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Expressions for bulk stress within a granular material in a dynamic setting are reviewed and explicitly
derived for assemblies of three dimensional arbitrary shaped particles. By employing classical continuum
and rigid body mechanics, the mean stress tensor for a single particle is separated into three distinct com-
ponents; the familiar Love–Webber formula describing the direct effect of contacts, a component due to
the net unbalanced moment arising from contact and a symmetric term due to the centripetal accelera-
tion of material within the particle. A case is made that the latter term be ignored without exception
when determining bulk stress within an assembly of particles. In the absence of this centripetal term
an important observation is made regarding the nature of the symmetry in the stress tensor for certain
types of particles; in the case of particles with cubic symmetry, the effects of dynamics on the bulk stress
in an assembly is captured by an entirely skew-symmetric tensor. In this situation, it is recognised that
the symmetric part of the Love–Webber formula is all that is required for defining the mean stress tensor
within an assembly – regardless of the dynamics of the system.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction and background

In recent times the homogenisation processes involved in
developing a continuous, macroscopic definition of stress in a dis-
crete granular material have received a great deal of attention. At
one level the definition of stress is quite straight-forward and gen-
erally uncontested, however the area has spawned its fair share of
historical debate. Most of this debate surrounded the potential for
asymmetry in the stress tensor (Bardet and Vardoulakis, 2001;
Bagi, 2003; Kuhn, 2003; Bardet and Vardoulakis, 2003a,b; Froiio
et al., 2006) and arguments for the existence of ‘couple stresses’
in the granular continuum (Chang et al., 1990; Oda, 1999; Oda
et al., 2000; Ehlers et al., 2003; Ehlers, 2010; Alonso-Marroquin,
2011; Goldhirsch, 2010). This is now largely resolved with general
acceptance that, without contact moments, asymmetry does not
exist in equilibrium (de Saxcé et al., 2004; Fortin et al., 2003). Some
recent work has even demonstrated that asymmetry is not
necessarily inherent in the presence of contact moments, provided
such moments are properly accounted for in the homogenisation
process (Wensrich, 2014).

The majority of prior work has focused on material in equilib-
rium or in a quasi-static state. Here a variety of approaches have
been used such as the mean stress theorem as initially applied
by Love (1927) and Weber (1966), course graining (e.g.
Goldhirsch, 2010; Edwards and Grinev, 1999; Weinhart et al.,
2012) and variational methods (i.e. virtual work, Bardet and
Vardoulakis, 2001; Chang et al., 2005; Mehrabadi et al., 1982;
Christoffersen et al., 1981; Satake, 1983; Goddard, 2007). From
the perspective of these static approaches, apparent asymmetry
can arise if the assumption of equilibrium is violated. In response
there has been a significant amount of recent work focused on
developing consistent homogenisation processes that are applica-
ble even in the absence of equilibrium. These approaches largely
focus on calculating stress as an ensemble average of the stress
within individual particles, defined from the point of view of the
conservation of momentum at all points within a given particle
(de Saxcé et al., 2004; Fortin et al., 2003; Fortin et al., 2002; Li
et al., 2009; Nicot et al., 2013; Moreau, 2010; Luding, 2010). This
work has shown that the components of stress arising from parti-
cle dynamics may be significant and are necessary for eliminating
the asymmetry present in earlier quasi-static descriptions.

In this paper, we apply a similar approach to define stress
within a dynamic granular assembly as an ensemble average over
individual particles subject to the laws of classical continuum the-
ory and rigid body mechanics. For the most part, the approach
taken here is known (de Saxcé et al., 2004; Fortin et al., 2003;
Fortin et al., 2002; Li et al., 2009; Nicot et al., 2013; Moreau,
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2010; Luding, 2010), however we consider three-dimensions and
arbitrary particle shape and progress to the point where a new
interpretation can be made. In particular, we present an argument
that the component of stress relating to the angular velocity of par-
ticles, often referred to as ‘‘centrifugal stress’’ (de Saxcé et al., 2004;
Nicot et al., 2013), be excluded without exception from the defini-
tion of bulk stress. Without this term, we make further observa-
tions on the nature of stress symmetry in granular materials that
will greatly simplify the process of accounting for dynamics in cer-
tain classes of materials, including the vast majority of Discrete
Element Models where spherical particles are still commonplace.

