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Abstract

We explicitly compute the adjoint L-function of those L-packets of representations of the group GSp(4)

over a p-adic field of characteristic zero that contain non-supercuspidal representations. As an application
we verify a conjecture of Gross and Prasad and Rallis in this case. The conjecture states that the adjoint
L-function is holomorphic at s = 1 if and only if the L-packet contains a generic representation.
© 2007 Elsevier Inc. All rights reserved.

1. Introduction

Let F be a non-archimedean local field of characteristic zero and let W ′
F be the Weil–Deligne

group of F . The conjectural local Langlands correspondence for the group GSp(4,F ) assigns to
each irreducible admissible representation Π of GSp(4,F ) an L-parameter, i.e., an equivalence
class of admissible representations

ϕΠ :W ′
F −→ GSp(4,C).

It was shown in [RS, Section 2.4] that there is a unique way to assign L-parameters to the
non-supercuspidal irreducible, admissible representations of GSp(4,F ) such that certain desired
properties of the local Langlands correspondence hold. In this sense the local Langlands corre-
spondence is known for the non-supercuspidal representations of GSp(4,F ); see Table 1 for a
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complete list of these representations. In a few cases the L-packet of a non-supercuspidal repre-
sentation is expected to also contain a supercuspidal representation.

The degree 4 and degree 5 L-factors resulting from the non-supercuspidal local Langlands
correspondence have been computed and tabulated in [RS, Tables A.8 and A.10]. In this article
we treat the next smallest irreducible representation of the dual group, namely the 10-dimensional
adjoint representation Ad of GSp(4,C) on the complex Lie algebra sp(4). Thus, given a non-
supercuspidal, irreducible, admissible representation Π of GSp(4,F ) with L-parameter ϕΠ , we
compute

L(s,Π,Ad) := L(s,Ad ◦ ϕΠ).

This is an easy calculation in most cases, but requires some arguments in a few. The results are
tabulated in Table 2 below.

Having explicit formulas for all the adjoint L-functions, we immediately obtain the following
case of a general conjecture of Gross and Prasad [GP, Conjecture 2.6] and Rallis [K, Proposi-
tion 5.2.2] as a corollary; see Theorem 4 below.1

Let Π be a non-supercuspidal irreducible admissible representation of GSp(4,F ). Then the
L-packet of Π contains a generic representation if and only if L(s,Π,Ad) is holomorphic at
s = 1.

The analogous statement for GL(n,F ) “has been observed by many people,” [K]. For a proof
see [JS2, Proposition 7.1].

We note that there is some overlap between Theorem 4 and a result of Jiang and Soudry.
In [JS1] and [JS2] they attach to each admissible L-parameter an irreducible, admissible rep-
resentation of SO(2n + 1,F ) and prove that this representation is generic if and only if its
associated adjoint L-function is holomorphic at s = 1 [JS2, Theorem 7.1]. In the special case
n = 2, since SO(5,F ) ∼= PGSp(4,F ), the representation of SO(5,F ) corresponds to a repre-
sentation of GSp(4,F ) with trivial central character. However, it is not immediately clear that
this version of the local Langlands correspondence coincides with ours. To mention one differ-
ence, the Jiang–Soudry correspondence misses those representations of GSp(4,F ) whose central
character is not a square, since such representations are not a twist of a representation with trivial
central character. Also, the Jiang–Soudry correspondence does not assign an L-parameter to the
non-generic representations of type VIb and XIb (see Table 1), both of which share an L-packet
with a generic representation.

2. Notation and definitions

2.1. Group-theoretic definitions

We realize the algebraic Q-group GSp(4) as

GSp(4) = {
g ∈ GL(4): tgJg = λ(g)J for some λ(g) ∈ GL(1)

}
,

1 The same statement is made in a preprint of W. Gan and S. Takeda [GT] which became available after the completion
of this work. It is very likely that their L-parameters coincide with ours.
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where

J =
⎡⎢⎣

1
1

−1
−1

⎤⎥⎦ .

The kernel of the multiplier homomorphism g �→ λ(g) is by definition the symplectic group
Sp(4). The Lie algebra of Sp(4) is 10-dimensional and is given by

sp(4) = {
X ∈ gl(4): tXJ + JX = 0

}
.

Over the complex numbers, the Lie algebra of GSp(4) is a direct sum

gsp(4) = sp(4) ⊕ z, z = C

⎡⎢⎣
1

1
1

1

⎤⎥⎦ .

The adjoint representation of GSp(4,C) on gsp(4) preserves both summands and, as representa-
tions of GSp(4,C), we have

Adgsp = Adsp ⊕ 1. (1)

We use Ad for Adsp in this article.
The character lattice of Sp(4) is spanned by

e1 :

⎡⎢⎣
a

b

b−1

a−1

⎤⎥⎦ �−→ a and e2 :

⎡⎢⎣
a

b

b−1

a−1

⎤⎥⎦ �−→ b. (2)

We shall use the following generators for the root spaces in sp(4):

Le1−e2 =
⎡⎢⎣

0 1
0

0 −1
0

⎤⎥⎦ , L−e1+e2 =
⎡⎢⎣

0
1 0

0
−1 0

⎤⎥⎦ , (3)

Le1+e2 =
⎡⎢⎣

0 1
0 1

0
0

⎤⎥⎦ , L−e1−e2 =
⎡⎢⎣

0
0

1 0
1 0

⎤⎥⎦ , (4)

L2e1 =
⎡⎢⎣

0 1
0

0

⎤⎥⎦ , L−2e1 =
⎡⎢⎣

0
0

0

⎤⎥⎦ , (5)
0 1 0
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L2e2 =
⎡⎢⎣

0
0 1

0
0

⎤⎥⎦ , L−2e2 =
⎡⎢⎣

0
0
1 0

0

⎤⎥⎦ . (6)

The root system of Sp(4) is of type C2,

�

�

��

�

�

�
�
��

�
�

��

	
	

	


	
	
	�

2e1−2e1

2e2

−2e2

e1+e2

−e1−e2 e1−e2

−e1+e2

The conjugacy classes of proper parabolic subgroups of GSp(4) are represented by the min-
imal parabolic subgroup B , the Siegel parabolic subgroup P , and the Klingen parabolic sub-
group Q, consisting of matrices in GSp(4) of the following form, respectively:

B =
⎡⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗

⎤⎥⎦ , P =
⎡⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

⎤⎥⎦ , Q =
⎡⎢⎣

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗

⎤⎥⎦ .

