative approaches such as Allen’s interval
algebra and Vilain and Kautz’s point algebra have difficulties in representing and rea-
soning about metric, numerical information, while the quantitative approaches exhibit
limited expressiveness when it comes to qualitative information [41.

In this paper we offer a general, network-based computational model for temporal
reasoning that is capable of handling both qualitative and quantitative information.
In this model, variables represent both points and intervals (as opposed to existing
formalisms, where one has to commit to a single type of object), and constraints may
be either metric (between points) or qualitative, disjunctive relations (between temporal
objects). The unique feature of this framework is that it allows the representation and
processing of most types of constraints discussed in the literature to date.

The main contribution of this paper lies in providing a formal unifying framework for
temporal reasoning, thereby generalizing the interval algebra, point algebra, and metric

networks formalisms. In this framework, we are able to utilize constraint satisfaction
techniques in solving several reasoning tasks. Specifically:

(1) General networks can be solved by decomposition into singleton labelings,

each solvable in polynomial time. This decomposition scheme can be improved
by traditional constraint satisfaction techniques such as variants of backtrack

search.
(2) The input can be effectively encoded in a minimal network representation, which

provides answers to many queries.
(3) Path consistency algorithms can be used in preprocessing the input network

to improve search efficiency or to compute an approximation to the minimal

network.
(4) We were able to identify two classes of tractable problems, solvable in poly-

nomial time. The first consists of augmented qualitative networks, composed of
qualitative constraints between points and quantitative domain constraints, which

can be solved using arc and path consistency. The second class consists of
networks for which path consistency algorithms are exact.

We also show that our model compares favorably, both conceptually and computation-

ally, with an alternative approach for combining quantitative and qualitative constraints,
proposed by Kautz and Ladkin [101.

The paper is organized as follows. Section 2 formally defines the constraint types
under consideration. The definitions of the new model are given in Section 3. Section 4
reviews and extends the hierarchy of qualitative networks. Section 5 discusses augmented

qualitative networks-qualitative networks augmented by domain constraints. Section 6
presents two methods for solving general networks-a decomposition scheme and path
consistency-and identifies a class of networks for which path consistency is exact.
Section 7 provides concluding remarks.

2. The representation language

Consider a typical temporal reasoning problem. We are given the following informa-
tion.

I. Meiri/Ar@cial Intelligence 87 (1996) 343-385 345

Example 2.1. John and Fred work for a company that has local and main offices in
Los Angeles. They usually work at the local office, in which case it takes John less than
20 minutes and Fred 15-20 minutes to get to work. Twice a week John works at the
main office, in which case his commute to work takes at least 60 minutes. Today John
left home between 7:05-7:lO a.m., and Fred arrived at work between 7:50-7:55 a.m.
We also know that Fred and John met at a traffic light on their way to work.

We wish to represent and reason about such knowledge. We wish to answer queries
such as: “Is the information in this story consistent?‘, “Who was the first to arrive at
work?‘, and “What are the possible times at which John arrived at work?‘.

Involved are two types of temporal objects: points and intervals. Intervals correspond
to time periods during which events occur or propositions hold, and points represent
the beginning and ending points of some events, as well as neutral points of time. For
example, in our story we have two meaningful events: “John was going to work” and
“Fred was going to work”. These events are associated with intervals J = [PI, P2] and
F = [P3, Pa], respectively. The extreme points of these intervals, 9, . . . , Pa, represent
the times at which Fred and John left home and arrived at work. We also introduce a
neutral point, PO, to represent the “beginning of the world” in our story. One possible
choice for PO is 7:00 a.m. Temporal statements in the story are treated as constraints
on the location of objects (such as intervals J and F and points PO,. . . , Pa) along the
time line. There are two types of constraints: qualitative and quantitative. Qualitative
constraints specify the relative position of paired objects. For instance, the fact that
John and Fred met at a traffic light forces intervals J and F to overlap. Quantitative
constraints place absolute bounds or restrict the temporal distance between points. For
example, the information on Fred’s commuting time constrains the length of interval F,

that is, the distance between 9 and Pd. In the rest of this section we formally define
qualitative and quantitative constraints, and the relationships between them.

2.1. Qualitative constraints

A qualitative constraint between two objects Oi and Oj, each of which may be a point
or an interval, is a disjunction of the form

(Oirl Oj) V ‘..V (OilkOj), (1)

where each of the ri is a basic relation that may exist between the two objects. There
are three types of basic relations.

l Basic interval-interval (II) relations that can hold between a pair of intervals
[11 -before, meets, starts, during, jnishes, overlaps, their inverses, and the equality
relation, a total of 13 relations, denoted by the set {b, m, s, d, f, o, bi, mi, si, di, fi,

oi , =}.
l Basic point-point (PP) relations that can hold between a pair of points [29],

denoted by the set { <, =, >}.
l Basic point-interval (PI) relations that can hold between a point and an interval,

and basic interval-point (ZP) relations that can hold between an interval and a
point. These relations are shown in Fig. 1 and in Table 1 (see also [14,281) .

346 I. Meiri/Artijiciul Intelligence 87 (1996) 343-38s

p before I
P*

I
I

I

p starts I
P .

t
I

I

p during I
Pa

t
I

I

p finishes I

p after I

Fig. I, The basic relations between a point p and an interval I

Table I
The basic relations between a point p and an interval I = I I-. I+ J

Relation

p before I

p sturts I

p during I

p jkzishes I

p ujier I

Symbol

h

s

d

f
(1

Inverse

bi

si

di

.ri’
tri

Relations on endpoints

p < I-

p = I-

I-<p<F

p = I+

p > I+

A subset of basic relations (of the same type) corresponds to an ambiguous, dis-
junctive relationship between objects. For example, Eq. (1) may also be written as

Oi {ri, . . , rk} Oj; alternatively, we say that the constraint between Oi and 0, is the
relation set (r-1, . . . , Q}. One qualitative constraint given in Example 2.1 reflects the
fact that John and Fred met at a traffic light. It is expressed by an II relation specifying
that intervals J and F are not disjoint:

J {s, si, d, di, f, fi, a, oi, =} F:

To facilitate the processing of qualitative constraints, we define a qualitative algebra
(QA) , whose elements are all legal constraints (all subsets of basic relations of the same
type)--213 II relations, 2” PP relations, 25 PI relations, and 25 IP relations. Two binary
operations are defined on these elements: intersection and composition. The intersection

of two qualitative constraints, R’ and R”, denoted by R’ @ R”, is the set-theoretic
intersection R’ n R”. The composition of two constraints, R’ between objects Oi and

Oj, and R” between objects O,i and Ok, is a new relation between objects 0; and Ok,
induced by R’ and R”. Formally, the composition of R’ and R”, denoted by R’ @ R”, is
the composition of the constituent basic relations, namely,

R’ @C R” = {r’ @ r”) r’ E R’, r” E R”}.

Composition of two basic relations, r’ and r”, IS defined by a transitivity table, shown
in Table 2. Six transitivity tables, Ti, . , T4, T,,, T,A, are required; each defines the

I. Meiri/Artificial Intelligence 87 (1996) 343-385 347

Table 2

A full transitivity table

PP PI IP II

PP

PI

IP

[TPAI [Tll PI PI
PI PI [T21 V41

ITI]’ lT~1 PI PI
II [“I PI LT41’ [fill

Table 3

Composition of PP and PI relations

Tl h s d f a

< b b bsd bsd ?

= b s d f a

> ? dfa dfa a a

Table 4

Composition of PI and IP relations

composition of basic relations of a certain type. For example, composition of a basic PP
relation and a basic PI relation is defined as transitivity table 7’1. Two important subsets of
QA are Allen’s interval algebra (IA), the restriction of QA to II relations, and Vilain and
Kautz’s point algebra (PA), its restriction to PP relations. The corresponding transitivity
tables are given in [1] and [291, and appear in Table 2 as T,A and TEA, respectively.
The rest of the transitivity tables are shown in Tables 3-6. ’ Illegal combinations in
Table 2 are denoted by 8.

2.2. Quantitative constraints

Quantitative constraints refer to absolute location or the distance between points [41.

There are two types of quantitative constraints:
l A unary constraint, on point Pi, restricts the location of Pi to a given set of intervals:

(Pi E Zl) V”‘V (Pi E Zk).

I In these tables, ? refers to subsets that contain all basic relations: for example, { <, =, >} for PP relations.

348

Table 5

I. Meiri/Art&iul Inrelligence 87 (1996) 343-385

Composition of IP and PI relations

Ui

fi

di

si

bi

h b

1) Ml

h m 0 di ji 0 di .fi

IT m o di ji s si =

? 0 mi oi d f

h m 0 d s

.f .fi =

ni di si

mi

0

?

u mi oi si di

u mi oi si di

n

N

Table 6

Composition of PI and II relations

T4 b t, tt di 0 oi ,!I mi s si f fi- =

l A binary constraint, between points Pi and P/3 constrains the permissible values
for the distance p, - Pi:

In both cases the constraint is represented by a set of intervals {II, . . . , Ik}; each interval
may be open or closed in either side. 2 For example, one binary constraint given in our
story specifies the duration of interval J (the event “John was going to work”):

P2 - 9 E {(0,20), (6Om)).

The fact that John left home between 7:05-7: 10 a.m. is translated into a unary constraint

on PI: PI E {(5,10)}, or 5 < PI < 10 (note that all times are relative to PO, namely,
7:00 a.m.). Sometimes it is easier to treat a unary constraint on Pi as a binary constraint

between PO and Pi, which has the same interval representation. For example, the above
unary constraint is equivalent to the binary constraint, PI - PO E ((5,lO)).

The intersection and composition operations for quantitative constraints assume the

following form. Let C’ and C” be quantitative constraints, represented by interval sets
I’ and I”, respectively. Then, their intersection is defined as

c’ @ c” = {X 1 x E I’, x E f”}

The composition of C’ and C” is defined as

c’ &3 c” = {z / 3X E I’, 3y E I”, X + y = z}.

*The set {II, , II;} represents the set of real numbers II U U It. Throughout the paper we shall use
the convention whereby a real number u is in {II, , Ik} if and only if ~1 E II U U 4.

1. Meiri/Artificial Intelligence 87 (1996) 343-385

Table 7
The QUAN translation

C QUAN(C)

349

Illustration. Let Ct ={~1,4),(6~8)}andC~={(0,11,(3,5),[6,71}.Then,

CI ~C2={[11,(3,4),(6,71}.

LetC~={[1,21,(6,8)}andC4={[0,3),(12,15]}.Then,

C3@‘4={[1,5),(6,11),(13,171,(18,23)}.

2.3. Relationships between qualitative and quantitative constraints

The existence of a constraint of one type sometimes implies the existence of an
implicit constraint of the other type. This can only occur when the constraint involves
two points. Consider a pair of points Z’i and Pj. If a quantitative constraint, C, between P;

and Pj is given (by an interval set {Zt , . . . , Zk}) , then the implied qualitative constraint,

QUAL(C), is defined as follows (see also [lo]).
l If 0 E {Zt,. . . ,lk}, then “=“E QUAL(C).
l If there exists a value u > 0 such that u E {It,. . . , Zk}, then “<“E QUAL(C).
l If there exists a value u < 0 such that u E {It,. . , Zk}, then “>“E QUAL(C).

Similarly, if a qualitative constraint, C, between P; and Pj is given (by a relation set
R), then the implied quantitative constraint, QUAN(C), is defined as follows.

l If “YE R, then (0,oo) E QUAN(C).
l If “=“E R, then [0] E QUAN(C).
l If ‘5”~ R, then (-co,O) E QUAN(C).

An alternative definition of QUAN is given in Table 2.3.
The intersection and composition operations can be extended to cases where the

operands are constraints of different types. If C’ is a quantitative constraint and C” is

qualitative, then intersection is defined as quantitative intersection:

C’ @ C” = C’ $ QUAN(C”). (2)

Composition, on the other hand, depends on the type of C”.
l If C” is a PP relation, then composition (and consequently the resulting constraint)

is quantitative:

C’ @ C” = C’ @I QUAN(C”).