2. Bulk stress in the absence of equilibrium

As has been discussed many times in the literature (e.g.
Drescher and do Josselin de Jong, 1972), the basic definition of Cau-
chy stress within a granular assembly usually relies on a volume
average over a suitable Representative Volume Element, VRVE;

hri ¼ 1
VRVE

Z
VRVE

rdV ð1Þ

This volume average represents the average stress within a con-
tinuous domain corresponding to the discrete assembly of parti-
cles. By considering the stress within each particle separately, it
is possible to express this average as;

hri ¼ 1
VRVE

X
P2VRVE

VPhrPi; ð2Þ

where hrpi is the volume average of stress within particle ‘P’, with
volume VP . With this in mind, we proceed with the rest of our anal-
ysis focused on the stress within a single particle – the above defi-
nition will allow us to relate this to bulk averages. This also applies
for any time-volume or weighted time-volume averaging methods
(e.g. Babic, 1997; Zhu and Yu, 2002).

Consider the particle shown in Fig. 1. This particle is subject to
boundary tractions, f~scg, via contact with other particles in the
assembly, body force densities due to actions such as gravity, ~c,
and is not necessarily in equilibrium. At any point within the par-
ticle the conservation of momentum implies that;

rrþ ~c ¼ q€~x; ð3Þ

where €~x is the total derivative of velocity at the point in question.
Relying on the Gauss–Qstrogradsky divergence theorem, it can

then be shown (e.g. Nicot et al., 2013) that the mean stress within
the particle can be written;

hrpi ¼ 1
Vp

X
c

Z
Ac

~sc � ~xdA�
Z

Vp
q€~x� ~c
� �

� ~xdV

 !
; ð4Þ
Fig. 1. A single particle forming a part of a granular assembly is subject to a number
of contact traction forces, f~scg, and a body force density, ~c.
where the symbol � represents the dyadic product between
vectors.

If we assume that the particle is rigid we can characterise the

contact tractions as a set of discrete forces, ~f c ¼
R

Ac scdA
n o

, acting

at corresponding contact points f~xcg. Together with an assumption
that the particles are homogeneous and subject to a constant body
force density, Eq. (4) becomes;

hrpi ¼ 1
Vp

X
c

~f c � ~xc � 1
Vp q

Z
Vp

€~x� ~xdV þ 1
Vp ~c�

Z
Vp

~xdV ð5Þ

Thus the stress within the particle can be represented by the
sum of three distinct components. For future reference, we identify
them as follows;

hrpiLw ¼
1

Vp

X
c

~f c � ~xc; ð6Þ

is the familiar ‘Love–Webber’ formula (Love, 1927; Weber, 1966)
describing the stress due to the contact forces;

rP
� �

I ¼ �
1

VP q
Z

VP

€~x� ~xdV ; ð7Þ

is an inertial component from the dynamics of the particle; and,

rP
� �

B ¼
1

VP
~c�

Z
VP

~xdV ; ð8Þ

is that originating from the body forces.
The body force component can be easily simplified by express-

ing the position of points within the particle relative to the centre
of mass, ~x ¼ ~xg þ ~r, leading to;

hrPiB ¼
1

VP
~c�

Z
VP
ð~xg þ ~rÞdV ¼ ~c� ~xg ð9Þ

As has been done recently by Nicot et al. (2013), we can analyse
the inertial component from the perspective of the rigid body
assumption by expressing the acceleration of any point within
the particle as follows1