Setting

A′ =
[

1

1

]
tA−1

[
1

1

]
for A ∈ GL(2), (7)

a typical element of P can be written as
[

A ∗
cA′

]
with c ∈ GL(1) and A ∈ GL(2).

2.2. p-Adic definitions

Let F be a non-archimedean local field of characteristic zero. Let o be its ring of integers
and p the maximal ideal of o. We fix a generator � of p once and for all. A character χ of
F× is a continuous homomorphism F× → C×. It is unramified if χ(o×) = {1}. A distinguished
unramified character is ν, the normalized absolute value of F . It has the property that ν(�) =
q−1, where q is the number of elements of the residue class field o/p.

We shall use the notation of [ST] for representations of GSp(4,F ) parabolically induced from
one of the parabolic subgroups B , P or Q. If χ1, χ2 and σ are characters of F×, then χ1 ×χ2 �σ
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denotes the representation of GSp(4,F ) obtained via (normalized) parabolic induction from the
character ⎡⎢⎣

a ∗ ∗ ∗
b ∗ ∗

cb−1 ∗
ca−1

⎤⎥⎦ �−→ χ1(a)χ2(b)σ (c)

of B(F). If σ is a character of F× and π is an admissible representation of GL(2,F ), we denote
by π � σ the representation of GSp(4,F ) induced from the representation[

A ∗
cA′

]
�−→ σ(c)π(A)

of P(F). If χ is a character of F× and π is an admissible representation of GSp(2,F ) =
GL(2,F ), then χ � π denotes the representation of GSp(4,F ) parabolically induced from the
representation [

x ∗ ∗
A ∗

det(A)x−1

]
�−→ χ(x)π(A)

of Q(F).
If Π is an admissible representation of GSp(4,F ) and τ is a character of F×, then the twist

of Π by τ , denoted τΠ , is the representation g �→ τ(λ(g))Π(g), where λ is the multiplier
homomorphism. The effect of twisting on parabolically induced representations is as follows:

τ(χ1 × χ2 � σ) = χ1 × χ2 � τσ, τ (π � σ) = π � τσ, τ (χ � π) = χ � τπ.

The non-supercuspidal, irreducible, admissible representations of GSp(4,F ) have been classified
by Sally and Tadić in [ST]. They determined the irreducible subquotients of each representation
parabolically induced from an irreducible representation of B , P or Q. In [RS] this information
was reorganized in the form of a table, which we reproduce here as Table 1. The representations
are organized in cases I–XI. Cases I–VI contain representations supported in B , cases VII–IX
contain those supported in Q, and cases X and XI contain representations supported in P . For
example, case I contains the irreducible, admissible representations of the form χ1 ×χ2 �σ . We
refer to [RS, Section 2.2] for a precise description of the various cases.

2.3. Weil group representations

We recall some basic facts about the Weil group WF and the Weil–Deligne group W ′
F of F ,

referring to [Roh] and [T] for details. Recall from local Class Field Theory that the abelianized
Weil group W ab

F and F× are isomorphic, which implies that the characters of WF and those of
F× can be identified. We will use the same symbol for a character of F× and the corresponding
character of WF . Representations of the Weil–Deligne group W ′

F are given by pairs (ρ,N),
where ρ is a continuous homomorphism WF → GL(n,C) and N is a nilpotent complex n × n

matrix for which

ρ(w)Nρ(w)−1 = ν(w)N for all w ∈ WF .
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Table 1
Non-supercuspidal representations of GSp(4,F )

Constituent of Representation Centr. char. Generic

I χ1 × χ2 � σ (irreducible) χ1χ2σ 2 •
a ν1/2χ × ν−1/2χ � σ χStGL(2) � σ •II
b (χ2 
= ν±1, χ 
= ν±3/2) χ1GL(2) � σ

χ2σ 2

a χ × ν � ν−1/2σ χ � σStGSp(2) •III
b (χ /∈ {1, ν±2}) χ � σ1GSp(2)

χσ 2

a σStGSp(4) •
b L(ν2, ν−1σStGSp(2))IV
c

ν2 × ν � ν−3/2σ

L(ν3/2StGL(2), ν
−3/2σ)

σ 2

d σ1GSp(4)

a δ([ξ, νξ ], ν−1/2σ) •
b νξ × ξ � ν−1/2σ L(ν1/2ξStGL(2), ν

−1/2σ)V
c (ξ2 = 1, ξ 
= 1) L(ν1/2ξStGL(2), ξν−1/2σ)

σ 2

d L(νξ, ξ � ν−1/2σ)

a τ(S, ν−1/2σ) •
b τ(T , ν−1/2σ)VI
c

ν × 1F× � ν−1/2σ

L(ν1/2StGL(2), ν
−1/2σ)

σ 2

d L(ν,1F× � ν−1/2σ)

VII χ � π (irreducible) χωπ •
a τ(S,π) •VIII
b

1F× � π

τ(T ,π)

ωπ

a νξ � ν−1/2π δ(νξ, ν−1/2π) •IX
b (ξ 
= 1, ξπ = π) L(νξ, ν−1/2π)