3.50 1. Meiri/Artijiciul Intelligence 87 (1996) 343-385

l If C” is a PI relation, then composition is qualitative:

C’ 8 C” = QUAL(C’) @ C”

Illustration. Let Cl = { (0,3)) be a quantitative constraint, C2 = { <, =} be a PP
relation, and C’1 = {D,(f) be a PI relation. Then,

cJi~~c2={(o,3)}~{[o,x~)={~o.x~}.

Cl ~~ci={<}~{o.d}={O,s,d}

3. General temporal constraint networks

WC now present a network-based model that facilitates the processing of all constraints
described in the previous section. The definitions of the new model follow closely those
developed for discrete constraint networks [201 and for metric networks [4].

A general temporal constraint network involves a set of variables {Xi,. . , X,}, each
representing a temporal object (a point or an interval), and a set of unary and binary
constraints. When a variable represents a time point, its domain is the set of real num-
bers IR. When a variable represents a temporal interval, its domain is the set of ordered
pairs of real numbers, namely, { (~1, /I) / LI, b E iw, a < 0). Constraints may be quanti-
tative or qualitative. Each qualitative constraint is represented by a relation set R. Each
quantitative constraint is represented by an interval set I. Constraints between variables

representing points are always maintained in their quantitative form. We also assume that
unary quantitative constraints are represented by equivalent binary constraints, as shown

in the previous section. A set of internal constraints relates each interval I = [I-, I+]
to its endpoints 1- {starts} 1 and I +- dfinishes} 1.

A constraint network is associated with a directed constraint graph, where nodes
represent variables and an arc i + j indicates that a constraint C;j, between variables
X, and X,,, is specified. The arc is labeled by an interval set (when the constraint is
quantitative) or by a QA element (when it is qualitative). We assume that whenever
a constraint C,, is given, the inverse constraint C’,i is also provided; however, in the
constraint graph only one of these will be shown. The constraint graph of Example 2.1
is shown in Fig. 2.

A tuple X = (.TI, ,.x,,) is called a solution if the assignment {Xt = XI,. . . , X, = x,}

satisfies all the constraints (note that the value assigned to a variable that represents an
interval is a pair of real numbers). It corresponds to a feasible scenario-an arrangement
of the temporal objects along the time line in a way that is consistent with the given
information. The network is consistent if at least one solution exists. A value u is a
feasible value for variable X, if there exists a solution in which X; = u. The set of all
feasible values of a variable is called its minimal domain.

We define a partial order 2 among binary constraints of the same type. A constraint
C’ is tighter than constraint C”, denoted by C’ C C “, if every pair of values allowed
by C’ is also allowed by C”. If C’ and C” are qualitative. represented by relation
sets R’ and R”, respectively, then C’ C: C” if and only if R’ C R”. If C’ and C” are

I. Meiri/Artijicial Intelligence 87 (1996) 343-385 351

Table 8

Fig. 2. The constraint graph of Example 2.1.

The minimal network of Example 2.1

p2 9 p4 J F

PO

PI

4

&

p4

J

F

101
(-lO,-5)

(--co, -65)

(-40, -30)

(-55, -50)

bi

hi

(5.10)

101
(-a, -60)

(-35, -20)

(-50, -40)

si

hi

(65,~)

(60,oo)

101

(25.00)

(10,cu)

fi
ai

(30.40) (50755) h h

(20.35) (40.50) h

(--00, -25) (-co, -10) ; n
LO1 (15320) Cl s

(-20, -15) 101 d f
di di di

si fi 5 =

quantitative, represented by interval sets I’ and I”, respectively, then C’ C_ C” if and

only if for every value u E I’, we have also u E I”. This partial order can be extended to
networks in the usual way. A network N’ is tighter than network N”, if the partial order

& is satisfied for all the corresponding constraints. Two networks are equivalent if they
possess the same solution set. A network may have many equivalent representations;
in particular, there is a unique equivalent network M, which is minimal with respect
to L, called the minimal network (the minimal network is unique because equivalent
networks are closed under intersection). The arc constraints specified by M are called
the minimal constraints.

The minimal network is an effective, more explicit encoding of the given knowledge.
Consider, for instance, the minimal network of Example 2.1, whose constraints are
shown in Table 8. The minimal constraint between Pt and P2 is { (60, co)}, the minimal
constraint between Pa and 4 is { (65, co)}, and the minimal constraint between Pa and

P3 is { (30,40)}. From this minimal network representation, we can infer that today John
was working in the main office; he arrived at work after 8:05 a.m., while Fred arrived
at work between 7:30-7:40 a.m. A feasible scenario, which can be easily constructed
from the minimal network representation, is shown in Fig. 3.

Given a network N, the first interesting task is to determine its consistency. If the
network is consistent, we are interested in other reasoning tasks, such as computing
a solution to N, the minimal domain of a given variable Xi, the minimal constraint
between a given pair of variables Xi and Xj, and the full minimal network. The rest of
the paper is concerned with solving these tasks.

Solving any of the above tasks for a general network is difficult. Even the simplest

352 I. Meiri/Artijicial Inrelhgence X7 (I 996) 343-385

Fig. 3. A feasible scenario

task, deciding consistency, is NP-hard. This follows trivially from the fact that deciding
consistency for either metric networks or IA networks is NP-hard [4,29]. Therefore,
it is unlikely that there exists a general polynomial-time algorithm for deciding the

consistency of a network, and consequently for solving the other tasks. Hence, we settle
for the following alternatives. In Sections 4 and 5 we pursue “islands of tractability”-

special classes of networks that admit polynomial solution. Then, in Section 6, we
describe brute-force, exponential techniques that can handle any general network, and

discuss the use of path consistency as an approximation scheme.

4. The hierarchy of qualitative networks

We wish to find tractable classes of general networks, namely networks containing
both qualitative and quantitative constraints. We shall form such networks by adding

metric constraints to certain classes of qualitative networks. Of course, in our quest for
tractability it would make sense to concentrate only on tractable qualitative networks.
As the first step in this direction, we discuss in this section the computational complexity

of solving qualitative networks. We briefly describe the qualitative networks hierarchy
and then draw the line between tractable and intractable networks. In Section 5 we
show how the tractable classes-CPA networks and PA networks-can be augmented by
various quantitative constraints to obtain new tractable classes.

Consider a qualitative network G. If all constraints are II relations (namely IA ele-
ments) or PP relations (PA elements), then the network is called an IA network or a PA

netwlork, respectively [251. If all constraints are PI and IP relations, then the network
is called an interval-point algebra (IPA) network. 3 A special case of a PA network,
where the relations are convex (taken only from { <, 6, =, 2, >}, i.e., excluding #), is

called a convex PA (CPA) network.
It can easily be shown that any qualitative network can be represented by an IA

network. On the other hand, some qualitative networks cannot be represented by a PA
network, such as (see [291) a network consisting of two intervals I and J and a single

constraint between them I {before, after} 1. Formally, the following relationship can be
established among qualitative networks.

’ We use this name to comply with the names 1A and PA, although technically these relations, together with

the intersection and composition operations, do not constitute an algebra, because they are not closed under

composition.

I. Meiri/Artificial Intelligence 87 (1996) 343-385 353

Proposition 4.1. Let QN be the set of all qualitative networks. Let net(CPA), net(PA),

net(ZPA), and net(lA) denote the set of qualitative networks that can be represented by
CPA networks, PA networks, IPA networks, and IA networks, respectively. Then,

net(CPA) c net(PA) c net(ZPA) C net(ZA) = QN.

Proof. Trivial. Cl

Remark 4.2. Clearly, any CPA network is in net(CPA). On the other hand, net(CPA)

contains some qualitative networks that are not CPA networks. For example, the IA

network I {starts, during,$nishes, equal} .I can be represented by the CPA network .Z- <

I- 6 I+ 6 J+, where Z = [I-, I+] and .Z = [.Z-, .Z+]. Therefore, the CPA networks are

strictly contained in net(CPA). Similarly, the PA, IPA, and IA networks are contained
in net(PA), net(ZPA), and net(IA), respectively.

By moving up the qualitative networks hierarchy from CPA networks towards IA

networks we gain expressiveness, but at the same time lose tractability. For example,
deciding the consistency of a PA network can be done in time O(n*) [18,261, but it
becomes NP-complete for IA networks [29], or even for IPA networks, as stated in the
following theorem.

Theorem 4.3. Deciding the consistency of an ZPA network is NP-hard.

Proof. Reduction from the betweenness problem, which is defined as follows [81.

Instance: Finite set A, collection C of ordered triplets (a, 6, c) of distinct elements

from A.
Question: Is there a one-to-one function f : A ---t { 1,2,. . . , IA]} such that for each

(u,b,c) E C, we have either f(u) <f(b) <f(c) or f(c) <f(b) <f(u)?

Consider an instance of betweenness. We construct an IPA network in the following
way. Each element a E A is associated with a unique point P,. For each triplet (a, b, c) E

C, we create an interval lab,-, and impose the constraints

P, {starts,finishes} Z&c,

P, {sturts,$nishes} Z&c,

Pb {during} Z&.

In addition, we force all points to be distinct. For each pair of elements (a, b) E A, we

create an interval Z&, and impose the constraints

P, {starts, during,jinishes} Z&,

Pb (before, after) Z&,

forcing P, # Pb. Clearly, this network is consistent if and only if the answer to the
given betweenness problem is YES. 0

354 I. Meiri/Artificid Intelligence 87 (1996) 343-385

Fig. 4. A CPA network over multiple-intervals domains

Other reasoning tasks are usually harder than deciding consistency. Thus, it is unlikely
that any task in IPA or IA networks can be solved in polynomial time. This suggests that

the line between tractable and intractable qualitative networks can be drawn somewhere
between PA and IPA networks. Consequently, we shall focus our search for new tractable
classes on extending CPA and PA networks.

5. Augmented qualitative networks

In this section we consider the simplest type of network having both qualitative and
quantitative constraints, an augmented qualitative network. It is a qualitative network-a

CPA network or a PA network-augmented by unary constraints on its domains.

We shall consider CPA and PA networks over three domain classes, each of importance
in temporal reasoning applications:

(1) Discrete domains, where each variable may assume only a finite number of
values. For instance, when we settle for crude timing of events, such as the day
or the year in which they occurred.

(2) Single-interval domains, where we have only an upper and/or a lower bound
on the timing of events. We shall also consider almost-single-interval domains,

where each domain consists of a single interval, from which a finite set of values,
called holes, may be excluded.

(3) Multiple-intervals domains. This case subsumes the two previous cases. 4

Illustration. A CPA network over multiple-intervals domains is depicted in Fig. 4,
where each variable is labeled by its domain intervals. Note that in this example, as
well as throughout the rest of this section, we express the domain constraints as unarm

constraints.

Let us consider in detail the representation of the domains.
When the domains are discrete, a domain D; of a variable Xi consists of a set of up to

k values {ut , , uk}, where ui < < ~1. It is represented as an array of size k sorted
in an ascending order. We also maintain two pointers, inf and Sup, to inf(D,) = UI and
sup(Di) = uk, respectively.

J Note that a discrete domain {I,, . . I‘L } is essentially a multiple-intervals domain { [L’I,~JI I,. , [~‘k, ok]}.