€~x ¼ €~xg þ _~x� ~r þ ~x� ð ~x� ~rÞ ð10Þ

where ~x is the angular velocity of the particle. Substituting this into
the inertial component of stress we obtain the following;

hrPii ¼�q€~xg�~xg� 1
VP q

Z
VP

_~x�~r
� �

�~rdV� 1
VP q

Z
VP
ð ~x�ð ~x�~rÞÞ�~rdV

ð11Þ

With the aid of the vector triple product rule;
~a� ð~b� ~cÞ ¼ ~bð~a � ~cÞ � ~cð~a � ~bÞ Eq. (11) can be written;

hrPiI ¼ �q€~xg � ~xg � 1
VP q

Z
VP

_~x� ~r
� �

� ~rdV � 1
V

q
Z

VP
ð ~x � ~rÞ ~x� ~rdV

þ 1
VP q

Z
VP
ð ~x � ~xÞ~r� ~rdV ; ð12Þ

or in component form;

hrp
ijiI ¼ �q€~xg

i
~xg

j �
1

VP q
Z

VP
eikl _xkrlrjdV � 1

VP q
Z

VP
xlrlxirjdV

þ 1
VP q

Z
VP

xkxkrirjdV ; ð13Þ

where eijk is the usual Levi–Civita permutation symbol.
1 Due to the rigid body assumption, we have not explicitly written Eq. (3) in terms
of convected derivatives (as has been done previously by Luding (2010)). In this
instance, the effects of rotation within the material are captured by Eq. (10).
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Without loss of generality, we set the origin of our coordinate
system so that ~xg ¼ ~0. By writing the second moment of mass ten-
sor for the particle as lij ¼ q

R
Vp rirjdV , Eq. (13) then becomes;

hrp
ijiI ¼

1
VP �eikl _xkllj �xlxillj þxkxklij

� �
: ð14Þ

Note that l has been referred to as the ‘inertia tensor’ (Nicot
et al., 2013) or the ‘planar inertia tensor’ (Moreau, 2010), however
it should not be confused with the usual moment of inertia tensor
that describes the rotational inertia of a rigid body. Obviously these
two tensors are related.

Nicot et al. (2013) proceeded from this point to examine the
behaviour of spherical (and circular) particles where the second
moment and inertia tensors can be represented by scalars in con-
stant ratio to each other. In this simplified system, the dynamic
components were shown to consist of a skew-symmetric term
related to the moment imbalance and a symmetric term related
to the angular velocity of particles.

In a more general sense, we can examine the nature of arbitrary
shaped particles by recognising that the second moment of mass is
related to the usual moment of inertia tensor by the following;

Iij ¼ lkkdij � lij ð15Þ

Again without loss of generality, we are free to choose a coordi-
nate system that aligns with the principal directions of the
particle.2 In such a coordinate system the second moment and iner-
tia tensors both appear diagonal and we can expand the index nota-
tion in Eq. (14) to yield the following expression for the inertial
component of stress;

hrp
ijii ¼

1
Vp

ðx2
2þx3

2Þl11 �ðx1x2� _x3Þl22 �ðx1x3þ _x2Þl33

�ðx2x1þ _x3Þl11 ðx2
1þx2

3Þl22 �ðx2x3� _x1Þl33

�ðx3x1� _x2Þl11 �ðx3x2þ _x1Þl22 ðx2
1þx2

2Þl33

2
64

3
75

ð16Þ

From Euler’s equation of motion, we can express the compo-
nents of angular acceleration of the particle in terms of the net
(unbalanced) moment, ~M, as;

_x1 ¼
M1 þ ðl33 � l22Þx2x3

l22 þ l33

_x2 ¼
M2 þ ðl11 � l33Þx1x3

l11 þ l33

_x3 ¼
M3 þ ðl22 � l11Þx1x2

l11 þ l22

ð17Þ

Substitution into Eq. (16) provides the following expression for
the dynamic components of stress;

hrPii ¼
1

VP

0 M3l22
l11þl22

�M2l33
l11þl33

�M3l11
l11þl22

0 M1l33
l22þl33

M2l11
l11þl33

�M1l22
l22þl33

0

2
6664

3
7775

þ 1
VP

ðx2
2 þx2

3Þl11 � 2l11l22
l11þl22x1x2

� 2l11l33
l11þl33

x1x3

� 2l11l22
l11þl22

x1x2 ðx2
1 þx2

3Þl22 � 2l22l33
l22þl33

x2x3

� 2l11l33
l11þl33

x1x3 � 2l22l33
l22þl33

x2x3 ðx2
1 þx2

2Þl33

2
6664

3
7775
ð18Þ
2 We should be mindful that the average over the RVE is performed in a global
coordinate system that will not necessarily align with the principal directions of any
particle in the assembly. However, we can be confident that all conclusions that will
be drawn in principal directions will be preserved through any necessary coordinate
transformations into a global system.
The first term in this expression relates to the component of
stress that is due to any net moment that may be applied to the
particle (i.e. the rate of change of angular momentum). Given that
we have assumed a constant body force density, the sole remaining
source for this net moment is through the contact forces and is of
the form;