ωπ ξ

X π � σ (irreducible) ωπσ 2 •
a ν1/2π � ν−1/2σ δ(ν1/2π,ν−1/2σ) •XI
b (ωπ = 1) L(ν1/2π,ν−1/2σ)

σ 2

If ρ is a semisimple representation, then (ρ,N) is called admissible. One attaches an L-factor
L(s,ϕ) to the pair ϕ = (ρ,N) as follows. Let Φ ∈ WF be an inverse Frobenius element and let
I = Gal(F̄ /F un) ⊂ WF be the inertia subgroup. Let VN = ker(N), V I = {v ∈ V : ρ(g)v = v for
all g ∈ I } and V I

N = V I ∩ VN . Then

L(s,ϕ) = det
(
1 − q−sρ(Φ)

∣∣V I
N

)−1
. (8)

If ϕ is a one-dimensional representation identified with a character χ of F×, then

L(s,ϕ) = L(s,χ) =
{

1 if χ is ramified,

(1 − χ(�)q−s)−1 if χ is unramified.

An L-parameter for GSp(4,F ) is essentially an equivalence class of admissible homomorphisms
W ′ → GSp(4,C); for the precise definition see [RS, Section 2.4]. The conjectural local Lang-
F
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lands correspondence assigns to each irreducible, admissible representation Π of GSp(4,F ) an
L-parameter ϕΠ . It was shown in [RS, Section 2.4] that, for the non-supercuspidal representa-
tions of GSp(4,F ), there is a unique way to make this assignment in such a way as to satisfy
certain desirable properties of the local Langlands correspondence. In what follows we shall
always refer to these unique parameters ϕΠ when we talk about the local Langlands correspon-
dence for the non-supercuspidal representations of GSp(4,F ). Their explicit forms are given in
[RS, Section 2.4] and will be recalled below.

3. Computations of adjoint L-functions

We now go through the list of non-supercuspidal, irreducible, admissible representations of
GSp(4,F ) and compute the adjoint L-functions of the L-parameters of these representations.

3.1. Cases supported in the minimal parabolic subgroup

Case I: These are irreducible representations of the form χ1 ×χ2 �σ , where χ1, χ2 and σ are
characters of F×. The condition for irreducibility is that χ1 
= ν±1, χ2 
= ν±1 and χ1 
= ν±1χ±1

2 .
The L-parameter of such a representation is given by the pair (ρ,N), where N = 0 and

ρ(w) =
⎡⎢⎣

(χ1χ2σ)(w)

(χ1σ)(w)

(χ2σ)(w)

σ(w)

⎤⎥⎦ .

The one-dimensional spaces spanned by the vectors in (3) through (6) are preserved by the action
of WF on the 10-dimensional space sp(4) given by Adsp(4) ◦ ρ. More precisely, WF acts on Lα

by multiplication with α(ρ(w)), for each root α. Furthermore, WF acts trivially on the diagonal
torus of sp(4). Thus

L(s,χ1 × χ2 � σ,Ad) = L(s,1F×)2L(s,χ1)L
(
s,χ−1

1

)
L(s,χ2)L

(
s,χ−1

2

)
· L(s,χ1χ2)L

(
s,χ−1

1 χ−1
2

)
L

(
s,χ1χ

−1
2

)
L

(
s,χ−1

1 χ2
)
. (9)

Case II: Let χ and σ be characters of F× such that χ2 
= ν±1 and χ 
= ν±3/2. The induced
representation ν1/2χ × ν−1/2χ � σ has the two irreducible constituents χStGL(2) � σ (type IIa)
and χ1GL(2) � σ (type IIb). The L-parameter attached to χ1GL(2) � σ is (ρ,N) with N = 0 and

ρ(w) =
⎡⎢⎣

(χ2σ)(w)

(ν1/2χσ)(w)

(ν−1/2χσ)(w)

σ(w)

⎤⎥⎦ .

Arguing similarly as in case I above, we obtain

L(s,χ1GL(2) � σ,Ad) = L(s,1F×)2L
(
s,χ2)L(

s,χ−2)L(s, ν)L
(
s, ν−1)

· L(
s,χν−1/2)L(

s,χ−1ν1/2)L(
s,χν1/2)L(

s,χ−1ν−1/2). (10)
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The L-parameter of the IIa type representation χStGL(2) � σ has the same semisimple part ρ,
but N = N1, where

N1 =
⎡⎢⎣

0
0 1

0
0

⎤⎥⎦ . (11)

Composing with the adjoint representation, the 10-dimensional representation of W ′
F whose

L-factor we have to compute is (Adsp(4) ◦ ρ, ad(N1)). To determine the L-factor we have to
consider the restriction of Adsp(4) ◦ ρ to the kernel of ad(N1); see (8). It is easy to see that

ker
(
ad(N1)

) =
〈⎡⎢⎣

1
0

0
−1

⎤⎥⎦ ,L2e1 ,Le1+e2 ,L2e2,L−e1+e2,L−2e1

〉
. (12)

The restriction of Adsp(4) ◦ ρ to this 6-dimensional space decomposes in an obvious way into
1-dimensional invariant subspaces, so that the resulting L-factor is

L(s,χStGL(2) � σ,Ad) = L(s,1F×)L
(
s,χ2)L(

s,χ−2)
· L(s, ν)L

(
s,χ−1ν1/2)L(

s,χν1/2). (13)

Case III: If χ and σ are characters of F× such that χ 
= 1 and χ 
= ν±2, then the induced
representation χ × ν � ν−1/2σ has two irreducible constituents χ � σStGSp(2) (type IIIa) and
χ � σ1GSp(2) (type IIIb). The L-parameter of χ � σ1GSp(2) is (ρ,N) with N = 0 and

ρ(w) =
⎡⎢⎣

(ν1/2χσ)(w)

(ν−1/2χσ)(w)

(ν1/2σ)(w)

(ν−1/2σ)(w)

⎤⎥⎦ .