Table 9

I. Meiri/Artijcial Intelligence 87 (1996) 343-385 355

Complexity of deciding consistency in augmented qualitative networks

Discrete Single interval Multiple intervals

CPA networks

PA networks

IPA networks

AC (O(ek))

NP-complete

NP-complete

AC + PC (O(n2))

AC f PC (O(en))

NP-complete

AC + PC (O(n2k))

NP-complete

NP-complete

Table 10

Complexity of computing the minimal domains in tractable augmented qualitative networks

CPA networks

PA networks

Discrete

AC + PC (O(n2k))

Single interval

AC + PC (O(n2))

AC + PC (O(en*))

Multiple intervals

AC + PC (O(n2k))

When the domains are continuous, namely they consist of multiple intervals (or as a
special case consist of a single interval or an almost-single interval), then a domain Di
is given by an interval set I = {It,. . . , Zk}, where Zi = {ai, bi}. The symbols { and }

reflect the fact that each interval may be open or closed in either side. The domain Di
will be represented by the points at, bl , . . . , ak, bk, which are called the extreme points
of Di. These extreme points are maintained in an array of size 2k. In an accompanying

array we maintain an indicator as to whether each extreme point is in the domain (i.e.,
whether the corresponding interval is open or closed). An interval Zi can be regarded as

a set of real numbers, and thus its extreme points can be referred to as ai = inf(Zi) and
bi = sup(Zi) . Similarly, an interval set Z = {It, . . . , zk} can be regarded as a set of real
numbers consisting of the values in It U . . . U zk. Thus, we have inf(Di) = inf(Zt) = at

and SUP(Di) = sup(Zk) = bk. As with discrete domains, we shall keep two pointers, lnf

and Sup, to inf(Di) = ut and SUp(Di) = uk, respectively.
We shall use three parameters in analyzing the computational complexity of algo-

rithms: n, the number of nodes in the network, e, the number of arcs, and k, the
maximum domain size, that is, the number of values in a domain (for discrete domains)
or the number of intervals per domain (for continuous domains).

In the rest of this section we show that for augmented CPA networks and for some
augmented PA networks, the interesting tasks can be solved in polynomial time us-

ing local consistency algorithms such as arc consistency (AC) and path consistency

(PC).
Tables 9 and 10 summarize the results presented in this section regarding the com-

plexity of determining consistency and computing the minimal domains in augmented
qualitative networks. Each entry gives the consistency level that can be used to solve the
corresponding task (AC, PC, or both), and the timing of the best algorithm discussed

in this paper.

5.1. AK and path consistency

Let us review the definitions of arc and path consistency [16,201.

356 1. Meiri/Artijiciul Intelligerlce X7 (I 996) 343-385

Fig. 5. An xc and path consistent term of the network in Fig. 4.

Fig. 6. An augmented PA network.

Definition 5.1. An arc i - j is arc consistent if and only if for any value x E Di,

there is a value _Y E D.i such that the pair (x, y) satisfies the constraint C,j. A network

G is arc consistent if all its arcs are consistent.

Definition 5.2. A path P from i to j, io = i d 11 4 + i,,, = j, is path consistent

if the direct constraint C;j is tighter than the composition of the constraints along P,

namely

c,, \; c,,,,,, X $8 c I,,, , ,,/,,

A network G is path consistent if all its paths are consistent.

Illustration. Fig. 5 shows an equivalent, arc and path consistent form of the network
in Fig. 4.

Note that our definition of path consistency is slightly different than the original
definition [161, since it disregards domain constraints. The following example illustrates

the difference between the two definitions.

Example 5.3. Consider the network in Fig. 6. The network is path consistent according
to Definition 5.2, since the underlying qualitative network is path consistent. However,
it is not path consistent according to the common definition (namely, 3-consistency),
because the instantiation A = I, B = 1 cannot be extended to C.

The most common arc consistency algorithm that converts a network into an equivalent
arc consistent form is algorithm AC-3 [161, shown in Fig. 7. AC-3 repeatedly applies

I. Meiri/Art$cial Intelligence 87 (1996) 343-38.5 351

Algorithm AC-3

l.Q+{i-j\i-GEE}
2. while Q f 0 do
3. select and delete any arc k + m from Q
4. if REVISE((k, m)) then
5. Q-QU{i-+kIi-+kEE, i#m}
6. end

Fig. 7. AC-3-an arc consistency algorithm.

Algorithm DAC

1. for i := n downto 1 do

2. for each arc j --+ i, j < i do

3. X +- REVISE((j, i))
4. end

Fig. 8. DAC--a directional arc consistency algorithm.

the function REVISE((i, j)), which makes arc i + j consistent, until a fixed point, at

which all arcs are consistent, is reached. The function REVISE restricts the domain Di
using quantitative operations on constraints: 5

Df + Di @ Dj @ QUAN(C,ii). (31

It returns true if the domain Di is changed.
In some cases we shall use a weaker version of arc consistency, called directional arc

consistency [51.

Definition 5.4 (Dechter and Pearl [51). Let G be a constraint network. Let d be an

ordering of the nodes, namely, i < j if and only if i precedes j in d. We say that G is
directional UK consistent if all arcs directed along d are arc consistent.

Algorithm DAC [5], shown in Fig. 8, converts a given network into an equivalent
directional arc consistent form. Being weaker than full arc consistency, directional arc
consistency can be enforced more efficiently, as we shall see later in this section.

A network can be converted into an equivalent path consistent form by applying
any path consistency algorithm to the underlying qualitative network [16,25,29]. Path
consistency algorithms impose local consistency among triplets of variables (i, k, j) by
using a relaxation operation:

cij + cij @ Cik @ ckj. (4)

5 Note that JZq. (3) is the temporal equivalent of Mackworth’s REVISE, when the latter is expressed using
intersection and composition of discrete constraints: Di +- Di 63 Dj @ Cji.

358 I. Meiri/ArtQiciul Inteilipxce X7 (1996) 343-385

Algorithm PC-2

I. Q + {(i,k,j) 1 (i <j), (k z i,j)}
2. while Q f 0 do

3. select and delete any triplet (i,k, j) from Q
4. if REVISE((i, k, j)) then
5. Q +- Q U RELATED-PATHS((i, k, j))
6. end

Fig. 9. PC-2-a path consistency algorithm.

Fig. 10. The precedence graph of the network in Fig. 4

Relaxation operations are applied until a fixed point is reached, or until some constraint
becomes empty (which indicates an inconsistent network).

We shall use an efficient path consistency algorithm, PC-2 [161, shown in Fig. 9. The
function REVISE((i, k, j)) performs the relaxation operation of Eq. (4) and returns
true if the constraint C,, is changed. Algorithm PC-2 runs to completion in 0(n3)
time [171. Recently, path consistency algorithms were evaluated empirically in [22-
24].

5.2. The precedence graph

Many of the algorithms presented in this section make use of an auxiliary data

structure, called a precedence graph (see also [18,26]), which displays precedence
relations between variables.

Definition 5.5. Let G = (YE) be a PA network. The precedence graph of G is a
directed graph G,, = (YE,,), which has the same node set as G and whose edges are
oriented in the following way.

(1) IfC,is<or<theni-tjEE,,.
(2) IfCi,iis=thenbothi-jEE,,andj*iEE,,.

Illustration. The precedence graph of the network in Fig. 4 is depicted in Fig. 10.

The following theorem states a necessary and sufficient condition for the consistency
of a PA network in terms of its precedence graph.

I. Meiri/Artijcial Intelligence 87 (1996) 343-385 359

Theorem 5.6 (Van Beek [26]). Let G be a given PA network, and let G,, be its
precedence graph. Then, G is consistent if and only iffor any pair of nodes i, j, that
belong to the same strongly connected component6 in G,), {=} c Cij.

According to Theorem 5.6 we can decide the consistency of a PA network by finding

the strongly connected components in its precedence graph and then testing whether all
constraints satisfy the condition of Theorem 5.6 [261. The complexity of this method
is O(e).

When solving augmented qualitative networks, we shall distinguish between networks
having acyclic precedence graphs, called acyclic networks, and cyclic networks, which

contain directed cycles; the former can be solved more efficiently than the latter. Specifi-

cally, in the next sections we shall show that for some tractable classes, acyclic networks
can be solved using arc consistency, while cyclic networks can be solved using both arc
and path consistency.

It turns out that any cyclic network G can be converted, in a quadratic time, into an
equivalent acyclic representation, called a reduced network. The conversion scheme is
based on the next lemma, which states an important property of the strongly connected
components in the precedence graph.

Lemma 5.7. Let G = (YE) be a nonempty path consistent PA network. Let G, =
(YE,) be the precedence graph of G. Nodes i and j belong to the same strongly
connected component in G, if and only if Cij is =.

Proof. See Appendix A. 0

It follows that, in any solution X = (xl,. . . , x,) to G, if nodes i and j belong to
the same component in G,, then Xi = Xj. This suggests that all nodes that belong to a
common component Ci can be collapsed into a single representative node. The domain
of this new node will be the intersection of all domains in Ci. This idea is expressed

more formally in the following definition.

Definition 5.8. Let G = (YE) be an augmented PA network, having a consistent
underlying qualitative network. Let G, = (YE,,) be the precedence graph of G, and let
C,,... , C,, be the strongly connected components of G,. The reduced network of G,

G’ = (V’, E’), is defined as follows.
l The nodes are the strongly connected components of G,, , namely, V’ = {Cl, . . . ,

Cnl}. The domain of node Ci in G’, Di, is the intersection of all domains of nodes
in component Ci, namely,

6 Nodes i and j belong to the same strongly connected component if there exist directed paths from i to j

and from j to i.

360 1. Mriri/Art~icial Intelligence 87 (I 996) 343-385

l An edge Ci 4 CYi E E’ if and only if there exists an edge i ---f j E E,, such that
i E Ci and j E C,i. The constraint between nodes Ci and C,i in G’, C,;, is the
intersection of all constraints between nodes in C; and nodes in C,, nameiy,

Note that the intersection operations in Eqs. (5) and (6) may result in an empty

domain or an empty constraint. This may occur only if the input network G is incon-

sistent.
Definition 5.8 requires that the underlying qualitative network is consistent. Thus,

before constructing the reduced network, we first need to verify that G is consistent.
This can be done in O(e) time by testing the precedence graph according to the
condition of Theorem 5.6. The construction of G’ itself is straightforward and can be
accomplished in O(n’k) time. It involves O(n) binary domain intersections (Eq. (5)),
because each node belongs to exactly one component, and O(e) constraint intersections
(Q. (6)), because each arc in G contributes to exactly one cross-component arc in G’.
The cost of a domain intersection is O(nk). A constraint intersection takes a constant
time. Hence, the total complexity is O(n*k).

The reduced network is an equivalent representation of the input network in the sense

that there exists a one-to-one correspondence between the solution sets: any solution
X’ = (xi, . , &) to G’ corresponds to a solution X = (xl,. . ,x,) to G, in which
all nodes that belong to a component Ci are assigned the value ,$, and vice versa. It
also follows that the reduced network is consistent if and only if the input network is

consistent.
The main importance of the reduced network is that it is an acyclic representation of

the input network. In the sequel, we shall take advantage of this fact in solving cyclic
networks: we shall solve cyclic networks by applying techniques devised for acyclic
networks to their reduced network representation.

Illustration. Consider the network in Fig. 4. The strongly connected components in

its precedence graph (shown in Fig. 10) are Cl = (A,B}, C2 = {C}, and Cx = {D}.

The reduced network is shown in Fig. 1 I, where component Ci is represented by
node i. One solution of the reduced network is the tuple {Cl = I, Cz = 3.5,C3 =
3). It corresponds to the solution {A = I, B = I, C = 3.5, D = 3) of the original

network.

We conclude the discussion of the precedence graph by considering the special case
of arc and path consistent networks.

Proposition 5.9. Any nonernpty path consistent PA network is consistent.

Proof. By Theorem 5.6 and Lemma 5.7. ’ r?

’ Another proof is given by Ladkin and Maddux in I 13 /

I. Meiri/Artijicial Intelligence 87 (1996) 343-385 361

Fig. 11. The reduced network of the network in Fig. 4.

Lemma 5.10. Let G = (YE) be a nonempty path consistent PA network. Let G, =

(YE,) be the precedence graph of G. Let C’ and C” (C’ f C”) be two strongly

connected components in G,. If i --+ j E E and k -+ 1 E E, where i, k E C’ and

j, 1 E C”, then Cij = Ckl.