~M ¼
X

c

~rc � ~f c ð19Þ

The second term in Eq. (18) is symmetric and relates to the cen-
tripetal acceleration of material within the particle. This compo-
nent depends directly on the particle’s angular velocity and is
akin to the average tensile stress experienced within a rotating fly-
wheel (note that the hydrostatic component of this term is always
positive). This component is not related to contact or body forces in
any direct way.
3. The case for a new definition for granular stress

Following explicitly from the definition provided in Eq. (1), Eqs.
(5) and (18) describe a bulk stress made up of 4 individual
components;

(1) The familiar Love–Webber equation that directly captures
the effects of the contact forces,

(2) The effects of body forces,
(3) The effects of rotational inertia, expressed in terms of the net

moment arising from contacts, and,
(4) The effects of centripetal acceleration within the particles.

The first two relate to static effects where-as the latter originate
from dynamics. It should be noted that a similar dissection of
stress has been made previously by others; notably by Nicot
et al. for the case of spheres and disks (Nicot et al., 2013) as well
as Moreau (2010). As was demonstrated by Nicot et al., the
dynamic terms are significant and necessary for symmetry; how-
ever neither Nicot et al. nor Moreau further distinguished between
the two dynamic components in terms of their physical relevance
in the granular continuum. We will now draw this distinction.

The first three components characterise the effects of external
actions applied to the particles (i.e. contact forces, unbalanced
moments, and body forces). These actions directly influence the
motion of particles and those that surround them. The last is dis-
tinctly different in this sense. It provides a tensile stress in response
to internal (centripetal) actions within the particle; it has no direct
relationship with external actions, nor does it have any effect on the
overall state of the system. To illustrate this point, consider the case
of a number of non-contacting particles floating in space with non-
zero angular velocities (e.g. asteroids). Strict application of Eq. (18)
would lead to the conclusion that this ‘assembly’ of particles is
experiencing a non-zero hydrostatic tensile stress – a curious
interpretation indeed!

From this perspective, there is a reasonable case to be made
that the centripetal term in Eq. (18) should not be considered part
of the bulk stress in the equivalent granular continuum. It is
required for the conservation of momentum within the particle,
but is entirely unrelated to the conservation of momentum in the
assembly outside. Without this term, the three remaining compo-
nents of bulk stress directly relate to forces and moments experi-
enced by the particles rather than internal actions within them.

Note that we are not arguing that this component of stress does
not exist. On the contrary, it is possible to imagine a scenario where
this component may contribute to the breakage of particles if angu-
lar velocities are high enough. However, we are pointing out that,
short of this extreme situation, it has no impact on the behaviour
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of the assembly overall. It should also be noted that we are not
implying that centripetal effects are not present in the assembly
as a whole. Centripetal effects during bulk rotation of an assembly
of grains would have a direct impact on the bulk stress via the con-
tact forces necessary for that motion to occur. We are arguing for
the omission of centripetal effects within particles, not centripetal
effects as experienced by the material in bulk form (as described
by the conservation of momentum for the continuum).

4. Symmetry of stress in a dynamic setting

With the origin placed at the centre of mass, the stress from the
body forces is zero. Neglecting the centripetal term, the two
remaining components of stress are the Love–Webber equation
describing the effect of the contact forces and the inertial compo-
nent describing the effect of the unbalanced moment. As has been
discussed at length in the literature (e.g. Bardet and Vardoulakis,
2001; Bagi, 2003; Kuhn, 2003; Bardet and Vardoulakis, 2003a,b;
Froiio et al., 2006; de Saxcé et al., 2004; Fortin et al., 2003), any
appropriate expression for bulk stress should provide a symmetric
tensor. Together with Eq. (19), we can observe this directly by
calculating the asymmetric part of our remaining two terms;3

