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1. INTRODUCTION 

Let < be a locally compact metric space with metric d and let E be a 
closed subset of 5 with boundary i?E and interior l?. Suppose we have a 
continuous flow 9 defined on E such that aE is invariant under 8. That 
is, 9 = (E, R, X) where R is the real numbers, 7~: E x R + E is a continuous 
map such that Z(X(X, t), s)=‘II(x, t +s) for all XE E, s, t E R, and 
n(8E x R) c dE. Denote the restriction of 9 to aE by 89. Such flows are 
widespread in applications for the modeling of the dynamical behavior of 
entities that must by their nature always remain nonnegative. For example, 
we might have 5 = R”; E = R”, , the nonnegative cone in R” and x E E 
represents n component populations whose interactions are modeled by the 
flow 9. 

In this particular context, various definitions of persistence of the system 
have been given [4,6,9-j, each of which conveys some idea that none of 
the component populations becomes “extinct”. We consider persistence in 
our more general setting because it is essentially a topological con- 
dition-that of the boundary of E in some sense acting as a repeller for the 
flow-and we shall obtain criteria for persistence. In the more elementary 
applications, these criteria may be reduced to readily testable hypotheses; 
in more complicated situations, at least some applications are possible and 
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we feel that it may be hard to arrive at a simpler or more amenable set of 
conditions than the ones that we present. 

Broadly speaking, our results show that questions of persistence may be 
addressed by appealing to suitable conditions on the boundary flow. Of 
particular interest is the case that 5 = R3 and E = R: , for it is the case that 
the dynamics in the interior of E may a priori be very complicated, whereas 
the boundary of E is topologically equivalent to R2 so that one may 
anticipate a more complete understanding of the boundary flow and 
therefore a more effective application of the persistence criteria. 

This paper is organized as follows: in Section 2, we introduce basic 
notation and terminology and give a couple of preliminary results to 
motivate some of the concepts we use. In Section 3, we present our main 
results, giving the proofs in Section 4. Section 5 provides a brief discussion 
of persistence for discrete dynamical systems. Section 6 includes some 
corollaries and applications as well as some concluding remarks. 

2. PRELIMINARIES 

For the basic definitions and results concerning a flow B = (E, R, n) 
where E is a closed subset of a locally compact metric space (5, d), we refer 
to [ 11. For any subset S of .5, we shall use S”, as, S to denote its interior, 
boundary and closure, respectively. The orbit, positive semi-orbit and 
negative semi-orbit of 9 through a point x of E will be denoted by y(x), 
y+(x), y-(x), respectively, and the omega and alpha limit sets of the orbit 
will be denoted by n +(x), /1 -(x), respectively. 

DEFINITION 2.1. The flow % is dissipatioe (see, e.g., [7]) if for each 
xczE, A’(x)## and the invariant set Q(9)=lJXEE/1+(x) has compact 
closure. 

DEFINITION 2.2. A nonempty subset M of E, invariant for 9, is called 
an isolated invariant set [l] if it is the maximal invariant set in some 
neighborhood of itself. The neighborhood is called an isolating 
neighborhood. An isolated invariant set is necessarily closed, and if it is 
compact, a compact isolating neighborhood can be found. 

DEFINITION 2.3. The stable set W’(M) of an isolated invariant set M is 
defined to be {x E E: /i +(x) # 4, n +(x) c M} and the unstable set is 
defined to be {xEE:A-(x)##,A-(x)cM}. 

Note that if M is compact, x E W+(M) is equivalent to 
lim ,--t ‘zI d(n(x, t), M) = 0, with a similar statement holding for W-(M). 
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DEFINITION 2.4. The weakly stable set W,+(M) of an isolated invariant 
set M is defined to be {x E E: A’(x) n M # $}, and the weakly unstable set 
W;(M) is defined to be (xEE:A-(x)nM#4}. 