Proof. See Appendix A. 0

From Lemma 5.7 we have the following corollary.

Corollary 5.11. Let G be a nonempty arc and path consistent augmented PA network.

Let G, be the precedence graph of G. If nodes i and j belong to the same strongly

connected component in G,, then Di = Dj.

Using Proposition 5.9, Lemma 5.10, and Corollary 5.11, we obtain the following
properties of the reduced network of an arc and path consistent PA network.

Lemma 5.12. The reduced network of a nonempty arc and path consistent augmented

PA network is (1) nonempty and (2) arc and path consistent.

Proof. From Proposition 5.9, the underlying qualitative network is consistent. From

Lemma 5.10 and Corollary 5.11, we have (1) and (2). Cl

In addition, when constructing the reduced network of an arc and path consistent
network, instead of performing the intersection operations of Eqs. (5) and (6)) we may

choose any domain Dj, j E Ci, as the domain 01 (from Corollary 5.11) , and we may
choose any constraint Ckl, k E Ci, I E Cj, as the constraint Ch (from Lemma 5.10).
Hence, the reduced network of an arc and path consistent network can be constructed
in O(e) time.

Illustration. The reduced network representation of the network in Fig. 5 is shown in

Fig. 12. As before, node i represents component Ci, where Ct = {A, B}, C2 = {C}, and
Cs = {D}. Note, for example, that the domain of Ct is identical to the domains DA and
DB in the original network. Similarly, the constraint between Ct and Cs is identical to
the constraints CAD and Cso in the input network. It can be verified that the reduced
network is arc and path consistent.

362 I. Meiri/Ar@xd Intelligence X7 (I 996) 343-385

Fig. 12. The reduced network of the network in Fig. S.

5.3. Augmented CPA networks

This subsection is organized as follows. Section 5.3.1 presents a solution technique
for CPA networks over discrete domains. Then, we discuss CPA networks over multiple-
intervals domains: in Section 5.3.2 we present solution techniques for acyclic networks,

and in Section 5.3.3 we extend those techniques to cyclic networks.

5.3.1. Discrete domains

The consistency of a CPA network over discrete domains can be decided using arc

consistency.

Theorem 5.13. A nonempty arc consistent CPA network over discrete domains is con-

sistent; in particular, the tuple H = (hl . , h,,) , where h; is the highest value in domain

Di. is a solution.

Proof. See Appendix A. 0

Theorem 5.13 provides an effective test for deciding the consistency of a given CPA
network over discrete domains. We simply enforce arc consistency and then check
whether the resulting domains are empty; the input network is consistent if and only

if its arc consistent form is nonempty. We shall say that arc consistency decides the
consistency of a CPA network over discrete domains.

The fastest known arc consistency algorithm for discrete domains is algorithm AC-4,
which runs in O(ek*) time (Mohr and Henderson [191). Deville and Van Hentenryck

[6] have devised a special-purpose arc consistency algorithm that works for functional
and monotone constraints. This algorithm runs in O(ek) time for CPA networks over
discrete domains (the = constraints are functional, while the < and the < constraints
are monotone). Hence, the complexity of deciding consistency and of finding a solution

is bounded by 0(ek) .
When computing the minimal domains, it turns out that arc consistency is insufficient.

Example 5.14. Consider the network in Fig. 13. It has two solutions: A = B = C = 1
and A = B = C = 3. Clearly, the network is arc consistent; however, the value A = 2 is
not part of any solution. Hence, the domain of A is not minimal.

I. Meiri/Ar?ijicial Intelligence 87 (1996) 343-385 363

(I.31

Fig. 13. An arc consistent CPA network over discrete domains.

In Section 5.3.3 we shall show that the minimal domains can be computed by estab-
lishing both arc and path consistency.

5.3.2. Multiple-intervals domains-acyclic networks
An acyclic CPA network over multiple-intervals domains can be solved by establishing

arc consistency and then instantiating the variables in a backtrack-free fashion [71 along
any topological ordering of the precedence graph.

Lemma 5.15. A nonempty arc consistent acyclic CPA network over multiple-intervals
domains is backtrack free along any topological ordering of its precedence graph.

Proof. Let G = (YE) be an acyclic CPA network over multiple-intervals domains. Let
G, = (YE,,) be the precedence graph of G, and let d be a topological ordering of G,.
Suppose the first k variables along d, Xl, . . . , Xk, were already instantiated to the values

Ul,..., Uk, respectively. We have to show that for any other variable Xi, i > k, there

exists a value ui E Di such that all constraints Cji (1 < j < k) are satisfied.
If i is a source in G, (i.e., it has no incoming arcs), then we may choose any

value I,+ E Di. Since all constraints Cji are universal, they are trivially satisfied. If i is
not a source in G,, then let P be the parent set of i (namely, all nodes j such that
j -+ i E Et,). Consider an arbitrary constraint Cji, j E P. Since G, is acyclic, C,ii cannot

be the equality constraint; furthermore, by the construction of Gp, it must be either <
or <. From arc consistency, we can select a value lj E Dt that satisfies Cji, namely,
it is consistent with Uj. Let Ui = max{lj 1 j E P}. Clearly, this value satisfies all the

constraints Cji, j E P. Hence, G is backtrack free along d. Cl

As an immediate corollary of Lemma 5.15, we have the following theorem, showing
that arc consistency decides the consistency of an acyclic CPA network.

Theorem 5.16. A nonempty arc consistent acyclic CPA network over multiple-intervals
domains is consistent.

A solution to an arc consistent acyclic CPA network G can be assembled in a
backtrack-free fashion by algorithm Solve-Acyclic-CPA, shown in Fig. 14. Based on
the solution technique used in the proof of Lemma 5.15, algorithm Solve-Acyclic-CPA

constructs a solution V = (~1,. . . , u,) to G by instantiating the nodes along a topolog-
ical ordering d of the precedence graph G, = (VE,). Algorithm Solve-Acyclic-CPA is

364 I. Meiri/Ari$cial Intelligence 87 (1996) 343-385

Algorithm Solve-Acyclic-CPA

1. for i := 1 to II do

2. I’; + any value [: E D,

3. I, +- QJ

4. for each node ,j such that ,j - i E Et, do
5. L e-m L u {a value in D, which is consistent with L’;}

6. I’, + max({l!;} U L)
7. end

Fig. 14. Solve-Acyclic-CPA-an algorithm for constructing a solution to an acyclic CPA network over

multiple-intervals domains.

O(e): a topological ordering d can be found in O(e) time, each arc in G,, is considered
only once (in Steps 4-6), and the time spent for each arc is constant.

Lemma 5.17. The complexity of algorithm AC-3 for a PA network over multiple-

intervals domains is 0(en2 k2).

Proof. See Appendix A. 0

From Lemma 5.17, deciding consistency and finding a solution to a CPA network are
both 0(en2k2). A more efficient approach would be to enforce directional, instead of
full, arc consistency. Since in the proof of Lemma 5.15 we needed only directional arc
consistency, Lemma 5.15 and consequently Theorem 5.16 can be modified as follows.

Lemma 5.18. Let G be a nonempty acyclic CPA network over multiple-intervals do-

mains. Let G, be the precedence graph of G. Let d be a topological ordering of Gr,

and let G be directional arc consistent along d. Then, G is backtrack free along d.

Theorem 5.19. Let G be a nonempty acyclic CPA network over multiple-intervals

domains. Let Gt, be the precedence graph of G. If G is directional arc consistent along

any topological ordering of G,, , then G is consistent.

According to Theorem 5.19, directional arc consistency decides the consistency of an
acyclic CPA network. A solution can still be constructed using algorithm Solve-Acyclic-

CPA, because it employs only directional arc consistency.

Lemma 5.20. The complexity of algorithm DAC for an acyclic CPA network over
multiple-intervals domains is 0(e log k).

Proof. See Appendix A. 0

We conclude that the complexity of deciding consistency and of finding a solution to
an acyclic CPA network is 0(e log k), improving the upper bound of 0(en2k2) obtained
by using full arc consistency.

I. Meiri/Artijicial Intelligence 87 (1996) 343-385 365

Algorithm 2DAC

1. d c a topological ordering of G,

2. run DAC along d
3. d, +-- the reverse of d
4. run DAC along d,

Fig. 15. ZDAC-an arc consistency algorithm for acyclic CPA networks.

2 (12)

<

Q
(3,4)

(~4) 3 < _

5
, (0,2)

[3,4)

Fig. 16. A directional arc consistent form of the network in fig. 11.

Arc consistency can be also used in computing the minimal domains.

Theorem 5.21. The domains of a nonempty arc consistent acyclic CPA network over
multiple-intervals domains are minimal.

Proof. See Appendix A. •i

We have already seen (Lemma 5.17) that arc consistency can be achieved in O(en2k2)
time using algorithm AC-3. For an acyclic network, a tighter upper bound, O(e log k),
can be achieved using algorithm 2DAC, shown in Fig. 15. This algorithm performs two
directional arc consistency steps. The first moves backward, from sinks to the sources,
and REVISES arcs along a topological ordering of the precedence graph. The second
moves forward, from sources to sinks, and REVISES arcs along the reverse ordering.
The first directional arc consistency step changes only upper bounds of domains, while
the second changes only lower bounds. Thus, upon termination of 2DAC all arcs are
consistent, that is, the resulting network is arc consistent. The running time of algorithm
2DAC is 0(e log k). We conclude that the minimal domains of an acyclic CPA network
can be computed in O(elog k) time.

Illustration. Consider the acyclic network of Fig. 11. Running DAC along the ordering
d = (1,3,2) results in the directional arc consistent network depicted in Fig. 16. Then,
running DAC along the reverse ordering d, = (2,3,1) yields the arc consistent network
of Fig. 12.

5.3.3. Multiple-intervals domains-cyclic networks
Solving a cyclic CPA network requires more than just enforcing arc consistency. Arc

consistency alone cannot even detect the inconsistency of a network.

366 1. Meiri/Artijicial Inrelligence 87 (I 996) 343-385

Fig. 17. An arc consistent CPA network

Example 5.22. Consider the CPA network in Fig. 17, where the domains are (--33, m).
The network is trivially arc consistent; however, it does not have any solution.

One solution technique for cyclic networks is to establish both arc and path consis-
tency.

Theorem 5.23. A tlotzempty arc atld path consistent CPA network over multiple-

intervals domains is consistent.

Proof. Let G be a nonempty arc and path consistent CPA network over multiple-intervals
domains. According to Lemma 5.12, the reduced network G’ is both nonempty and arc

consistent. By Theorem 5.16, G’ is consistent. Hence, G is consistent. 0

Theorem 5.23 provides an effective test for deciding consistency of an augmented

CPA network. We establish both arc and path consistency, and then check whether the
domains and constraints are empty. The network is consistent if and only if all domains
and all constraints are nonempty. Similarly, arc and path consistency can be used in

computing the minimal domains.

Theorem 5.24. The domains of a nonempty arc and path consistent CPA network over
multiple-intervals domains are minimal.

Proof. Let G be a nonempty arc and path consistent CPA network over multiple-

intervals domains. According to Lemma 5.12, the reduced network G’ is nonempty and
arc consistent. By Theorem 5.21, the domains of G’ are minimal. Since, as explained
in Section 5.2, there exists a one-to-one correspondence between the solution sets of G
and G’, the domains of G are also minimal. 0

A solution to a given arc and path consistent CPA network G can be found by first
constructing its reduced network G’, and then solving G’ using algorithm Solve-Acyclic-

CPA.

The complexity of deciding consistency, finding a solution, and computing the minimal
domains depends on the time needed to achieve arc and path consistency. Since path
consistency is performed first, when arc consistency is executed the number of edges is
0(tz2). Hence, the complexity of the above reasoning tasks (using PC-2 and AC-3) is
0(n4k’).