Arguing as above, we find that

L(s,χ � σ1GSp(2),Ad) = L(s,1F×)2L(s,χ)L
(
s,χ−1)L(s, ν)L

(
s, ν−1)

· L(s,χν)L
(
s,χν−1)L(

s,χ−1ν
)
L

(
s,χ−1ν−1). (14)

The L-parameter of χ � σStGSp(2) is (ρ,N4) with the same ρ and

N4 =
⎡⎢⎣

0 1
0

0 −1

⎤⎥⎦ . (15)
0
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Composing with the adjoint representation, we obtain the representation of W ′
F given by

(Adsp(4) ◦ ρ, ad(N4)). It is easily computed that

ker
(
ad(N4)

) =
〈⎡⎢⎣

1
1

−1
−1

⎤⎥⎦ ,L−2e2,Le1−e2,L2e1

〉
. (16)

Using the definition (8) it follows that

L(s,χStGL(2) � σ,Ad) = L(s,1F×)L(s, ν)L(s, νχ)L
(
s, νχ−1). (17)

Case IV: Representations of type IV are the subquotients of ν2 × ν � ν−3/2σ , where σ is a
character of F×. The Langlands quotient is σ1GSp(4), a twist of the trivial representation (type
IVd). Its L-parameter is given by (ρ,N) with N = 0 and

ρ(w) =
⎡⎢⎣

(ν3/2σ)(w)

(ν1/2σ)(w)

(ν−1/2σ)(w)

(ν−3/2σ)(w)

⎤⎥⎦ .

Arguing as before, we obtain

L(s,σ1GSp(4),Ad) = L(s,1F×)2L(s, ν)2L
(
s, ν−1)2

L
(
s, ν2)L(

s, ν−2)
· L(

s, ν3)L(
s, ν−3). (18)

The L-parameter of the IVc type representation L(ν3/2StGL(2), ν
−3/2σ) is (ρ,N1) with N1 as

in (11). It follows from (12) that

L
(
s,L

(
ν3/2StGL(2), ν

−3/2σ
)
,Ad

) = L(s,1F×)L(s, ν)L
(
s, ν−1)L(

s, ν2)
· L(

s, ν3)L(
s, ν−3). (19)

The L-parameter of the IVb type representation L(ν2, ν−1σStGSp(2)) is (ρ,N4) with N4 as
in (15). It follows from (16) that

L
(
s,L

(
ν2, ν−1σStGSp(2)

)
,Ad

) = L(s,1F×)L(s, ν)L
(
s, ν−1)L(

s, ν3). (20)

The L-parameter of the IVa type representation σStGSp(4) is (ρ,N5) with

N5 =
⎡⎢⎣

0 1
0 1

0 −1
0

⎤⎥⎦ . (21)

Easy computations show that

ker
(
ad(N5)

) = 〈L2e ,L2e + Le −e 〉. (22)
1 2 1 2
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Thus

L(s,σStGSp(4),Ad) = L(s, ν)L
(
s, ν3). (23)

Case V: These are the irreducible subquotients of an induced representation of the form νξ ×
ξ � ν−1/2σ , where ξ is a non-trivial quadratic character of F× and σ is an arbitrary character
of F×. One of these subquotients is L(νξ, ξ �ν−1/2σ) (type IVd), and its L-parameter is (ρ,N)

with N = 0 and ρ given by

ρ(w) =
⎡⎢⎣

(ν1/2σ)(w)

(ν1/2ξσ )(w)

(ν−1/2ξσ )(w)

(ν−1/2σ)(w)

⎤⎥⎦ .

As in the other cases with N = 0 one computes

L
(
s,L

(
νξ, ξ � ν−1/2σ

)
,Ad

) = L(s,1F×)2L(s, ν)2L
(
s, ν−1)2

· L(s, ξ)2L(s, νξ)L
(
s, ν−1ξ

)
. (24)

The L-parameter attached to the Vc type representation L(ν1/2ξStGL(2), ξν−1/2σ) is (ρ,N2)

with the same ρ and

N2 =
⎡⎢⎣

0 1
0

0
0

⎤⎥⎦ . (25)

Computations show that

ker
(
ad(N2)

) =
〈⎡⎢⎣

0
1

−1
0

⎤⎥⎦ ,L2e1 ,Le1+e2,L2e2 ,L−2e2,Le1−e2

〉
. (26)

Hence

L
(
s,L

(
ν1/2ξStGL(2), ξν−1/2σ

)
,Ad

) = L(s,1F×)L(s, ν)2L
(
s, ν−1)

· L(s, ξ)L(s, νξ). (27)

The representation L(ν1/2ξStGL(2), ν
−1/2σ) of type Vb is a ξ -twist of Vc. Since adjoint L-

functions are invariant under twists, its adjoint L-function is the same as in (27). The essentially
square-integrable Va type representation δ([ξ, νξ ], ν−1/2σ) has L-parameter (ρ,N3) with ρ as
before and

N3 =
⎡⎢⎣

0 1
0 1

0

⎤⎥⎦ . (28)
0
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It is easy to compute that

ker
(
ad(N3)

) = 〈L2e1 ,Le1+e2 ,L2e2,Le1−e2 − L−e1+e2〉. (29)

It follows that

L
(
s, δ

([ξ, νξ ], ν−1/2σ
)
,Ad

) = L(s, ν)2L(s, ξ)L(s, νξ). (30)

Case VI: These are the irreducible subquotients of an induced representation of the form
ν × 1F× � ν−1/2σ , where σ is a character of F×. One of these irreducible subquotients is the
VId type representation L(ν,1F× � ν−1/2σ). Its L-parameter is (ρ,N) with N = 0 and

ρ(w) =
⎡⎢⎣

(ν1/2σ)(w)

(ν1/2σ)(w)

(ν−1/2σ)(w)

(ν−1/2σ)(w)

⎤⎥⎦ .

