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The use of and k3- and k5-iodanes in the oxidative dearomatization of phenols is a well-established and
general procedure for the construction of cyclohexadienone structures. However, their use in asymmetric
dearomatization reactions is quite underdeveloped and, despite work by several research groups over the
past several years, a general chiral aryl iodide catalyst has yet to emerge. This Letter will serve to high-
light the significant progress that has been made in this area and will reveal some of deficiencies in the
literature that the author believes may be hindering further progress.
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‘‘. . . there are known knowns; there are things we know
that we know. There are known unknowns; that is to say, there
are things that we now know we don’t know. But there are
also unknown unknowns – there are things we do not know we

don’t know.’’
[Donald Rumsfeld,

United States Secretary of Defense; February 12, 2002]

The last three decades have seen a tremendous growth in the
chemistry of hypervalent organoiodine reagents (Fig. 1).1 One of
the main uses of these compounds is to serve as oxidants for a vari-
ety of organic functional groups. Despite the functional group
selectivity often demonstrated by these reagents, their widespread
adoption by the synthetic community has, in part, been slowed by
concerns (perceived or otherwise2) about their stability and ease of
preparation. As a result, the identification of conditions that
employ catalytic amounts of an aryl iodide together with a stoichi-
ometric oxidant3 (typically mCPBA) has generated renewed inter-
est in hypervalent iodine intermediates and has stimulated the
development of many new reactions.

This renewed interest in hypervalent iodine chemistry has also
resulted in the development of several chiral hypervalent iodine
reagents and catalysts.4 Although there are a few notable examples
of asymmetric transformations that are promoted by stoichiome-
tric amounts of a chiral iodine(III) reagent,5 this is a less-than-opti-
mal approach. Unfortunately, developing catalytic variants of these
reactions will be challenging owing to competitive oxidation of the
substrate. However, this particular challenge does not appear to be
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Figure 1. Some commonly encountered hypervalent iodine reagents.
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a major issue with iodine(III)-mediated oxidative dearomatization
of phenols.

The major problem associated with developing a general aryl
iodide-based catalyst for asymmetric phenolic dearomatizations
appears to be one of catalyst design. As will be seen, there are sev-
eral factors that make this a particularly challenging task. How-
ever, it is a task that can be solved if certain considerations are
made. The successful identification of an aryl iodide catalyst capa-
ble of performing asymmetric dearomatization reactions on a wide
range of phenolic substrates will not only provide deeper insights
into the structure and reactivity of hypervalent iodine intermedi-
ates, but will also have great potential in the areas of natural prod-
uct synthesis and drug discovery.6,7

Mechanistic uncertainty

The iodine(III) reagents PIDA and PIFA are the two most com-
monly used reagents for performing phenolic oxidative dearomati-
zation reactions (Eq. 1).8 These two-electron oxidations involve the
addition of a nucleophile to the aromatic ring of the phenol and
Scheme 1. Commonly proposed mechanisms for the iodine(III)-mediated oxidation
of phenols.
result in the formation of either a 2,4-cyclohexadienone (1) or a
2,5-cyclohexadienone (2). Nucleophiles used in these conversions
include: electron-rich arenes,9 heteroatom-based nucleophiles,
(e.g., carboxylic acids, alcohols, sulfonamides),10 enol ethers,11

suitably activated olefins,12 enamides,13 and allyl silanes.11a,b,d,14

Both inter- and intramolecular reactions are possible.