I. Meiri/Artijicial Intelligence 87 (1996) 343-385 367

Fig. 18. An arc consistent PA network over single-interval domains.

An alternative, more efficient approach for solving a cyclic network is to convert it
into a reduced network representation, as explained in Section 5.2, and then solve the

reduced network using techniques developed for acyclic networks. In particular, we can

decide the consistency of the reduced network by using directional arc consistency, find

a solution to the input network by applying algorithm Solve-Acyclic-CPA to the reduced
network, and compute the minimal domains by enforcing full arc consistency on the

reduced network. The complexity of all these tasks is dominated by the time needed to
construct the reduced network, namely, 0(n2k).

5.4. Augmented PA networks

When we move up the qualitative networks hierarchy from CPA networks to PA
networks (allowing also the # relation between points), deciding consistency becomes

NP-hard for discrete domains, and consequently for multiple-intervals domains.

Proposition 5.25. Deciding the consistency of a PA network over discrete domains is
NP-hard.

Proof. Straightforward reduction from graph coloring. 0

We shall now show that when the domains range over single intervals, deciding
consistency and computing the minimal domains remain tractable. Actually, in the sub-
sequent presentation we shall consider the more general case of almost-single-interval
domains. Each domain Di will consists of a single interval, from which a finite set of
holes Hi = {hi,, . . . , hik} is excluded. This model was later extended in [11,121.

As for CPA networks, we start by concentrating on acyclic networks and showing
that arc consistency can be used in their solution. Recall that an arc consistent acyclic
CPA network is backtrack free along any topological ordering of its precedence graph.
Unfortunately, this property does not hold in PA networks.

Example 5.26. Consider the arc consistent network in Fig. 18. The precedence graph
of this network consists of two arcs: A -+ B and A --+ C. The ordering d = (A, B, C)
is a topological ordering of the precedence graph; however, the instantiation A = B = 2
cannot be extended to C.

One way to alleviate this problem is to consider a restricted network, obtained from
the input network by excluding the extreme points from all infinite domains.

368 1. Meiri/Artijicial Intelligence 87 (I 996) 343-385

Definition 5.27. Let G be a PA network. The restricted network of G, G’, is obtained
from G by restricting the domains as follows. If a domain D; contains more than one
value, then the domain of variable Xi in G’ is

0: = D; - {inf(Di), sUp(Di)}.

An important property of the restricted network is that it remains arc consistent
whenever the input network is arc consistent.

Lemma 5.28. The restricted network of an arc consistent PA network over almost-
single-interval domains is arc consistent.

Proof. See Appendix A. 0

Although, as shown in Example 5.26, an arc consistent network is not necessarily

backtrack free, the restricted network can be solved in a backtrack-free fashion, along
any topological ordering of its precedence graph.

Lemma 5.29. Let G be a nonempty arc consistent acyclic PA network over almost-

single-interval domains. Let G’ be the restricted network of G. Then, G’ is backtrack

free along any topological ordering of its precedence graph.

Proof. Let G,, = (YE,) be the precedence graph of G’, and let d be a topological
ordering of G,,. From Lemma 5.28, since G is arc consistent, G’ is also arc consistent.
Suppose the first k variables along d, XI,. . , Xk, were already instantiated to the values
~1,. . , ck, respectively. We have to show that for any other variable Xi, i > k, there
exists a value Oi E D(such that all constraints Cji (I < j < k) are satisfied.

If i is a source in G,, (namely, it has no incoming arcs), then we may choose
any value D; E 0;. Since all constraints C,i, j < i, are universal, they are trivially
satisfied.

If i is not a source in G,,, then we must select a value ui E 0: such that all
constraints Cji, 1 6 j < k, are satisfied. If 0: consists of a single value u then, from arc
consistency, all these constraints are satisfied. If D{ contains more than one value, then
a value u, E 0: that satisfies all constraints C,,, 1 < j < k, can be found as follows. Let
P be the parent set of i in G,, (namely, all nodes j such that j -+ i E E,,). Consider an
arbitrary constraint Cji, j E P. Since G,, is acyclic, Cj, cannot be the equality constraint;

furthermore, by the construction of G,, it must be either < or <. From arc consistency
of G’, we cm select a value lj E 0: that is compatible with Uj. Moreover, lj can always
be selected such that max(Hi) < Z.; < SUP(D(). Let m = ma({lj 1 j E P}). Let
N = {Uj 1 j < i, Cji is Z }. Since N is finite, we can always find a value Ui such that
ui E [m, SUP(D[)), but ui 6 N. Clearly, ui E D(, and it satisfies all the constraints Cji,
1 < j < k. Hence, G’ is backtrack free along d. Cl

Illustration. Consider the network in Fig. 18. Its restricted network is depicted in
Fig. 19. It can be easily verified that the restricted network is backtrack free along the
orderings dl = (A,B,C) and d:! = (A,C,B).

I. Meiri/Artificial Intelligence 87 (1996) 343-385 369

(I,‘L) (‘

A 5 #

5
(La .A R Cl,‘4

Fig. 19. The restricted network of the network in Wg. 18.

As a corollary to Lemma 5.29, we have the following theorem.

Theorem 5.30. A nonempty arc consistent acyclic PA network over almost-single-
interval domains is consistent.

In order to make use of Theorem 5.30 and employ an arc consistency algorithm in a
procedure for deciding consistency, we still have to show that when the input domains

range over almost-single intervals, they remain so after enforcing arc consistency. The
next lemma shows that when we use an arc consistency algorithm based on REVISE

operations, the domains of the resulting arc consistent network also consist of almost-

single intervals.

Lemma 5.31. Let G be a PA network over almost-single-interval domains. Let G’ be
a network produced by applying REVISE to G. Then, G’ is also a PA network over
almost-single-interval domains.

Proof. See Appendix A. 0

According to Theorem 5.30 and Lemma 5.31, AC-3 (or any other REVISE-based
arc consistency algorithm) determines the consistency of an acyclic PA network over
almost-single-interval domains.

A solution to an arc consistent acyclic PA network G can be assembled in a backtrack-
free fashion by algorithm Solve-Acyclic-PA, shown in Fig. 20. Based on the solution
technique used in the proof of Lemma 5.29, algorithm Solve-Acyclic-PA constructs
a solution V = (q, . . . , v,) to the restricted network G’ by instantiating the nodes
along a topological ordering d of the precedence graph G, = (Y Ey) . Algorithm Solve-
Acyclic-PA is O(e): a topological ordering can be found in O(e) time, each arc in

E is considered at most once (in Steps 7-9 or in Steps ll-13), and for each arc the
algorithm spends a constant time.

From Lemma 5.17, the complexity of deciding consistency and of finding a solution
to an acyclic PA network is O(en*k*) for almost-single-interval domains and O(en*)
for single-interval domains.

For the special case of acyclic networks, arc consistency can be achieved even more
efficiently by algorithm 4DAC, shown in Fig. 21. Given an acyclic PA network G, 4DAC

enforces directional arc consistency four times: twice along a topological ordering d of
the precedence graph G,, and twice along the reverse ordering d,.

370 I. Meiri/Artificiul Intelligence 87 (1996) 343-385

Algorithm Solve-Acyclic-PA

1. for i := 1 to II do

2. if D{ consists of a single value u then

3. L’; + 1,’

4. else begin
5. ci t a value in Dj

6. L+- 0
7. for each ,j such that j --* i E E,, do

8. L +- L U (a value in Di that is consistent with u,i}

9. U; c max({u;} U L)
10. N+- 0
11. for each j < i such that C,, is # do

12. N - N U {c,}
13. L?; t a value in [LI,, sup(0:)) - N

14. end

15. end

Fig. 20. Solve-Acyclic-PA-an algorithm for constructing a solution to an acyclic PA network over al-

most-single-interval domains.

Algorithm 4DAC

1. d + a topological ordering of G,,

2. d, +- the reverse of d

3. run DAC along d

4. run DAC along d,
5. run DAC along d

6. run DAC along d,.

Fig. 2 I. 4DAC-an arc consistency algorithm for acyclic PA networks over almost-single-interval domains.

Lemma 5.32. Algorithm 4DAC computes an arc consistent network.

Proof. See Appendix A. 0

Lemma 5.32 guarantees that four applications of DAC are sufficient to compute an
arc consistent network. Example 5.33 shows that we cannot do better than that-four
applications are indeed necessary.

Example 5.33. Consider the network in Fig. 22. Let us execute algorithm 4DAC along
the ordering d = (A, B, C, D). During the first DAC the domain DA is reduced to a
single value [21. Consequently, during the second DAC the domain DC is also reduced
to [21. Then, during the third DAC the lower bound of DB is changed and DB becomes
(2,3]. Finally, in the fourth application of DAC DD is changed to (2,3]. The resulting
network is indeed arc consistent.

I. Meiri/Artijicial Intelligence 87 (1996) 343-385 371

Fig. 22. A PA network over single-interval domains.

The running time of algorithm 4DAC is proportional to that of algorithm DAC for

acyclic PA networks.

Lemma 5.34. The complexity of algorithm DAC for an acyclic PA network over
multiple-intervals domains is O(e (k + n)).

Proof. See Appendix A. Cl

We conclude that the complexity of algorithm 4DAC, and consequently the complexity
of deciding consistency and of finding a solution, is 0(e(k + n)) for almost-single-
interval domains and 0(en) for single-interval domains.

It should be noted that, unlike CPA networks, PA networks cannot be solved using

directional arc consistency. There are two possible ways to decide consistency in PA
networks using directional arc consistency: applying DAC to the restricted network, or
executing DAC on the input network and then restricting the domains. It can be easily
verified that both methods fail to serve as a test for deciding consistency.

Arc consistency can also be used in computing the minimal domains of acyclic PA
networks. The next theorem shows that arc consistency computes the minimal domains
of the restricted network.

Theorem 5.35. Let G be a nonempty arc consistent acyclic PA network over almost-
single-interval domains. Let G’ be the restricted network of G. Then, all domains in G’
are minimal.

Proof. See Appendix A. 0

Arc consistency does not compute the minimal domains of the input network, however.
For example, in the arc consistent network of Fig. 18, the value A = 2 does not participate
in any solution and, thus, the domain DA is not minimal. Nevertheless, arc consistency
can still be used in computing the minimal domains. Consider an arc consistent network
G. According to Theorem 5.35, the domains of its restricted network G’ are minimal.
Thus, all single-value domains are in their minimal form and, for each infinite domain
Di, all values in the open interval (inf(Di) , sup(Di)) are in the minimal domain. It
remains, for each infinite domain, to check whether, in the case that inf(Di) E Di
or SUp(Di) E Di, these values are also part of the minimal domain. This can be
tested by Theorem 5.35. We set Di t inf(Di) and then test the consistency of this

372 I. Meiri/Artifcial lnrelligence 87 (1996) 343-385

network (by running arc consistency). If this network is consistent then inf(Dj) is
in the minimal domain. The same test is performed for sup(Di). The complexity of

computing the minimal domains using this method is O(n) times the complexity of
determining consistency, namely, O(en(k + n)) for almost-single-interval domains and
0(en’) for single-interval domains.

Illustration. Consider the network in Fig. 18. Let us compute the minimal domain of

variable A. Every value in the open interval (1,2) is guaranteed to be in the minimal
domain. We need to check whether A = I and A = 2 are in the minimal domain. Setting
DA t 1 and running arc consistency yields a nonempty network; hence, A = 1 is
contained in the minimal domain. Setting DA t 2 and running arc consistency yields
an empty network; hence, A = 2 is not part of the minimal domain. We conclude that
the minimal domain of variable A is [1,2).

Solving cyclic PA networks over almost-single-interval domains can be done in two
ways: by using arc and path consistency or by applying solution techniques for acyclic
networks to the reduced network representation. Let us first consider the use of arc and

path consistency.

Theorem 5.36. A nonempty arc and path consistent PA network over afmost-single-

interval domains is consistent.