DEFINITION 2.5. Let M, N be isolated invariant sets (not necessarily dis- 
tinct). We shall say that M is chained to N, written M+ N, if there exists 
x#MuN such that XE W-(M)n W+(N). 

DEFINITION 2.6. A finite sequence M,, Mz,..., Mk of isolated invariant 
sets will be called a chain if M, + M2 -+ . . . --f Mk (M, -+ M, , if k = 1). The 
chain will be called a cycle if M, = M,. 

Remarks. The simplest example of a cycle is a cycle of saddle-connec- 
tions of isolated critical points. More generally, cycles may connect critical 
points, periodic orbits or more complicated examples of isolated invariant 
sets. 

Our Definitions 2.3, 2.4 (but not the terminology) coincide with those 
given in [l]; for example, our stable and weakly stable sets are called 
regions of attraction and weak attraction, respectively, in [l]. The 
definition of stable and unstable sets is, of course, somewhat different in 
scope from that usually given in the category of smooth flows; see, for 
example [14]. This reflects the fact that we are not primarily concerned 
here with smoothness or transversality properties of such sets, nor with 
hyperbolic structure [S] for the isolated invariant sets. In the simplest 
cases, however, where E is a smooth manifold and M is a critical point, 
periodic orbit or periodic surface with hyperbolic structure, our definitions 
are compatible with the standard ones for stable and unstable manifolds. 

The Stable Manifold Theorem [ 111 ensures (among many other things) 
that the stable and unstable manifolds of hyperbolic invariant sets consist 
of more than just the sets themselves. We need to know this for the stable 
and unstable sets that we have defined, even when hyperbolic structure is 
not assumed. The following lemma provides a condition for this, namely 
that the weakly stable set of M is larger than M. 

LEMMA 2.1. Let M be a compact, isolated invariant set. Suppose that 
W,+ (M)\M # 4. Then W+ (M)\M # 4. (A similar result holds with respect to 
the unstable and weakly unstable sets.) 

Proof: We modify an argument due to Sell and Sibuya [13]. (The 
authors wish to thank Joseph So for calling this paper to our attention.) 
Let x E W,+ (M)\M. If x E W+(M), we are done. Otherwise, we may choose 
a compact neighborhood V of M which the positive semi-orbit y’(x) 
enters and leaves infinitely often. We may assume without loss of generality 
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that V is an isolating neighborhood for M. Then we may choose a sequence 
of points xk E y+(x) and a sequence of negative times tk such that 
lim k+ m d(x,, M) = 0, n(xk, [tk, 01) c V, 7c(x,, t,)E dV. Since M is com- 
pact and invariant, continuous dependence of solutions on initial con- 
ditions implies that tk --) --co as k -+ 00. Let yk= X(X,, tk). Since f3V is 
compact, we may choose a subsequence y,, converging to y, say. For each 
t > 0, we have 

74~~ t) = lim n(74xnk, tnkh t) k+cc 

Choosing k so large that tnk + t < 0, we see from the definition of the t, 
that 71(x nk, t, + t) E V, and so z( y, t) E V. It follows that the positive semi- 
orbit y+(y) c V. Thus .4 + ( y) is a nonempty subset of V. But then the 
isolating property of Y implies that /i +( y) c A& i.e., W+ (M)\M # q5. 

3. PERSISTENCE 

DEFINITION 3.1. 9 will be called weakly persistent if for all x E E?, - lim , + cc 44x9 t), aE) > 0. 

DEFINITION 3.2. 9 will be called persistent if for all XE E”, 
IiIJl, _ o. d(n(x, t), aE) > 0. 

DEFINITION 3.3. 9 will be called uniformly persistent if there exists 
z0 > 0 such that for all XE l?, lim, _ oD d(n(x, t), 8E) > ggV 

Of these concepts, that of uniform persistence is evidently the most 
desirable from the point of view of applications, since together with dis- 
sipativeness it provides a global attractor for the flow in the interior of E, 
which is at a positive distance from the boundary of E. On the other hand, 
it is generally easier to give testable criteria for weak persistence or per- 
sistence. We are now able to link these varying degrees of persistence 
because of a result given in [2]. 