ð1Þ

While the overall behavior of the reaction outlined in Eq. 1 is
generally well understood, the mechanism of this process remains
the subject of debate. Two mechanisms are commonly proposed
for oxidative dearomatization reactions involving PhI(OAc)2.15,16

The first (Scheme 1, path A) involves ligand exchange between
the phenol and iodine(III) carboxylate to give aryl-k3-iodane 3.17

Nucleophilic attack as shown results in oxidation of the phenoxyl
group, reduction of the iodine(III) center, and formation of dienone
2.18 Alternatively, the direct fragmentation of k3-iodane 3
(Scheme 1, path B) through a unimolecular redox reaction would
form phenoxenium ion 4,19 the subsequent trapping of which gives
rise to dienone 2. Despite little experimental evidence for either of
these two mechanisms,15 practitioners have adopted these path-
ways to rationalize the observed reactivity. For example, frontier
molecular orbital analysis has been used to support the formation
of a phenoxenium ion and to rationalize the observed regioselec-
tivity (i.e., 1 vs 2).20 However, while the positive charge of phe-
noxenium ion 4 is delocalized, two resonance forms (4b and 4c)
place the positive charge a to a carbonyl, while another (4d) has
a positively charged oxygen atom. Each of these would be expected
to impart some degree of destabilization. Indeed, similar phenoxe-
nium ions, generated by laser flash photolysis, have lifetimes
between 3 and 170 ns in water.21,22

Another mechanistic possibility has been proposed by Felpin to
rationalize the superiority of aryl trimethylsilyl ethers (5) in para-
quinol formation.23 This proposal (Scheme 2) involves attack on
the iodine by the carbon atom para to the silyl ether to give k3-
iodane 6. Nucleophilic displacement by water would then reduce
the iodine and form dienone 7. While invoking an SN2 reaction at
the tertiary carbon atom of 6 is unorthodox, there are several
aspects of this intermediate that may facilitate this transformation.
First, the C–I bond is expected to be quite long. This might make
the tertiary carbon atom more planar than a typical sp3 carbon
atom. Second, the sp2 centers attached to the tertiary carbon will
reduce the steric crowding experienced by an approaching nucleo-
phile. Third, and perhaps most importantly, the aryl-k3-iodanyl
group is considered to be a hypernucleofuge24 with a leaving group
ability that is 106 times greater than triflate.25 This would certainly
allow for facile nucleophilic substitution. Alternatively, such a
potent leaving group might also open the door for an SN1-type
reaction involving a phenoxenium ion reminiscent of 4. Although
the formation of 6 does require the dearomatization of the starting
Scheme 2. Alternative mechanism proposed by Felpin for the iodine(III)-mediated
oxidation of aryl silyl ethers.23



Scheme 3. Proposed mechanism for the oxidation of ortho substituted phenols by
iodine(V) reagents.
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phenol, this can be viewed as being nothing more than the first
step of electrophilic aromatic substitution.

The mechanism outlined in Scheme 2 is an atypical proposal for
oxidative dearomatization reactions. However, Quideau has
invoked intermediates similar to 6 in order to rationalize the regi-
oselectivity observed during the arylation of phenols with Ph2ICl26

and to explain the stereoselectivity observed in PIDA-mediated
diastereoselective spirocyclizations.27 This pathway is also consis-
tent with other iodine(III)-mediated oxidations, which are thought
to proceed by the initial formation of a C–I bond.28,29

Iodine(V) reagents can also perform oxidative dearomatization
reactions on phenols.30 However, the postulated mechanism is sig-
nificantly different, as illustrated in Scheme 3 for IBX-mediated
ortho-quinol formation. Initial ligand exchange between IBX and
the phenol likely generates intermediate 8. Subsequent 2,3-sigma-
tropic rearrangement results in oxygenation at the ortho-position
and reduction of the iodine atom. This transformation is akin to
the Mislow–Evans rearrangement31 of allylic sulfoxides. Once
formed, k3-iodane 9 can undergo either ligand exchange (produc-
ing ortho-iodosobenzoic acid (11) and quinol 10) or reductive
cleavage (to give ortho-iodobenzoic acid (12) and the quinol).