Proof. Let G be a nonempty arc and path consistent PA network over almost-single-

interval domains. According to Lemma 5.12, the reduced network G’ is nonempty and
arc consistent. By Theorem 5.30, G’ is consistent. Hence, G is consistent. 0

Theorem 5.36 shows that, as for CPA networks, arc and path consistency decide
consistency in PA networks. A solution to an arc and path consistent PA network G over
almost-single-interval domains can be found by first constructing its reduced network

G’ and then solving G’ using algorithm Solve-Acyclic-PA.

The complexity of deciding consistency and of finding a solution to a PA network
using arc and path consistency is dominated by the time needed to establish arc consis-

tency. The complexity of these reasoning tasks (using PC-2 and AC-3) is 0(n4k2) for
almost-single-interval domains and 0(n4) for single-interval domains.

Arc and path consistency can be also used in computing the minimal domains.

Theorem 5.37. Let G be a nonempty arc and path consistent PA network over almost-
single-interval domains. Let G’ be the reduced network of G. Then, the domains of G’
are minimal.

Proof. According to Lemma 5.28, G’ is arc consistent and, from Lemma 5.12, its
reduced network (G’)r is nonempty and arc consistent. It can also be easily verified that
(G’)’ is already in its restricted form. Hence, by Theorem 5.35, the domains of (G’)’
are minimal. Since, as explained in Section 5.2, there exists a one-to-one correspondence
between the solution sets of G’ and (G’)“, the domains of G’ are also minimal. q

I. Meiri/Artificial Intelligence 87 (1996) 343-385 313

As in the case of an acyclic network, in order to compute the minimal domains
of the input, cyclic network, we still have to test whether for each domain Di the
extreme points are in the minimal domain. This can be done by the same method
described for acyclic networks, that is, by setting Di +-- inf(Di) and Di + Sup(Di)
and then testing consistency (using only arc consistency, since the network is already
path consistent). The complexity of this method is O(n) times the complexity of arc
consistency, namely, 0(n5k2) for almost-single-interval domains and 0(n5) for single-

interval domains.
PA networks can be solved even more efficiently by applying the best algorithms

for acyclic networks to the reduced network representation. Recall that constructing the
reduced network representation requires 0(n2k) time. Therefore, deciding consistency

and finding a solution can be done in time 0(n2k+e(k+n)) = 0(n2k+en) for almost-
single-interval domains and time 0(en) for single-interval domains, and computing the
minimal domains can be done in time 0(n2k + en(k + n)) = 0(en(k + n)) for almost-
single-interval domains and time 0(en2) for single-interval domains.

6. Solving general networks

In this section we focus on solving general networks. The input network may now
contain all the types of constraints allowed in our language. We first describe an expo-
nential, brute-force algorithm. Then, we investigate the applicability of path consistency

algorithms.
We return to the network representation described in Section 3. Namely, in contrast

with Section 5, we now use a binary constraint representation for unary constraints,

which means that the network now consists solely of binary constraints.
Let G be a given general network. A basic label of an arc i --+ j is a selection of

a single interval from the interval set (if Cij is quantitative) or a basic relation from
the QA element (if Cij is qualitative). A network whose arcs are labeled by basic
labels of G is called a singleton labeling of G. We may solve G by generating all its
singleton labelings, solving each of them independently, and then combining the results.
Specifically, G is consistent if and only if there exists a consistent singleton labeling
of G; the minimal network can be computed by taking the union over the minimal
networks of all the singleton labelings.

Each qualitative constraint in a singleton labeling can be translated into a set of up to

four linear inequalities on points. These inequalities, in turn, can be translated into metric
constraints using the QUAN translation. It follows that a singleton labeling is equivalent
to an STP network-a metric network whose constraints are labeled by single intervals
[4]. An STP network can be solved in 0(n3) time [4]. Thus, the overall complexity
of this decomposition scheme is 0(n3ke), where n is the number of variables, e is the

number of arcs in the constraint graph, and k is the maximum number of basic labels
per arc.

Illustration. Consider the constraint graph of Fig. 2. One singleton labeling is shown
in Fig. 23. The qualitative constraint J {during} F can be translated into four linear

314 I. Meiri/Artificiul Intelligence 87 (1996) 343-385

Fig. 23. A singleton labeling of the constraint graph of Fig. 2

Fig. 24. The STP network of the singleton labeling of Fig. 23

inequalities on the endpoints of J and F: PI > 4, PI < P4, P2 > P3, and P2 < Ph.
Using the QUAN translation, these inequalities are translated into the following metric

constraints: PI - l’3 E ((O,CXI)}, P4 - PI E {(O,co)), P2 - P3 E {(O,co)}, and
P4 - P2 E { (0,~)). The resulting STP network is shown in Fig. 24.

The brute-force enumeration of singleton labelings can be pruned significantly by

running a backtracking algorithm on a meta-CSP in which the variables are the network
arcs and the domains are the possible basic labels. This algorithm is similar to the

backtracking algorithms for metric networks [41. It assigns a basic label to an arc, as
long as the corresponding STP network is consistent; if no such assignment is possible, it
backtracks. For further details see [41. Recent empirical evaluations of various temporal
backtracking algorithms are reported in [15,241.

Imposing local consistency among subsets of variables may serve as a preprocessing
step to improve backtrack. This strategy has been proven successful (see [31)) since en-
forcing local consistency can be achieved in polynomial time, while it may substantially

reduce the number of dead-ends encountered in the search phase itself. In particular,
experimental evaluation shows that enforcing a low consistency level, such as arc or path
consistency, gives the best results [31. Following this rationale, we next show that path
consistency, which in general networks amounts to the least amount of preprocessing, 8
can be achieved in polynomial time.

x General networks are trivially arc consistent since unary constraints are represented as binary constraints.

I. Meiri/Art$cial Intelligence 87 (1996) 343-385 315

To assess the complexity of PC-2 in the context of general networks, we introduce the
notion of a range of a network [4]. We first consider the case of an integral network,

where the extreme points of all metric constraints are integers. The range of a metric
constraint C, represented by an interval set (11, . . . , Zk}. is sup(1,) - inf(It). The range
of the network is the maximum range over all its metric constraints. For a rational
network, whose extreme points are rational numbers, the range is defined as the range
of the equivalent integral network, obtained from the input network by multiplying all
extreme points by their greatest common divisor. It can be shown that all operations on
the input, rational network can be simulated on its equivalent integral network (Ladkin

[131). The next theorem shows that the timing of PC-2 is bounded by O(n3R3), where
R is the range of the network.

Theorem 6.1. Algorithm PC-2 calls REVISE O(n3R) times, and its timing is bounded
by 0(n3R3), where R is the range of G.

Proof. Let G be a given network. Without loss of generality, we may assume that G is
integral; otherwise, we can simulate the algorithm on the equivalent integral network.
The number of calls to REVISE is proportional to the total number of triplets on Q

throughout the execution of PC-2. The initial size of Q is 0(n3). The worst-case
running time of PC-2 occurs when each metric constraint is decreased by only one
unit and each qualitative constraint is decreased by only one basic relation each time a

constraint is tightened by REVISE. In this case, if R is the range of G, then each metric
constraint might be updated O(R) times and each qualitative constraint may be updated
no more than 13 times. Also, in the worst case, when a constraint is modified, O(n)

triplets are added to Q [161. Thus, each constraint may cause the addition of O(nR)
triplets to Q. Hence, since there are O(n*> constraints, the total number of new entries
on Q is 0(n3R), namely, PC-2 performs 0(n3R) calls to REVISE. A call to REVISE
involves intersection and composition. The worst case occurs when all operands are
metric constraints. In this case, the cost of REVISE is O(R*). Hence, the total timing

of PC-2 is O(n3R3). 0

Path consistency can also be regarded as an alternative approach to exhaustive enu-
meration, serving as an approximation scheme that often yields the minimal network.
For example, applying path consistency to the network of Fig. 2 produces the minimal
network. Although, in general, a path consistent network is not necessarily minimal and
may not even be consistent, in some cases path consistency is guaranteed to determine

the consistency of a network.

Proposition 4.2. Let G be a path consistent network If the qualitative subnetwork of
G is in net(CPA) and the quantitative subnetwork constitutes an STP network, then G
is consistent and its metric constraints are minimal.

Proof. Let GM be the metric subnetwork of G. Consider a metric constraint C,. Let x
and y be values, assigned to variables Xi and X,i, respectively, that satisfy Cij. In [41
we show that since GM is path consistent, this partial assignment can be extended to a

376 I. Meiri/Artijiciul lntellipzce 87 (1996) 343-385

Fig. 2.5. A path consistent singleton labeling.

full solution of GM. Since the qualitative subnetwork is in net(CPA), this assignment
satisfies all qualitative constraints, and hence it is a solution to G. We conclude that Cij
is minimal and that G is consistent. 0

Note that the condition in Proposition 6.2 cannot be weakened to include networks

whose qualitative part is in net(PA) - net(CPA). The reason is that the networks
satisfying the condition of Proposition 6.2 are closed under REVISE, namely, applying
REVISE to any network in this class produces a network that still belongs to the same
class. This is not true when the qualitative subnetwork is in net(PA) - net(CPA). In
this case, REVISE may introduce holes in metric constraints, yielding a non-STP metric

subnetwork.
Unfortunately, even for networks satisfying the condition of Proposition 6.2, path

consistency is not guaranteed to compute the minimal network. According to Proposi-
tion 6.2, path consistency computes the minimal constraints for the metric part of the
network. Yet, it may not reduce some qualitative constraints to their minimal form.

Example 6.3. Consider the network in Fig. 25. It consists of two intervals, I = [A, B]

and J = [C, D] , and two metric constraints on their length,

B -A E {(1,2)},

D - C E {(3,4)}.

Note that the constraint between I and J is the universal constraint, permitting all 13
basic relations. This network is path consistent; however, it can be easily verified that
the basic relation = is not in the minimal constraint between I and J.

One way to compute the minimal qualitative constraints is the following. Let Cij be
a qualitative constraint labeled by a relation set R. For each basic relation r E R we set

C;j - r and then test the consistency of the resulting network. Because the new network
still satisfies the condition of Proposition 6.2, path consistency can be used to decide
its consistency. If the new network is consistent, then r is in the minimal constraint
between i and j. Since there are 0(n*) qualitative constraints, each one consisting of no
more than 13 basic relations, the entire minimal network can be computed using O(n*)
applications of path consistency.

For some networks, path consistency is even guaranteed to compute the entire minimal
network.

I. Meiri/Artificial Intelligence 87 (1996) 343-385 377

Proposition 6.4. Any path consistent singleton labeling is minimal.

Proof. We need to show that the qualitative constraints are minimal. According to
Proposition 6.2 the network is consistent. Thus, since each qualitative constraint consists
of a single basic relation, it must be in its minimal form. •!

We feel that more classes of temporal problems may be solved by path consistency
algorithms. Further investigation may reveal new classes that can be solved using these
algorithms.

7. Conclusions

We describe a general network-based model for temporal reasoning that is capable
of handling both qualitative and quantitative information. It facilitates the processing
of quantitative constraints on points and of all qualitative constraints between tempo-
ral objects. We use constraints satisfaction techniques in solving reasoning tasks in
this model. In particular, general networks can be solved either by a backtracking al-
gorithm or by path consistency (which computes an approximation to the minimal
network).

Using our integrated model we were able to identify new classes of tractable networks
-those networks that can be solved by path consistency algorithms, for example, sin-
gleton labelings.

Other tractable classes were obtained by augmenting PA and CPA networks with
various domain constraints. We showed that some of these networks can be solved using
arc and path consistency.