The resulting adjoint L-function is

L
(
s,L

(
ν,1F× � ν−1/2σ

)
,Ad

) = L(s,1F×)4L(s, ν)3L
(
s, ν−1)3

. (31)

The L-parameter of the VIc type representation L(ν1/2StGL(2), ν
−1/2σ) is (ρ,N1) with N1 as

in (11). By (12),

L
(
s,L

(
ν1/2StGL(2), ν

−1/2σ
)
,Ad

) = L(s,1F×)2L(s, ν)3L
(
s, ν−1). (32)

The remaining irreducible subquotients are the generic τ(S, ν−1/2σ) and the non-generic
τ(T , ν−1/2σ). Both of these are tempered representations and they constitute an L-packet. Their
common L-parameter is (ρ,N3) with ρ as above and N3 as in (28). By (29),

L
(
s, τ

(
S/T , ν−1/2σ

)
,Ad

) = L(s,1F×)L(s, ν)3. (33)

3.2. Cases supported in the Klingen parabolic subgroup

Case VII: These representations are the irreducible representations of the form χ �π , where χ

is a character of F× and π is a supercuspidal irreducible admissible representation of GL(2,F ).
If μ :WF → GL(2,C) is the L-parameter of π , then χ � π has L-parameter (ρ,N) with N = 0
and

ρ(w) =
[

χ(w)det(μ(w))μ(w)′
μ(w)

]
∈ GSp(4,C). (34)

To compute the adjoint L-function of this parameter, we identify the Siegel Levi MP in
GSp(4,C) = ĜSp(4,F ) with GL(2,C) × GL(1,C) via

(A,x) �−→
[

xA′
A

] (
A ∈ GL(2,C), x ∈ GL(1,C)

)
. (35)
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We have to decompose the Lie algebra sp(4) into irreducible representations of MP . It is easy to
see that

sp(4) = C

⎡⎢⎣
1

1
−1

−1

⎤⎥⎦
︸ ︷︷ ︸

invariant

⊕CL−e1+e2 ⊕ C

⎡⎢⎣
1

−1
1

−1

⎤⎥⎦ ⊕ CLe1−e2

︸ ︷︷ ︸
invariant

⊕ CL2e2 ⊕ CLe1+e2 ⊕ CL2e1︸ ︷︷ ︸
invariant

⊕CL−2e1 ⊕ CL−e1−e2 ⊕ CL−2e2︸ ︷︷ ︸
invariant

. (36)

The representation on the 1-dimensional invariant subspace is the trivial representation. The
representation on CL2e2 ⊕ CLe1+e2 ⊕ CL2e1 is(

det−2 ⊗ Sym2)︸ ︷︷ ︸
representation of GL(2,C)

⊗ stdGL(1).

The representation on CL−e1+e2 ⊕ C

[ 1
−1

1
−1

]
⊕ CLe1−e2 is

(
det−1 ⊗ Sym2) ⊗ trivGL(1).

The representation on CL−2e1 ⊕ CL−e1−e2 ⊕ CL−2e2 is

Sym2 ⊗ std−1
GL(1).

Using Sym2 = det ⊗ AdGL(2) as representations of GL(2,C), we can rewrite these three-
dimensional representations as (

det−1 ⊗ AdGL(2)

) ⊗ stdGL(1),

AdGL(2) ⊗ trivGL(1),

(det ⊗ AdGL(2)) ⊗ std−1
GL(1).

Via the identification (35), we consider ρ as a homomorphism WF → GL(2,C) × GL(1,C). As
such we have ρ = μ × χωπ ; note that det ◦ μ = ωπ . For the resulting L-functions we have the
following lemma.

Lemma 1. For a character χ of F× and an irreducible admissible representation π of GL(2,F ),
let

L2(s,π,χ) = L(s, (χπ) × π̃)

L(s,χ)
,

as in [GJ]. Then

L
(
s,

((
det−1 ⊗ AdGL(2)

) ⊗ stdGL(1)

) ◦ (
μ × (χωπ)

)) = L2(s,π,χ)
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and

L
(
s,

((
det ⊗ AdGL(2)

) ⊗ std−1
GL(1)

) ◦ (
μ × (χωπ)

)) = L2
(
s,π,χ−1).

Here, μ :W ′
F → GL(2,C) is the L-parameter of π .

Proof. We have

stdGL(2) ⊗ stdGL(2) = det ⊗ (AdGL(2) ⊕ 1GL(2)),

and hence

L
(
s, (χπ) × π̃

) = L
(
s,

(
χω−1

π

)
π × π

)
= L

(
s,χ · (det−1 ◦ μ

)
(μ ⊗ μ)

)
= L

(
s,χ · (AdGL(2) ⊕ 1GL(2)) ◦ μ

)
= L(s,χ)L

(
s,χ · (AdGL(2) ◦ μ)

)
= L(s,χ)L

(
s, (χωπ) · ((det−1AdGL(2)

) ◦ μ
))

= L(s,χ)L
(
s,

((
det−1AdGL(2)

) ⊗ stdGL(1)

) ◦ (
μ × (χωπ)

))
. �

Remark 2. One can write the L-function L2 in the standard notation of Langlands L-functions
as

L2(s,π,χ) = L
(
s,π,Sym2 ⊗ (

ω−1
π χ

)) = L(s,π,AdGL(2) ⊗ χ),

where ωπ denotes the central character of π and we use the same symbol for both characters
of F× and the corresponding characters of WF as in 2.3. This means that L2 is a twisted sym-
metric square, or equivalently, a twisted adjoint L-function of GL(2). (The adjoint L-function is
sometimes also referred to as the adjoint square L-function.) We will use the latter notation in
our final formulas below.