A consequence of this mechanism is that iodine(V)-mediated
dearomatizations can only occur at the ortho position of the phe-
nol. Furthermore, it is unlikely that external nucleophiles can be
installed using iodine(V) oxidants. Because the goal of the present
dialogue is to stimulate the development of a chiral aryl iodide cat-
alyst capable of delivering a wide range of nucleophiles at either
the ortho or para position (i.e., Eq. 1), the remaining discussion will,
for the most part, focus on iodine(III)-mediated reactions.
Scheme 4. Presumed mechanism for catalytic phenolic dearomatizations.
Catalytic reactions

Others have reviewed the development of aryl iodide-catalyzed
reactions,32 but a brief description of some key aspects and how
they relate to phenolic dearomatizations is warranted. The pre-
sumed mechanism for aryl iodide-catalyzed dearomatization reac-
tions is shown in Scheme 4. A not insignificant challenge that
must be overcome is identifying a terminal oxidant that will react
with the catalyst in preference to the substrate. This is especially
important in asymmetric catalysis, where minimizing non-selective
background reactions is important. It is also important to choose an
oxidant that will not overoxidize the catalyst (i.e., form iodine(V)
rather than iodine(III). mCPBA appears to offer the best balance as
it does not react with most phenols at ambient temperature, but will
easily oxidize the catalyst to the iodine(III) oxidation state with little
competitive overoxidation.33 Other oxidants have been reported,34

but they have not achieved wide-spread use.
A key piece of this picture that is not well understood is the

identity of the iodine species that is formed upon reaction with
the oxidant and how it relates to the iodine species that interacts
with the phenol. It seems reasonable to assume that the reaction
between an aryl iodide and mCPBA will initially form an iodoso-
benzene (A) and the corresponding carboxylic acid. Protonation
of A will generate iodonium species B,35 which can then be trapped
by the carboxylate and form C. Given a sufficient amount of car-
boxylic acid, iodine species C could be advanced to an iodine(III)
dicarboxylate.33

In principle, A, B, and C could all serve as functional oxidants for
the phenolic substrate, but the stability and reactivity of the result-
ing iodine(III) phenolates may be quite different. Furthermore, as
the oxidant (mCPBA) is consumed, the concentration of carboxylic
acid will increase. This will almost certainly have some influence
on the equilibrium concentrations of A, B, and C. Indeed, others
have found that acidic additives can have a beneficial influence
on catalytic dearomatizations.3a,34a–b

Asymmetric dearomatizations

We are unaware of a detailed mechanistic study of oxidative
dearomatization reactions. This is understandable as it is difficult
to imagine a set of experiments that would conclusively rule out
one or more of the pathways discussed above. Furthermore, the
highly unstable nature of the most relevant intermediates (3 and
4, Scheme 1) makes their spectroscopic detection and identifica-
tion quite challenging.21,22 One potential test for the presence of
phenoxenium ions is to perform enantioselective dearomatizations
with asymmetric iodine(III) reagents, as the formation of a free
phenoxenium ion would be expected to lead to diminished
Scheme 5. Initial attempt at asymmetric dearomatization with a tartrate-derived
k3-iodane.



Scheme 6. Kita’s asymmetric spirolactonization with conformationally rigid diio-
dide reagents and catalysts.
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selectivity. Such reagents/catalysts are only now beginning to
emerge and have given rise to conflicting mechanistic conclusions.

The first attempt at performing an enantioselective oxidative
dearomatization was reported by Pelter and co-workers, who used
a chiral k3-iodane derived from PIDA and dibenzoyl tartaric acid to
oxidize phenol 13 (Scheme 5).20 While reagent 1536 and its anti-
pode successfully formed dienone 14, the product was isolated as
a racemic mixture. These results were interpreted as evidence for
phenoxenium ion formation (i.e., Scheme 1, path B). However,
one could also conclude that this was simply a less-than-ideal
design for a chiral reagent. If this reaction proceeds according to
the pathways outlined in Scheme 1, as suggested by the same
authors,20 then the initial reaction between k3-iodane 15 and the
phenol should form an intermediate reminiscent of 16. Such an
intermediate places all of the chiral information and the phenolate
on opposite sides of the iodine(III) nucleus. Consequently, it is dif-
ficult to imagine how enantioinduction could be achieved even
with a mechanism similar to that shown in Scheme 1, path A.