We impose three basic conditions on the flow 9. The first is quite 
natural from the point of view of applications; it is that 9 is dissipative. 

The remaining two conditions are primarily concerned with the boun- 
dary flow A9. They are both robust in a way we shall classify later; in the 
category of smooth flows, they make some statement about the hyperbolic 
structure of invariant sets in aE. Before stating these conditions, we require 
some further definitions. Given that F is dissipative, the sets O(9) and 
Q(a9) (see Definition 2.1) have compact closure. Q(&P) is a compact, 
isolated invariant set for 89. 
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DEFINITION 3.4. 89 is isoZated if there exists a covering &Z of B(aF) 
by pairwise disjoint, compact, isolated invariant sets M, , M2,..., Mk for &F 
such that each Mi is also isolated for 9”. J%? is then called an isolated 
covering. 

DEFINITION 3.5. &F will be called acyclic if there exists some isolated 
covering &Z = IJf=, Mi of Q(&F) such that no subset of the { Mi} forms a 
cycle (see Definition 2.6). (Otherwise, 89 will be called cyclic.) An isolated 
covering satisfying this condition will also be called acyclic. 

We are now in a position to state our main result: 

THEOREM 3.1. Let F be a continuous flow on a locally compact metric 
space E with invariant boundary. Assume that the flow 9 is dissipative and 
the boundary frow &F is isolated and is acyclic with acyclic covering M. 
Then 4 is uniformly persistent if and only if 

(H) for each M,EJ%‘, W+(M,)n&=q5. 

4. PR~~FS 

To prove Theorem 3.1, we first need to prove 

THEOREM 4.1. Let M be a compact isolated invariant set for any con- 
tinuous flow 9 on a locally compact metric space. Then for any 
XE W;(M)\W+(M), it follows that A’(x)n W’(M)\M#& A’(x)n 
W-(M)\M # 4. (A similar statement holds for n -.) 

Proof. Let x E W,+ (M)\ W+ (M). Then there exists a compact isolating 
neighborhood V of M such that y(x) enters and leaves V infinitely often as 
t + co. Without loss of generality, we may assume that x E V. Choose 
tk + co such that d(xk, M) + 0 as k + 00, where xk = 71(x, tk). Choose 
z,<O so that z(xk, [zk, 01) c V, rc(xk, r,)~aV. Since M is invariant and 
compact, it follows from the continuity of n that rk -+ - 00 as k + co. 
Since W,+ (M)\M # $, Lemma 2.1 shows that W+ (M)\M # 4. Clearly 
W’(M) n V/z 4 and W+(M) & V, otherwise the isolating property of I/ is 
violated by the invariant set W+(M) u M. 

Suppose there were a subsequence nk -+ co for which t,k + z,,, < 0. On 
letting k + co and using the definitions of the t,,, tmk, it would follow that 
y+(x) c V, implying that /i + (x) is a nonempty subset of V. Since 
n+(x) Q? M, Mu /1 +(x) would be an invariant set which violates the 
isolating property of K Thus, for suffkiently large k, we may suppose that 
t, + ~~ > 0. Let y, = rc(x, tk + 7k). Then yk E aV. By compactness, we may 
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choose a subsequence which we relabel by k, so that lim, _ o3 y, = y E 8 V. 
Since yk = n(xk, rk), rk + - a, the arguments used in the proof of 
Lemma 2.1 show that y+(y) c V, and therefore /i + ( y) c V. This implies 
that y E W’(M), by the isolating property of V. Since tk + T/, >O for suf- 
ficiently large k, one possibility is the sequence t, + rk has a bounded sub- 
sequence converging to T, say, in which case y = K(X, T) which implies that 
XE W+(M), since W+(M) is invariant, contradicting x Ct W+(M). The 
other possibility is that t, + rk + co as k + co, which implies that 
ye/i+(x), and so A+(x)n(W+(M)\M)#& 