It follows that

L(s,χ � π,Ad) = L(s,1F×)L(s,π,AdGL(2))

· L(s,π,AdGL(2) ⊗ χ)L
(
s,π,AdGL(2) ⊗ χ−1). (37)

Case VIII: If π is a supercuspidal irreducible admissible representation of GL(2,F ), then the
induced representation 1F× � π is a direct sum of two irreducible constituents τ(S,π) (type
VIIIa) and τ(T ,π) (type VIIIb). Both irreducible constituents are tempered, but only VIIIa is
generic. These two representations constitute an L-packet. Their common L-parameter is (ρ,N)

with N = 0 and

ρ(w) =
[

det(μ(w))μ(w)′
μ(w)

]
∈ GSp(4,C).
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Here, μ :WF → GL(2,C) is the parameter of π . The calculation of the adjoint L-function of this
parameter is exactly as in case VII. The result is

L(s,1F× � π,Ad) = L(s,1F×)L(s,π,AdGL(2))
3. (38)

Case IX: These are the irreducible constituents of induced representations of the form
νξ � ν−1/2π , where ξ is a non-trivial quadratic character of F×, and where π is a super-
cuspidal representation of GL(2,F ) for which ξπ = π . The generic constituent is denoted by
δ(νξ, ν−1/2π) (type IXa), and the non-generic constituent is denoted by L(νξ, ν−1/2π) (type
IXb). The L-parameter of L(νξ, ν−1/2π) is (ρ,N), where N = 0 and

ρ(w) =
[

ξ(w)ν1/2(w)det(μ(w))μ′(w)

ν−1/2(w)μ(w)

]
. (39)

Here, μ :WF → GL(2,C) is the L-parameter of π . The computation of the adjoint L-function
of this representation is very similar to type VII above. The result is

L
(
s,L

(
νξ, ν−1/2π

)
,Ad

) = L(s,1F×)L
(
s, ν−1/2π,AdGL(2)

)
· L2

(
s, ν−1/2π, ξν

)
L2

(
s, ν−1/2π, ξν−1)

= L(s,1F×)L(s,π,AdGL(2))

· L(s,π,AdGL(2) ⊗ ξν)L
(
s,π,AdGL(2) ⊗ ξν−1). (40)

The L-parameter of δ(νξ, ν−1/2π) is (ρ,N), where ρ is as above and N is defined as follows.
By [RS, Lemma 2.4.1] there exists a symmetric invertible matrix S ∈ GL(2,C) such that

tμ(w)Sμ(w) = ξ(w)det
(
μ(w)

)
S for all w ∈ WF . (41)

Then N = [ 0 B
0 0

]
with B = [ 0 1

1 0

]
S. We have to consider the action of WF on ker(ad(N)) via

Ad ◦ ρ. It is clear that ker(ad(N)) contains the subspace CL2e2 ⊕ CLe1+e2 ⊕ CL2e1 appearing
in (36). The operator ad(N) induces a linear map

sp(4) ⊃
[∗ 0

0 ∗
]

−→
[

0 ∗
0 0

]
⊂ sp(4). (42)

The domain of this linear map is 4-dimensional, and the target space is 3-dimensional. It is easy
to see that, since S is invertible, this linear map is surjective. It follows that there exists a non-zero
matrix A0 ∈ M(2 × 2,C), unique up to scalars, for which

A0B = −B

[
0 1
1 0

]
tA0

[
0 1
1 0

]
. (43)

In fact, a calculation verifies that

A0 =
[

1
1

]
S

[−1
1

]
(44)
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is such a matrix. Furthermore, we get dim(ker(ad(N))) � 4 and dim(im(ad(N))) � 3. In fact,
we claim that

dim
(
ker

(
ad(N)

)) = 4 and dim
(
im

(
ad(N)

)) = 6.

By what we already proved, it is enough to show that dim(im(ad(N))) � 6. It is easy to see that
ad(N) induces an injective linear map

sp(4) ⊃
[

0 0
∗ 0

]
−→

[∗ 0
0 ∗

]
⊂ sp(4). (45)

It follows that the intersection of im(ad(N)) with the Siegel Levi is at least 3-dimensional.
Since im(ad(N)) also contains the image of the map (42), it follows that we have indeed
dim(im(ad(N))) � 6. This proves our claim. We showed that

ker
(
ad(N)

) =
〈
L2e1,Le1+e2 ,L2e2,

[
A0

A′
0

]〉
, A′

0 = −
[

0 1
1 0

]
tA0

[
0 1
1 0

]
.

The action of WF preserves the Siegel Levi of sp(4), and therefore the one-dimensional space

spanned by
[ A0

A′
0

]
. Hence,

ρ(w)

[
A0

A′
0

]
ρ(w)−1 = η(w)

[
A0

A′
0

]
for a character η of WF . In fact, using (41), it is easy to see that η = ξ . This one-dimensional
subspace therefore contributes a factor L(s, ξ) to the L-function. The L-factor resulting from the
action of WF on CL2e2 ⊕CLe1+e2 ⊕CL2e1 has been computed before; see Lemma 1. We finally
get

L
(
s, δ

(
νξ, ν−1/2π

)
,Ad

) = L(s, ξ)L2
(
s, ν−1/2π, ξν

)
= L(s, ξ)L(s,π,AdGL(2) ⊗ ξν). (46)

3.3. Cases supported in the Siegel parabolic subgroup

Case X: This case consists of the irreducible admissible representations of GSp(4,F ) of the
form π � σ , where π is a supercuspidal, irreducible representation of GL(2,F ) and σ is a
character of F×. The condition for irreducibility is that the central character ωπ of π is not equal
to ν±1. If μ :WF → GL(2,C) is the L-parameter of π , then the L-parameter of π � σ is (ρ,N)

with N = 0 and

ρ(w) =
[

σ(w)det(μ(w))