Perhaps as a consequence of this negative result, and the asso-
ciated difficulties with trying to develop an asymmetric reaction
involving a phenoxenium ion, there were no further developments
in the area of iodine(III)-mediated asymmetric dearomatization for
about 10 years. Then, in a seminal report by Kita and co-workers, it
was demonstrated that high enantioselectivity can be achieved in
phenolic dearomatization reactions (Scheme 6).37 They found that
by using conformationally rigid, chiral iodine(III) reagent 19, the
asymmetric spirocyclization of napthols could proceed with high
enantioselectivity (up to 86% ee). While l-oxo-bridged compound
19 had to be used as a stoichiometric reagent, its reduced form
(20a) could be recovered using silica gel chromatography. Further-
more, diiodide 20a could be used in catalytic quantities, along with
mCPBA as a stoichiometric reoxidant, with some diminution in
enantioselectivity (up to 69% ee). Interestingly, Kita observed a sig-
nificant solvent dependence on enantioselectivity.37 The highest
levels of enantiocontrol were observed in halogenated solvents:
Figure 2. Ishihara and Uyanik’s design of flexible aryl iodide catalysts.
CCl4 (70% ee), CHCl3 (72% ee), CH2Cl2 (59% ee), and 1,2-DCE
(60% ee). However, as the solvent polarity increased the enantiose-
lectivity decreased: CH3CN (20% ee), 10:1 CH3CN/AcOH (16% ee),
(CF3)2CHOH (0% ee). This was attributed to ‘discrete cationic inter-
mediates’37a being formed in more polar solvents and suggested to
the authors that in nonpolar solvents the reaction was proceeding
through a mechanism akin to that shown in Scheme 1, path A.

In subsequent work, Kita’s group proposed an empirically
derived model (21) in order to rationalize the observed stereose-
lectivity.38 It was reasoned that incorporating substituents (R)
ortho to each iodine atom would shield the bottom face of the
bound substrate and lead to improved enantioselectivity. After
screening several modified catalysts, it was determined that 20b
afforded the best selectivity (up to 92% ee) for this transformation.

Ishihara and Uyanik have taken a different approach to aryl
iodide catalyst design by appending stereogenic, flexible tethers
to readily available 2-iodoresorcinol39 (22, Fig. 2).40 They hypothe-
sized that upon oxidation of the iodine center, the flexible arms
would be able to achieve one of two possible ‘active’ conforma-
tions. The first (23) would involve stabilizing n–r⁄ interactions41

between the iodine(III) center and Lewis basic groups (e.g., carbon-
yls) on the tether. This proposal is somewhat specious as these
interactions (as drawn) occur in the same place where the non-
bonding lone pairs on the iodine are located.42 Such interactions
typically involve donation to the r⁄ orbital of the aryl–I bond.41b

The second (24) would involve hydrogen-bonding interactions
between the ligands attached to the iodine atom and a suitable
H-bond donor (e.g., amides, carboxylic acids). In both cases, the
additional non-covalent interactions would result in a reasonably
rigid, C2-symmetric environment around the iodine(III) center. At
the time, it was not clear which conformer would be favored, but
this was answered by analysis of a related derivative (vide infra).

The initial dearomatization reaction investigated by Ishihara
and Uyanik was the same asymmetric spirolactonization reported
by Kita. After some experimentation with the substitution around
the amide, it was determined that catalyst 25 provided the highest
selectivity (up to 91% ee) with a range of substituted naphthol sub-
strates (Scheme 7).40 The authors were also able to prepare iodi-
ne(III) derivative 26, and found that this reagent performed the
spirocyclization with marginally better selectivity (95% ee). Inter-
estingly, and in direct contrast to Kita’s work, little solvent depen-
dence on enantioselectivity was observed with catalyst 25.40b For
example, high enantioselectivity was observed even in CH3CN
(83% ee), CH3NO2 (85% ee), and CF3CH2OH (70% ee). Often the best
solvent was 2:1 CH2Cl2/CH3NO2. Significant diminution in selectiv-
ity was observed only with (CF3)2CHOH (41% ee). It should be
noted that others have shown that chiral k3-iodane 26, and some
Scheme 7. Ishihara and Uyanik’s asymmetric spirolactonization with flexible aryl
iodide reagents and catalysts.