Kautz and Ladkin [lo] have introduced an alternative model for temporal reasoning.
It consists of two components: a metric network and an IA network. These two networks,
however, are not connected via internal constraints; rather, they are kept separately, and
the inter-component relationships are managed by means of external control. To solve
reasoning tasks in this model, Kautz and Ladkin proposed an algorithm that solves each
component independently and then circulates information between the two parts, using
the QUAL and QUAN translations, until a fixed point is reached. Our model has two
advantages over Kautz and Ladkin’s model:

(1) All information is stored in a single network and therefore constraint propagation
takes place in the knowledge level itself.

(2) In our model we are able to establish tighter bounds for various reasoning tasks.
For example, in order to convert a given network into an equivalent path consis-
tent form, Kautz and Ladkin’s algorithm may require O(d) information trans-
ferences, resulting in an overall complexity of 0(n5RZ), compared to O(n3R3)
in our model.

Future research should enrich the representation language to facilitate modeling of
more involved reasoning tasks. In particular, nonbinary constraints (for example, “If John
leaves home before 7:15 a.m., he arrives at work before Fred’) should be incorporated
in our model.

378 I. Meiri/Artijicial Intelligence X7 (1996) 343-385

Acknowledgments

I would like to thank Rina Dechter and Judea Pearl for providing helpful comments

on an earlier draft of this paper. Also thanks to Rina Dechter and Eddie Schwalb for
the effort in revising the final manuscript.

Appendix A. Proofs

Proof of Lemma 5.7. The $part is trivial-if C;] is = then, by definition, both i + j E

E,, and j -+ i E E,,, and thus i and j belong to the same strongly connected component.
We now show the only ifpart. Suppose i and j belong to the same strongly connected

component in G,). Then, there exists a directed path iI = i ---) i2 + . -+ ik = j from i

to j in G,,. By the construction of G,,, all the corresponding constraints in G are either
<, <, or =. It can be verified easily that the composition of these constraints cannot

contain >. Thus

Cij,iz 3 “.@Cir_,,il (I {<7=}

and. from path consistency,

C,., c C,,.i* @ . @C,,_,,,, c {<> =}. (A.11

Similarly, there exists a directed path ji = j ----i ,jz + + jk = i from j to i in G,. The
corresponding constraints in G, in the direction from i to j, are either >, 3, or =. Thus

Cil.,i-i 19. @G cjz.,, c { >, =}

and, from path consistency,

C,i C C,jk,ji-I '8 ” ’ @ Cjz..f, Cr {>.=}. (-4.2)

From Eqs. (A. I) and (A.2), Ci,; C {=}, and since all constraints are nonempty, Cij
must be =. 0

Proof of Lemma 5.10. There are three cases:
(1) i = k, j # I. From path consistency, C,r i_ Cij @ Gil. According to Lemma 5.7,

C,/ is =, thus

Cij C Cl,. (A.3)

Similarly, from path consistency, C,j C C,i 8 Cl,. According to Lemma 5.7, Clj
is =, thus

Cij & Cit.

From Eqs. (A.3) and (A.4). C,; = C,, = Ckl.
(2) j = 1, i # k. From CaSe (1) , C,ji = C.$,. = C/k, and thus Cij = Ckl.

(A.4)

I. Meiri/Art@cial Intelligence 87 (1996) 343-385 319

(3) i # k, j f 1. From previous cases we have Cij = Gil = Ckl.
Hence, for all Cases Cij = Ck[. 0

Proof of Theorem 5.13. Let G be a nonempty arc consistent CPA network over discrete
domains. We shall show that the tuple H = (HI,. . . , h,) is a solution. Consider an
arbitrary constraint Cij, and the values hi and hj assigned to variables Xi and Xj,
respectively. There are three cases depending on Cij.

(1) Cij is =. Then, hi must be equal to hj. Otherwise, suppose hi # hj. Without loss
of generality, we may assume that hi < hj. From arc consistency, there exists a
value hj E Di. This contradicts the fact that hi is the highest value in Di. Hence,
hi = hj.

(2) Ci,i is < or >. Without 10s~ of generality, we may assume that Cij is < (otherwise
we consider Cji). Then, from NC consistency, there exists a value u E Dj such
that hi < U. By definition, u < hj, and thus hi < hj.

(3) Cij is 6 or 2. Without loss of generality, we may assume that Cij is < (otherwise

we consider Cji). Then, from XC consistency, there exists a value u E Dj such
that hi < U. By definition, u < hj, and thus hi 6 hj.

We conclude that the assignment Xi = hi, Xj = hj satisfies the constraint Cij. Since all
the constraints are satisfied, H is a solution, and thus the network is consistent. 0

The next lemmas are needed in analyzing the complexity of algorithm AC-3 in PA

networks. As usual, let II, e, and k be the number of nodes, number of edges, and the
maximum domain size, respectively.

Lemma A.1. During the execution of AC-3 only input extreme points may occur in
any domain.

Proof. All operations on domains (Eq. (3)) involve quantitative composition of domain
intervals with intervals from the set {(O,oo),[O,co),[O],(-oo,O],(-co,O)}, and
then intersection. It can be easily verified that these operations do not introduce new
extreme points. q

Corollary A.2. The number of intervals per domain is O(nk).

Lemma A.3. The number of calls to REVISE is O(enk).

Proof. We follow the analysis of Mackworth and Freuder [171. The number of calls
to REVISE is identical to the number of iterations of the while loop (Steps 2-6), that
is, the total number of arcs on Q. Initially, there are O(e) arcs on Q. We observe that
when a domain changes, either some extreme points are added or deleted, or a closed
interval becomes open. The worst case occurs when all the possible changes take place
and none of the arcs to be added to Q is already on it. In this worst case, each call to
REVISE either adds or deletes exactly one extreme point or opens one closed interval.
From Lemma A.l, only input extreme points can occur in any domain; thus, a domain
may change O(nk) times.

380 1. Meiri/Artijicd Intelligence 87 (I 996) 343-385

Entries are made in Q only when a call to REVISE has changed a domain. If a domain
Dj has been changed, then in the worst case O(4) arcs are added to Q, where di is the
degree of node i. Hence, the total number of new entries in Q is:

n

c O(d;)O(nk) = O(enk).
i=I

Hence, the number of calls to REVISE is O(enk). 0

Proof of Lemma 5.17. The cost of REVISE is proportional to the number of intervals
per domain-O(&) (Corollary A.2). The overall complexity of AC-3 is the number of
calls to REVISE times the cost of REVISE, namely, O(en’k*). 0

Proof of Lemma 5.20. Since all constraints are from the set { <, <, >, >}, REVISE
can be implemented, using binary search and then updating the pointers Inf and Sup, in
0(log k) time. Since the number of calls to REVISE is proportional to the number of

arcs, the total complexity is O(e logk). 0

The next lemma is needed for the proof of Theorem 5.2 1.

Lemma A.4 A nonempty arc consistent acyclic CPA network G = (y E) over multiple-
intervals domains is backtrack free along any reverse topological ordering of its prece-

dence graph.

Proof. Let G = (YE) be a nonempty arc consistent acyclic CPA network over multiple-
intervals domains. Let G,, = (YE,,) be the precedence graph of G, and let d be a

reverse topological ordering of G,,. Suppose the first k variables along d, XI,. . . , Xk,
were already instantiated to the values ~1, . . , up, respectively. We have to show that for
any other variable Xi, i > k, there exists a value u, E Di such that all constraints Cj;
(1 < j < k) are satisfied.

If i is a sink in G,, (i.e., it has no outgoing arcs), then we may choose any value

~1; E D;. Since all constraints Cj; are universal, they are trivially satisfied. If i is not

a source in G,, then let S be the successor set of i (namely, all nodes j such that
i + j E E,,). Consider an arbitrary constraint C’,;, j E S. Since G,, is acyclic, Cji cannot
be the equality constraint; furthermore, by the construction of G,, it must be either >
or 3. From arc consistency, we can select a value 1.i E Di that satisfies Ci,, namely, is
consistent with u,i. Let ui = min{l, [j E S}. Clearly, this value satisfies all the constraints
C’ii, j E S. Hence, G is backtrack free along d. 0

Proof of Theorem 5.21. Let G = (v E) be a nonempty arc consistent acyclic CPA

network over multiple-intervals domains. Let G,] = (YE,) be the precedence graph of
G. To show that a domain Di is minimal, we need to show that every value x E Di is

part of a solution X of G.
Let n be an arbitrary value in Di. Let VI be the set of all nodes u E G such that there

exists a path from u to i in G,,. We construct a solution to G by instantiating first the

I. Meiri/Art@cial Intelligence 87 (I 996) 343-385 381

nodes in VI and then the rest of the nodes. Consider Gt = (VI, El), the subgraph induced
by VI (containing only arcs connecting nodes in VI). Let dt be a reverse topological
ordering of Gt . According to Lemma A.4, Gt is backtrack free along dt . Hence, we can

construct a solution X’ to Gt by instantiating Xi to x and then instantiating the rest of
the variables in VI in a backtrack-free fashion along dr. Having instantiated the nodes

in VI, we can now extend X’ to a full solution X of G as follows: Let d be a topological
ordering of G whose restriction to Gt is the reverse of d,. The nodes in VI are already
instantiated. According to Lemma 5.15, we can extend X’ to a full solution of G by
instantiating the rest of the nodes, V - VI, backtrack free along d. Therefore, there exists
a solution to G in which Xi = x. 0

Proof of Lemma 5.28. Let G = (YE) be an arc consistent PA network over almost-
single-interval domains, and let G’ be its restricted network. Suppose G’ is not arc
consistent. Then there exists a pair of variables Xi and Xj, and a value x E 0; such

that x has no compatible value in Ds. On the other hand, since G is arc consistent, x
must have a compatible value in Dj. Thus, Dj C Dj, that is, Dj contains more than one

value, and x must be compatible with either inf(Dj) or sup(Dj). There are four cases
depending on Cij.

(1) C;,j is either < or <. If x was compatible with inf(Dj) (i.e., x < inf(Dj)),

then it would also be compatible with another value y E Dj, contradicting our
assumption that x has no match in Ds. Thus, x is incompatible with inf(Dj) , and

hence it must be compatible with sup(D,j), namely, inf(D,j) < x < SUp(Dj).
We distinguish between two cases.

(a) Ifx<sup(Dj) thenlety= i [max({x, inf(Dj)}UHj) +sup(Dj)]. Clearly,
y E Dj and n < y. Hence, x has a match in 0;; contradiction.

(b) If x = sup(Dj) then, from WC consistency of G, Cij must be <, and we must

also have that x = sup(Di). Thus, by definition of the restricted network,
since sup(Di) E Di, the domain Di consists of a single value, that is, Di =
Di = {x}. Since Cij is <, the constraint Cji is 3, and, by XC consistency

of G, Dj = {x}. Thus, Dj consists of a single value; contradiction.
(2) Cij is either > or 2. This case is symmetric to the previous case. If x was

compatible with sup(Dj) (i.e., x > sup(Dj)), then it would also be compatible
with another value y E D$., contradicting our assumption that x has no match
in Ds. Thus, x is incompatible with sup(Dj), and hence it must be compatible
with inf(Dj), namely, inf(Dj) < x < SUp(Dj). We distinguish between two

cases.
(a) If x > inf(Dj) then let y = i[min({x,sup(Dj)} U Hi) + inf(Dj)].

Clearly, y E Dj and x > y. Hence, x has a match in Ds; contradic-
tion.

(b) If x = inf(Dj) then, from NC consistency of G, Cij must be 2, and we
must also have that x = inf(0;). Thus, by definition of the restricted net-
work, since inf(Di) E Di, the domain Di consists of a single value, that

is, Di = Df = {x}. Since Cij is 2, the constraint Cji is <, and, by XC

consistency of G, Dj = {x}. Thus, Dj consists of a single value; contradic-
tion.

381 1. Mriri/Artijicid Inrelligence 87 (I 996) 343-385

(3) If C;,, is = then, from arc consistency of G, D; = D,. Since x is compatible with
either inf(0.i) or sup(D,i), we must also have x = inf(Di) or x = sup(Di).
Thus, since either inf(D,) E 0: or sup(0;) E D(, by definition of the restricted
network, Di consists of a single value, namely, Di = {x}. Hence, D,, = {x},
namely, it consists of a single value; contradiction.