Now choose (Tk SO that n(xk, [O, ok]) C v, ck = x(x,, ck) E 8 v. Then 
limk + m ok = co. Choose a subsequence, which we relabel k again, so that 
lim k _ co ik = [E al’. Again arguing as in the proof of Lemma 2.1, we see 
that y-(c) c I’, and so [E A-(M)\M (otherwise the isolating property of V 
is violated). Since [=X(X, tk + (Tk) and tk + (Tk + co as k+ co, it follows 
that c~/i +(x), and so /i+(x) n Wp(M)\M# 4. This completes the proof. 

Remark. Theorem 4.1 considerably extends Lemma Al of [4] where M 
was a hyperbolic critical point and the method of isolating blocks was 
used. 

Proof of Theorem 3.1. If (H) fails to hold, then there exists M, E J% with 
W+(Mi) n g# I$, i.e., there exists x E ,?? such that A+(x) c Mi c aE, and 9 
is not weakly persistent (therefore not uniformly persistent). Thus (H) is 
necessary. 

Now suppose that (H) holds. If 9 were not persistent, there would exist 
x E ,?? such that n+(x) n aE # 4. By compactness and invariance, 
n +(x) n Q(M) # 4. Therefore we can select i, so that ,4 +(x) n M, # qi By 
(H), W’(M,)caE and so XE W;(M,,)\ W’(Mi,). By Theorem 4.1, 
A+(x)~ W+(Me)\Mi, #4. Let pi, ~A+(x)n W+(Mi,)\Mi,. Since the Mi 
are pairwise disjoint, we can ensure the pi, is disjoint from all the Mi. By 
compactness and invariance, n - (pi,) is a nonempty, compact, connected 
subset of, n+(x) n aE. Thus n+(n-(pi,)) is a nonempty subset of Q(W). 
It follows that n ~ (pi,) n u Mi # 4. There are two cases to consider. 

Case 1. Suppose that K(p,,) is not contained in any one of the Mi. 
Choose i2 so that A-(pi,)nMil#q5. Then P~,E W,-(M,)\ W-(M,). By 
Theorem 4.1, there exists qh E A-(p,,) n W-(MJ\M,. Now qi2c aE and 
so A+(qjz)~Q(aF)e UMi. Since A’(qJ is connected, there exists i, so 
that /i+(q,)cM,. If we had qizEMi,, then A-(qi2)cMi3, by invariance, 
which implies that M, = M, and qi E M,, a contradiction. Therefore we 
have qiz E W- (Mi2) n W+ (M,), qiz 4 M, u M,, i.e., M, + Mi,. Now 
qi2 E /i(pe), so by compactness and invariance, we have /i + (qj,) c A -( pi,), 
i.e., pi, E W;(M,)\ W-(Mi3)* 

Repeating the above argument, we find qi, and M, such that 



DYNAMICAL SYSTEMS 261 

qi, E W-(M,) n W’(M,), qi, $ M, v M,, i.e., we have M, + M, + M,. 
Continuing with this argument, we must eventually arrive at a cycle, since 
there are only finitely many Mi. 

Case 2. Suppose that n - ( pi,) c Mi, for some j, . Since pi is disjoint 
from all of the Ml, we have Mj, + M,. By compactness and invariance, 
n+(x) n Mj, #Q and so x E W,+(M,,)\ Wt (M,,), and appealing to 
Theorem 4.1, we find pi, EA +(x) n W+ (M,,)\M,,, with pi, disjoint from all 
of the Mj. 

Arguing as before, with pi, replaced by pj,, we either find ourselves back 
in Case 1 or we remain in Case 2 and find k, such that Mk, + Mj, + M,. 