σ (w)μ(w)

σ(w)

]
. (47)

In particular, the image of ρ is contained in MQ, the standard Levi subgroup of the Klingen
parabolic. It is easy to see that the restriction of the adjoint representation of GSp(4,C) to MQ

decomposes into the following invariant subspaces:



M. Asgari, R. Schmidt / Journal of Number Theory 128 (2008) 2340–2358 2355
sp(4) = C

⎡⎢⎣
1

0
0

−1

⎤⎥⎦
︸ ︷︷ ︸

invariant

⊕CL2e2 ⊕ C

⎡⎢⎣
0

1
−1

0

⎤⎥⎦ ⊕ CL−2e2

︸ ︷︷ ︸
invariant

⊕ CLe1+e2 ⊕ CLe1−e2︸ ︷︷ ︸
invariant

⊕CL−e1+e2 ⊕ CL−e1−e2︸ ︷︷ ︸
invariant

⊕ CL2e1︸ ︷︷ ︸
invariant

⊕CL−2e1︸ ︷︷ ︸
invariant

. (48)

The action of WF via Ad ◦ ρ on the first invariant subspace is trivial. The action on the second
invariant subspace is Adsl(2) ◦ μ. The action on the third invariant subspace is stdGL(2) ◦ μ. The
action on the fourth invariant subspace is the twist of the previous one by det ◦ μ−1. And the
action on the last two invariant subspaces is via det ◦ μ and its inverse, respectively. Hence we
get

L(s,π � σ,Ad) = L(s,1F×)L(s,π,AdGL(2))L(s,π)L
(
s,ω−1

π π
)
L(s,ωπ)L

(
s,ω−1

π

)
.

Since π is supercuspidal, L(s,π) = L(s,ω−1
π π) = 1, so that

L(s,π � σ,Ad) = L(s,1F×)L(s,π,AdGL(2))L(s,ωπ)L
(
s,ω−1

π

)
. (49)

Case XI: Let π be a supercuspidal representation of GL(2,F ) with ωπ = 1 and σ a character
of F×. Then ν1/2π � ν−1/2σ decomposes into the XIa type representation δ(ν1/2π,ν−1/2σ)

and the XIb type representation L(ν1/2π,ν−1/2σ). The Langlands quotient L(ν1/2π,ν−1/2σ)

has L-parameter (ρ,N) with N = 0 and

ρ(w) =
[

σ(w)ν1/2(w)

σ (w)μ(w)

σ(w)ν−1/2(w)

]
. (50)

The computation of the adjoint L-function is the same as in case X. The result is

L
(
s,L

(
ν1/2π,ν−1/2σ

)
,Ad

) = L(s,1F×)L(s,π,AdGL(2))L(s, ν)L
(
s, ν−1). (51)

The L-parameter of the XIa type representation δ(ν1/2π,ν−1/2σ) is (ρ,N2) with the same ρ

as above and N2 as defined in (25). By (26), we have to consider the restriction of Ad ◦ ρ to the
second, third and fourth invariant subspace in (48). It follows that

L
(
s, δ

(
ν1/2π,ν−1/2σ

)
,Ad

) = L(s, ν)L(s,π,AdGL(2)). (52)

4. Generic criterion

As a corollary of our computations we prove Theorem 4 below, which is a special case of a
conjecture of Gross and Prasad and Rallis for non-supercuspidal representations of GSp(4,F ).
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Lemma 3. Let π be a supercuspidal representation of GL(2,F ). Then the L-function
L2(s,π,χ) = L(s,π,AdGL(2) ⊗ χ) in Lemma 1 has a pole at s = 1 if and only if χ = ν−1ξ

with ξ a non-trivial quadratic character for which ξπ ∼= π . In case of a pole, that pole must be
simple.

Proof. Assume that

L2(s,π,χ) = L(s, (χπ) × π̃)

L(s,χ)

has a pole at s = 1. Then L(s, (χπ) × π̃ ) has a pole at s = 1. By [GJ, Proposition (1.2)] this
implies that νχπ ∼= π . Taking central characters shows that χ = ν−1ξ with a quadratic character
ξ . Since the pole of L(s, (χπ) × π̃) is simple by [GJ, Proposition (1.2)], our hypothesis implies
that the function L(s,χ) cannot have a pole at s = 1. Hence ξ is non-trivial.

Conversely, if χ = ν−1ξ with ξ a non-trivial quadratic character for which ξπ ∼= π , then
L2(s,π,χ) has a simple pole at s = 1 by [GJ, Proposition (1.2)]. �
Theorem 4. Let ϕ be the L-parameter of a non-supercuspidal, irreducible, admissible represen-
tation of GSp(4,F ) as above. Then the L-function L(s,ϕ,Ad) is holomorphic at s = 1 if and
only if one of the L-indistinguishable representations with L-parameter ϕ listed in Table 1 is
generic.

Proof. Among the representations listed in Table 1 in each group the top one (type “a”) is
generic. We verify that their adjoint L-functions are holomorphic at s = 1 while the adjoint
L-function of all the other representations do indeed have poles at s = 1. Recall that the local
factor L(s,χ) is always non-zero and it has a pole at s = 1 if and only if χ = ν−1. We now
go through the list and determine the order of the possible pole at s = 1 using the irreducibility
conditions for each case. The results are summarized in Table 2.