Scheme 8. Ishihara and Uyanik’s asymmetric spirolactonization of simple phenols
with flexible aryl iodide reagents and catalysts.
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related compounds, can function as an oxidant in several asym-
metric transformations,4,5 albeit in stoichiometric amounts.

Following their success with the asymmetric spirocyclization of
naphthols, Ishihara and Uyanik turned their attention to spirolact-
onization reactions of simple phenols (27, Scheme 8).43 This work
was complicated by the propensity of the 2,4-cyclohexadienone
products (28) to undergo dimerization reactions. Consequently,
many of the initial products were trapped as Diels–Alder adducts
(29). Aryl iodide 25 was a competent catalyst for these reactions,
but the yields were poor. This could be rectified by using aryl
iodide 30, which contains a modified tether. Interestingly, it was
found that alcohol additives (MeOH or (CF3)2CHOH) were benefi-
cial to the reactions and their use increased both yield and
enantioselectivity.
At this point, it is not entirely clear why the alcohol additives
are so beneficial. Ishihara and Uyanik proposed that the added
methanol serves to modify the structure of the active iodine(III)
oxidant (Scheme 9). In doing so, the associative pathway for nucle-
ophile addition is favored over the dissociative pathway. While this
proposal still needs to be investigated, the authors were able to
prepare dimethoxy substituted derivative 31 through solvolysis
of the corresponding iodine(III) dicarboxylate. Thorough NMR
analysis44 of 31 revealed that this complex likely contains hydro-
gen bonds between the amide and the methoxy groups. This struc-
tural feature was confirmed though X-ray diffraction analysis.

In addition to the spirolactonization reactions reported by Kita
and Ishihara, Birman45 and Quideau46 have shown that asymmetric
hydroxylation can also occur at the ortho position (Scheme 10). In
both cases, the oxygen atom being incorporated into the product
likely originates from the hypervalent iodine. However, the mech-
anism by which this occurs is quite dependent on the iodine oxida-
tion state involved. Birman was able to construct several
oxazoline-based iodine(V) reagents and found tert-leucine-derived
reagent 34 afforded the highest selectivity (Scheme 10a).45 The
iodine(V) oxidation state was established by several diagnostic IR
stretches and NMR chemical shifts. Here, the hydroxyl group is
likely being delivered to the substrate from one of the iodoxy
groups in 34, as shown in Scheme 3.



Scheme 12. Harned’s asymmetric dearomatization with nucleophile incorporation
at the para position.
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In Quideau’s work (Scheme 10b), the mechanism by which the
oxygen atom is delivered is less clear. Unlike Birman’s oxazoline-
derived aryl iodides, Quideau and co-workers experienced great
difficulty in efficiently oxidizing and isolating their chiral aryl
iodide reagents. Consequently, they resorted to an in situ oxidation
using mCPBA. While this approach was successful in providing
enantioenriched quinol 36,46 it complicates the mechanistic analy-
sis. The authors proposed two models in order to explain the ste-
reochemical outcome (Scheme 11). The first proposal involves
complex 38, in which the iodine is in the +3 oxidation state.46