(4) If C,, is # then, since Di contains more than one value, there must be a value
Y E D$ such that x f ~1, contradicting our assumption that x has no match in Ds.

We conclude that x must have a compatible value in DI; hence, G’ is arc consistent. q

Proof of Lemma 5.31. Consider the operation of REVISE (Eq. (3)):

D; + D;& D./ Q, QUAN(C,,)

There are three cases depending on C,,.

(I) If C;,j is a relation from the set {<, <, 3, >}, then the composition of D,i with
QUAN(Ci;) yields a single, convex interval. The intersection of a convex interval
with an almost-single interval gives an almost-single interval.

(2) If C;i is =, then the domain Di is intersected with the domain D;, yielding an
almost-single-interval domain.

(3) If Ci; is # , then there are two cases. If Dj contains more than one value, then
Dj is not changed. If D.i consists of a single value u, then at most most one new

hole, U, may be introduced.
We conclude that a call to REVISE produces a PA network over almost-single-interval
domains. 0

Proof of Lemma 5.32. Let G be a PA network over almost-single-interval domains.

We first observe that the only case where a # constraint Ci,i may change a domain Dj
occurs when the domain D, consists of a single value U. In this case, either a new hole
u is introduced in D., or one of its extreme points, inf(D,) or sup(Dj), is removed
and thus a closed-interval domain is opened. All other constraints are CPA relations that

change upper and lower bounds.
Consider the first two applications of DAC (Steps 3 and 4). If we disregard the #

constraints, then these two steps mimic algorithm 2DAC, in which the CPA constraints
establish new lower and upper bounds on domains. However, the existence of the #
constraints may remove finite sets of values from some domains, introducing new holes
or deleting extreme points. This forces more applications of DAC (Steps 5 and 6). It
can be verified that, in these later applications, the CPA constraints may only fix some

bounds by removing extreme points from domains, and the inequality constraints, as
before, may remove only finite sets of values from domains. Thus, in Steps 5 and 6,
only a finite set of values may be removed from each domain. As a result, all domains
that will eventually consist of a single value u are reduced to this value during Steps 3
and 4.

Consider Steps 4 and 5. If a domain D; was reduced to a single value (in Step 3 or
Step 4), then during Step 4 all arcs j + i, such that i < j and the constraint Cij is
f, are made consistent. Then, in Step 5, for each domain Di, which was reduced to a
single value in previous steps, all arcs i --) ,j, such that i < j and the constraint Cii is

I. Meiri/Artijkial Intelligence 87 (1996) 343-38.5 383

, are made consistent. Altogether, when Step 5 terminates, all arcs i -+ j such that C,
is # are made consistent and, since domains are monotonically reducing, they remain
consistent when 4DAC terminates.

It remains to show that all arcs i + j, such that Cij is a CPA relation, are consistent
when 4DAC terminates. However, this can be seen from the fact that, in Steps 5 and 6,
the corresponding DACs only change upper and lower bounds, respectively. We therefore
conclude that when 4DAC terminates all arcs are consistent, namely, the network is arc

consistent. q

Proof of Lemma 5.34. The cost of REVISE is proportional to the number of intervals
per domain. Initially, the domain size is O(k) . A domain Di can change by an application

of Eq. (3). Note that since the network is acyclic, Cij cannot be the equality constraint.
When Cij is a relation from the set { <, <,>, >}, the bound on the domain size is

not changed. When Cij is #:, then Di may be changed only when Dj contains exactly
one value U. In this case, an interval in Di may be split into two new intervals, thus

increasing the size of Di by 1. This situation can occur at most O(n) times (once for
every node). Hence, the number of intervals per domain, and consequently the cost
of REVISE, is 0(k + n). Since the number of calls to REVISE is proportional to the
number of arcs, the total complexity is 0(e(k + n)) . Cl

The next lemma is needed for the proof of Theorem 5.35.

Lemma A.5 Let G be a nonempty arc consistent acyclic PA network over almost-
single-interval domains. Let G’ be the restricted network of G. Then, G’ is backtrack
free along any reverse topological ordering of its precedence graph.

Proof. Let G,) = (YE,,) be the precedence graph of G’, and let d be a reverse topological
ordering of G,. From Lemma 5.28, since G is arc consistent, G’ is also arc consistent.
Suppose the first k variables along d, Xl,. . . , Xk, were already instantiated to the values

Ul,. . ., uk, respectively. We have to show that for any other variable Xi, i > k, there
exists a value Ui E 0; such that all constraints C,ii (1 6 j 6 k) are satisfied.

If i is a sink in Gp (i.e., it has no outgoing arcs), then we may choose any value

Di E 0;. Since all constraints Cji, j < i, are universal, they are trivially satisfied.
If i is not a sink in G,,, then we must select a value Ui E 0; such that all the

constraints Cji, 1 < j < k, are satisfied. If 0; consists of a single value u then, from arc

consistency, all these constraints are satisfied. If 0; contains more than one value, then a
value Ui E 0: that satisfies all constraints Cji, 1 < j < k, can be found as follows. Let S
be the successor set of i in G, (namely, all nodes j such that i -+ j E Ep). Consider an
arbitrary constraint Cji, j E S. Since G, is acyclic, Cji cannot be the equality constraint;
furthermore, by the construction of G,, it must be either > or 3. From arc consistency
of G’, we can select a value lj E 0; that is compatible with Uj. Moreover, Zj can

always be selected such that inf(0:) < l,i < min(Hi). Let m = min({Zj 1 j E S}). Let
N = {Vj 1 j < i, Cji is # }. Since N is finite, we can always find a value Ui such that
Ui E (inf(Di), m], but Ui # N. Clearly, ui E Df, and it satisfies all the constraints Cji,
1 6 j 6 k. Hence, G’ is backtrack free along d. 0

384 1. Meiri/Arrificrtrl lntelligerrw X7 (I 996) 343-385

Proof of Theorem 5.35. Let G,, = (YE,,) be the precedence graph of G’. To show that
a domain 0; is minimal, we need to show that every value n E D,! is part of a solution
x of G’.

Let x be an arbitrary value in Di. Let VI be the set of all nodes u E G’ such that there

exists a path from u to i in G,,. We construct a solution to G’ by instantiating first the
nodes in VI and then the rest of the nodes. Consider G/, = (VI, El), the subgraph induced
by v (containing only arcs connecting nodes in V,). Let dt be a reverse topological
ordering of G’, . According to Lemma AS. GI is backtrack free along dt Hence, we can
construct a solution X’ to G’, by instantiating X, to x and then instantiating the rest of
the variables in VI in a backtrack-free fashion along dt Having instantiated the nodes in

VI, we can now extend X’ to a full solution X of G’ as follows. Let d be a topological
ordering of G,, whose restriction to G{ is the reverse of dt The nodes in VI are already
instantiated. According to Lemma 5.29, we can extend X’ to a full solution of G’ by

instantiating the rest of the nodes, V - VI, backtrack free along d. Therefore, there exists
a solution to G’ in which X, = x. 0

References

III
121
131

141

1st

161

171
181

I91

1101

IIll

1121

1131

1141

J.F. Allen, Maintaining knowledge about temporal intervals, C~nnz. ACM 26 (1983) 832-843.

T.L. Dean and D.V. McDermott, Temporal data base management, Artif: fntell. 32 (1987) I-5.5.

R. Dechter and I. Meiri, Experimental evaluation of preprocessing algorithms for constraint satisfaction

problems, Art$ Intell. 68 (1994) 2 I I-24 I.
R. Dechter, I. Meiri and J. Pearl, Temporal constraint networks, Arf$ Intell. 49 (1991) 61-95.

R. Dechter and J. Pearl. Tree clustering for constraint networks, Artif: In/ell. 38 (1988) 353-366.

Y. Deville and P Van Hentenryck. An efficient arc consistency algorithm for a class of CSP problems,

in: P~~erdin~s IJCAI-91. Sydney (1991) 325-330.

E.C. Freuder, A sufficient condition of backtrack-free search, J. ACM 29 (1982) 24-32.

M.R. Carey and D.S. Johnson, Cont/~urs dnd /nwumhility: A Guide to the Theory ov NP-Conrp1etenes.s

(Freeman, San Francisco, CA, 1979).

M.C. Golumbic and R. Shamir, Complexity and algorithms for reasoning about time: a graph-theoretic

approach, Tech. Rept. RRR-22-9 I. Center for Operations Research, Rutgers University, New Brunswick,

NJ (1991).

H. Kautz and PB. Ladkin, Integrating metric and qualitative temporal reasoning, in: Proceedings AAAI-

VI. Anaheim, CA (1991) 241-246.

M. Koubarakis, Dense time and temporal constraints with #, in: Proceedings KR-92, Cambridge, MA

(1992) 24-35.

M. Koubarakis, From local to global consistency in temporal constraint networks, in: Proceedings

Principles and Pructice of Constraint PmRrcrn7lninR-CP95, Cassi (1995) 53-69.

PB. Ladkin, Metric constraint satisfaction with intervals, Tech. Rept. TR-89-038, International Computer

Science Institute, Berkeley, CA (1989)

PB. Ladkin and R.D. Maddux, On binary constraint networks, Tech. Rept., Kestrel Institute, Palo Alto,

CA (1989).

I 15) P.B. Ladkin and A. Reinefeld, Effective solutions of qualitative interval constraint problems, Art6 Intell.

57(1992) 105-124.

I I6 1 A.K. Mackworth, Consistency in networks of relations, Art$ Intell. 8 (1977) 99-l 18.

[I7 1 A.K. Mackwotth and E.C. Freuder, The complexity of some polynomial network consistency algorithms

for constraint satisfaction problems, Artif: fmell. 25 (1985) 65-74.

I I8 1 I. Meiri, Faster constraint satisfaction algorithms for temporal reasoning, Tech. Rept. TR- IS 1. Cognitive

Systems Laboratory, Computer Science Department, University of California, Los Angeles, CA (1990).

I I9 I R. Mohr and T.C. Henderson, Arc and path consistency revisited, Artif: Intell. 28 (1986) 225-233.

I. Meiri/Artificial Intelligence 87 (1996) 343-385 385

[20] U. Montanari, Networks of constraints: fundamental properties and applications to picture processing,
Inform. Sci. 7 (1974) 95-132.

[211 B. Nebel and H.J. Burckert, Reasoning about temporal relations: a maximal tractable subclass of Allen’s
interval algebra, in: Proceedings AAAI-94, Seattle, WA (1994) 356-361.

(221 M. Poesio and R.J. Bnchman, Metric constraints for maintaining appointments: dates and repeated
activities, in: Proceedings AAAI-91, Anaheim, CA (1991) 253-259.

[231 E. Schwalb and R. Dechter, Coping with disjunctions in temporal constraint satisfaction problems, in:
Proceedings AAAI-93, Washington, DC (1993) 2-8.

1241 E. Schwalb and R. Dechter, Processing temporal constraint networks, Tech. Rept., Information and
Computer Science, UC-Irvine, Irvine, CA (1995).

1251 P van Beek, Exact and approximate reasoning about qualitative temporal relations, PhD thesis, University
of Waterloo, Waterloo, Ont. (1990).

[261 P van Beek, Reasoning about qualitative temporal information, in: Proceedings AAAI-90, Boston, MA
(1990) 728-734.

[271 P van Beek and R. Dechter, On the minimality and global consistency of row-convex constraint networks,
J. ACM 42 (1995) 543-561.

[28 J M. Vilain, A system for reasoning about time, in: Proceedings AAAI-82, Pittsburgh, PA (1982) 197-201.
[291 M. Vilain and H. Kautz, Constraint propagation algorithms for temporal reasoning, in: Proceedings

AAAI-86, Philadelphia, PA (1986) 377-382.