In case I the irreducibility conditions χ1 
= ν±1, χ2 
= ν±1 and χ1 
= ν±1χ±1
2 imply that the

L-function (9) has no pole at s = 1.
In case IIb, the factor L(s, ν−1) in (10) contributes a simple pole at s = 1 and the conditions

χ2 
= ν±1 and χ 
= ν±3/2 imply that none of the other factors contributes a pole at s = 1. Also, it
follows from (13) that the adjoint L-function of a generic representation of type IIa has no pole
at s = 1.

The L-function in (14) for case IIIb has a double pole at s = 1 if χ = ν±1, and a simple
pole otherwise. Since χ 
= ν±2, it follows from (17) that the adjoint L-function of a generic
representation of type IIIa has no pole at s = 1.

The adjoint L-function for cases IVa–IVd are, respectively, given in (23), (20), (19), and (18).
Clearly, the first has no pole, the second and third have simple poles, and the fourth has a double
pole at s = 1.

Similarly the adjoint L-function for case Va is given in (30), for cases Vb and Vc in (27), and
for case Vd in (24). Again, the first has no pole, the second and third have a simple pole, and the
last a double pole at s = 1.

The representations in VIa and VIb are in the same L-packet. Their adjoint L-function, given
in (33), is holomorphic at s = 1. On the other hand, the adjoint L-function of VIc is given in (32)
and has a simple pole at s = 1. The adjoint L-function of VId is given in (31) with a triple pole
at s = 1.
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Table 2
The adjoint L-function L(s,Π,Ad)

L(s,Π,Ad) ords=1

L(s,1F× )2L(s,χ1)L(s,χ−1
1 )L(s,χ2)L(s,χ−1

2 )
I

·L(s,χ1χ2)L(s,χ−1
1 χ−1

2 )L(s,χ1χ−1
2 )L(s,χ−1

1 χ2)
0

a L(s,1F× )L(s,χ2)L(s,χ−2)L(s, ν)L(s,χ−1ν1/2)L(s,χν1/2) 0

II L(s,1F× )2L(s,χ2)L(s,χ−2)L(s, ν)L(s, ν−1)
b

·L(s,χν−1/2)L(s,χ−1ν1/2)L(s,χν1/2)L(s,χ−1ν−1/2)
1

a L(s,1F× )L(s, ν)L(s, νχ)L(s, νχ−1) 0

III L(s,1F× )2L(s,χ)L(s,χ−1)L(s, ν)L(s, ν−1)
b

·L(s,χν)L(s,χν−1)L(s,χ−1ν)L(s,χ−1ν−1)
1 or 2

a L(s, ν)L(s, ν3) 0

b L(s,1F× )L(s, ν)L(s, ν−1)L(s, ν3) 1
IV

c L(s,1F× )L(s, ν)L(s, ν−1)L(s, ν2)L(s, ν3)L(s, ν−3) 1

d L(s,1F× )2L(s, ν)2L(s, ν−1)2L(s, ν2)L(s, ν−2)L(s, ν3)L(s, ν−3) 2

a L(s, ν)2L(s, ξ)L(s, νξ) 0

b L(s,1F× )L(s, ν)2L(s, ν−1)L(s, ξ)L(s, νξ) 1
V

c L(s,1F× )L(s, ν)2L(s, ν−1)L(s, ξ)L(s, νξ) 1

d L(s,1F× )2L(s, ν)2L(s, ν−1)2L(s, ξ)2L(s, νξ)L(s, ν−1ξ) 2

a

b
L(s,1F× )L(s, ν)3 0

VI
c L(s,1F× )2L(s, ν)3L(s, ν−1) 1

d L(s,1F× )4L(s, ν)3L(s, ν−1)3 3

VII L(s,1F× )L(s,π,AdGL(2))L(s,π,AdGL(2) ⊗ χ)L(s,π,AdGL(2) ⊗ χ−1) 0

a
VIII

b
L(s,1F× )L(s,π,AdGL(2))

3 0

a L(s, ξ)L(s,π,AdGL(2) ⊗ ξν) 0
IX

b L(s,1F× )L(s,π,AdGL(2))L(s,π,AdGL(2) ⊗ ξν)L(s,π,AdGL(2) ⊗ ξν−1) 1

X L(s,1F× )L(s,π,AdGL(2))L(s,ωπ )L(s,ω−1
π ) 0

a L(s,π,AdGL(2))L(s, ν) 0
XI

b L(s,1F× )L(s,π,AdGL(2))L(s, ν)L(s, ν−1) 1

For case VII note that if we had χ = ν−1ξ with a non-trivial quadratic character ξ for which
ξπ ∼= π , then χ � π would reduce and would therefore not be of type VII, but of type IX.
Therefore, Lemma 3 implies that L(s,χ � π,Ad), given by (37), has no pole at s = 1 (note that
L(s,π,AdGL(2)) is holomorphic at s = 1 since π is generic).

Cases VIIIa and VIIIb constitute an L-packet with VIIIa generic. Their adjoint L-function,
given by (38), is holomorphic at s = 1 by Lemma 3.

Case IXb has the adjoint L-function given in (40). By Lemma 3 this L-function has a sim-
ple pole at s = 1, coming from the factor L(s,π,AdGL(2) ⊗ ξν−1). The adjoint L-function
of case IXa is given in (46). By Lemma 3 the factor L(s,π,AdGL(2) ⊗ ξν), and therefore
L(s, δ(νξ, ν−1/2π),Ad), has no pole at s = 1.
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The adjoint L-function for case X is given in (49). Since ωπ 
= ν±1, this function is holomor-
phic at s = 1.

Finally, the adjoint L-functions for cases XIa and XIb are given in (52) and (51), respectively.
The former is holomorphic at s = 1 while the latter has a simple pole there. �
Remark 5. Cases Va and XIa are expected to have non-generic supercuspidal representations
in their L-packets. Also, cases VIa and VIb as well as VIIIa and VIIIb constitute L-packets.
L-packets of all the other representations in Table 1 are singletons.
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