hrP
½ij�i ¼

1
2VP eijkMk þ

X
c

f c
i rc

j � f c
j rc

i

� � !
¼ 0 ð20Þ

We can extend this observation by noting that in some circum-
stances the remaining inertial component is entirely skew-
symmetric. If we consider particles whose geometry has cubic
symmetry4 (e.g. spheres, cubes, octohedra, and many other irregular
polyhedra etc.) we can write l11 ¼ l22 ¼ l33, and the resulting
expression for granular stress becomes;

hrP
iji ¼

1
VP

X
c

f c
i rc

j þ
1

2VP eijkMk ð21Þ

Given that the inertial term in Eq. (21) is skew-symmetric, it
takes no part in forming the symmetric part of this expression.
From this we can draw the conclusion that the resulting mean
stress tensor can be calculated precisely as the symmetric portion
of the Love–Webber equation. In particular, this result implies that
the symmetric part of the Love–Webber equation is all that is
required for the calculation of granular stress in the vast majority
of Discrete Element Models where spherical particles are still com-
monplace. No special accounting for dynamics (other than the
removal of asymmetry) is necessary in these systems. Strictly
speaking, if cubic symmetry is not present (e.g. DEM using
oblate/prolate spheroids or general polyhedra), the stress tensor
should include an additional component as defined by the (non-
zero) symmetric portion of the first term in Eq. (18). The magni-
tude of which is governed by the magnitude of unbalanced
moments acting on the particle and level of departure from cubic
symmetry.

It is also worth mentioning that this result has been demon-
strated in the absence of contact moments such as rolling friction
which have become a general feature of many DEM simulations
(e.g. Ai et al., 2011; Wensrich and Katterfeld, 2012; Wensrich
et al., 2013). Without careful scrutiny, contact moments can appear
to introduce additional asymmetry into the Love–Webber
equation, however, as mentioned earlier, this asymmetry has been
recently demonstrated to be artifactual through the concept of
contact eccentricity (Wensrich, 2014). With this work in mind,
3 Note that the centripetal term is clearly symmetric; its removal has no impact on
the symmetry of the resulting expression.

4 Cubic symmetry is marked by 90� rotational symmetry/invariance in any
direction.
the conclusions we have drawn here should be thought to apply
to all spherical systems even in the presence of contact moments.
This is provided that any contact moments are represented by
contact eccentricities as was outlined in this prior work.
5. Conclusions

Following from the usual definition of bulk stress as a volume
average over a representative volume, the mean stress tensor
within a granular assembly has been derived from the point of
view of classical continuum theory. Assuming the particle is rigid,
homogenous and subject to point contact forces, we have demon-
strated that the mean stress tensor can be separated into two dis-
tinct components; the familiar Love–Webber formula and an
inertial component due to particle dynamics. By considering the
mechanics of the particles as separate rigid bodies, the dynamic
component of stress has been further separated into two parts; a
component expressed in terms of the net moment arising from
contact and a symmetric term arising from the centripetal acceler-
ation of material within the particle. A reasonable case has been
made that the latter of these components represents internal
actions within the individual particles and should be omitted from
the definition of ‘bulk stress’ within a granular assembly.

At a fundamental level, the conservation of angular momentum
implies that any reasonable definition of stress should provide a
symmetric tensor. We have explicitly shown that this is guaran-
teed here, even in the case of a dynamic system. Together with
prior work demonstrating the existence of symmetry even in the
presence of contact moments, the case for the existence of ‘couple
stresses’ in granular materials is becoming more difficult.

It was further noted that if the particles within an assembly
possess cubic symmetry (common in many DEM simulations) the
component of stress arising from the net moments applied to the
particle is entirely skew-symmetric. The conclusion we draw from
this is that the stress tensor calculated by considering the detailed
dynamics of the assembly is identical to the symmetric component
of the Love–Webber equation. It should be noted that, without spe-
cific justification, it is quite common for stress to be calculated as
the symmetric part of the Love–Webber equation, as is done in
many numerical studies. From this point of view, the present work
could be viewed as explicit support for existing approaches; how-
ever this support only extends to particles with cubic symmetry.
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