Repeating the preceding arguments, we must eventually achieve a cycle 
either by getting into Case 1 or by remaining in Case 2. The existence of a 
cycle contradicts the fact that M is an acyclic covering. Thus we have 
shown that (H) implies that 9 is persistent. It was shown in [2] that if 9 
is dissipative and weakly persistent with isolated, acyclic boundary flow, 
then 9 is in fact uniformly persistent. Thus (H) implies uniform per- 
sistence. This completes the proof of the theorem. (The authors wish to 
thank J. Reineck of Northwestern University for his comments on a 
previous version of this proof.) 

5. DISCRETE DYNAMICAL SYSTEMS 

If we have a discrete dynamical system F = (E, 2, n) and furnish the 
corresponding definitions for dissipative systems, stable set, etc., we may 
carry over to such systems all the results obtained above for continuous 
flows by a suspension argument. Thus, we may conclude 

THEOREM 5.1. Let 9 be a discrete dynamical system on a locally com- 
pact metric space E with invariant boundary. Assume that 9’ is dissipative 
and that the discrete dynamical system on the boundary, SF;, is isolated and 
acyclic with acyclic covering JZ. Then 9 is uniformly persistent if and only if 
(H) holds. 

6. APPLICATIONS 

The class of applied problems which motivated the abstract question 
considered in this paper are best realized in the context of R: and the 
system of population equations of the form 

u’ = uf(z.4, u, w); 

u’ = ug(u, u, w), 

w’= wh(u, u, w), 

(6-l) 

505/63/2-9 
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wheref, g, h are C’ functions. The form of the equations guarantee that the 
aR: is invariant and that each axis is invariant. This type of ecological 
model is associated with the name of Kolmogoroff [3]. While the two 
dimensional subsystems on aR: are well studied under various 
hypotheses - competitive, cooperative, predator-prey, etc., determining 
the asymptotic behavior in the interior would appear to be hopeless, yet 
the principal ecological question (as with any ecosystem) is whether all 
components of the system survive. This is the motivation of the definition 
of persistence. An analysis of several problems of ecological interest for 
(6.1) were given in [4] and [S]. 

The possible interior critical points in the faces are of the form 
(u*, 0, w*), (0, ti, 9), and (ii, fi, 0). One needs that these critical points repel 
orthogonal to the plane that contains them. In view of the form of the 
system (6.1), this condition can be expressed as 

f(U*, 0, w*) > 0, 

h(i, I?, 0) > 0, 

for each critical point of appropriate type. This is a readily testable con- 
dition. If in addition, there were no limit cycles in the faces (which can 
often be eliminated by the Dulac Criterion), this is all that is required to 
verify (H). If limit cycles occur, the condition becomes one on the Floquet 
exponent of the linearization about that limit cycle. 

The boundary flow on R: is isolated if critical points and limit cycles are 
generic (no eigenvalue or Floquet exponent with zero real part). The work 
in applying the theorem then is to check the acyclic condition, and the 
approach to this question depends on the type of populations being 
modeled (competitive, predator-prey, etc.). One interpretation of the work 
in [4, 51 is that the principal effort was equivalent to verifying the acyclic 
condition. 

If F is dissipative with isolated boundary flow i3F, but aF is not acyclic, 
then the question of persistence may be quite a delicate matter. A simple, 
but nontrivial case arises with a three-dimensional Lotka-Volterra com- 
petitive system in the so-called nontransitive case (no one of the three pop- 
ulations out-competes each of the other two in the two-dimensional sub- 
systems). Persistence may or may not occur, depending upon the precise 
parameter values [lo, 121. 

Note added in proof Since. this paper was accepted for publication the authors have 
learned of an independently obtained result of Dunbar, Rybakowski, and Schmitt on 
semitlows which replaces the local compactness assumption in Theorem 4.1 with relative 
compactness of the forward orbit of x. Their result will appear in this journal. 
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