Because these reactions are run under anhydrous conditions, water
cannot serve as an external nucleophile and oxygen atom source.
Consequently, the authors invoked a mechanism involving internal
delivery of the hydroxyl group with concomitant reduction of the
iodine center. The internal delivery of a trans ligand to the 2-posi-
tion of a coordinated naphtholate seems unlikely and likely
requires a pseudorotation about the hypervalent nucleus before
the transfer happens.47 While the iodine(III) oxidation state of this
proposal holds with the known reactivity of mCPBA toward aryl
iodides,32,33 it invokes a new mechanism by which a ‘nucleophile’
can be delivered that is distinct from the proposals outlined in
Schemes 1 and 2. The second proposal advanced by Quideau
involves initial oxidation of the aryl iodide to the +5 oxidation
state.46 Once the substrate is coordinated as indicated by complex
39, the oxygen atom can be delivered as shown. Finally, hydrolysis
of iodine(III) intermediate 40 furnishes the observed product. Here,
the oxygen delivery mechanism is in line with what has been pre-
viously proposed for iodine(V)-mediated ortho-hydroxylation reac-
tions (i.e., Scheme 3),30 but the iodine(V) oxidation state is atypical
for what is usually observed for mCPBA-mediated oxidations of
aryl iodides.

Up to this point, the discussion of asymmetric dearomatization
has centered on reactions in which the nucleophile becomes
attached to the ortho position of the starting phenol (e.g., 1). As dis-
cussed before, iodine(III) oxidants are also able to promote reac-
tions in which the nucleophile becomes attached to the para
position of the phenol (e.g., 2). Designing an asymmetric version
of such a reaction is more difficult as the developing stereocenter
appears to be quite distant from the chiral environment presented
by the catalyst/reagent. But is this really the case?

In order to better understand the structure of postulated iodi-
ne(III) phenoxide intermediate 3, we carried out a DFT study
(M06-2X/6-31G(d) for C,H,O and SDD for iodine) with phenoxide
41.48 The calculations revealed that the aromatic ring of the phen-
oxide was partially blocked by the aromatic ring of the k3-iodane
(41a, Fig. 3). We were intrigued by the possibility of using this fea-
ture as a means to shield one enantioface of the substrate and set
out to install a chiral tether between the iodine(III) carboxylate and
one of the ortho positions on the aryl iodide. Eventually, these
designs led to catalyst 42, which can be prepared from L-(+)-
dimethyl tartrate and 8-iodotetralone.

These catalysts were evaluated for their ability to produce
enantioenriched para-quinols (44) from simple phenols
(Scheme 12).48 In this regard, bisamide 45 provided the best
"chiral
tether"

41a

I
OO

O

X

O

X

42

O

Me

I OAc

Ph

41

=

X = OH, NHR

Figure 3. Harned’s computationally guided design of aryl iodide catalysts.
balance of yield and enantioselectivity. Notably, the quinol prod-
ucts could be produced with up to 60% ee even in a polar reaction
medium (9:1 acetonitrile/water).49 When 18O labeled water was
used in the reaction, incorporation of the label was observed by
mass spectrometric analysis of the product. While this does show
that the hydroxyl group is originating from water and not mCPBA,
it does not rule out a rapid exchange of water (as hydroxide) onto
the iodine(III) center, followed by an internal delivery similar to
that proposed by Quideau. The use of catalyst 45 could also be
extended to other nucleophiles. For example, when methanol
was used as the solvent, methyl ether 46 was formed in 30% ee.
Similarly, spirocycle 47 was generated in 40% ee by using a teth-
ered nucleophile.

Known knowns

The hypervalent iodine-mediated dearomatization of phenols is
a well-known and highly useful reaction. At the same time, this
reaction is not well understood. So what is known? In broad terms,
this can be narrowed down to three main areas:

� How substitution around the phenol substrate governs reactiv-
ity is fairly well understood. Electron-deficient phenols have
higher oxidation potentials and tend to react slower than elec-
tron-rich phenols. A phenol that is too electron-deficient will
not be a competent substrate for hypervalent iodine-mediated
dearomatizations. In addition, the substituents have an influ-
ence on the charge distribution and LUMO coefficients of the
corresponding phenoxenium ion, which can be used to predict
the product distribution of the reaction.20 As mentioned above,
the scope of the nucleophile has also been established.

� The use of catalytic amounts of aryl iodides, along with a stoichi-
ometric oxidant, is now well established and in many cases
expected.

� Asymmetric induction can be achieved for reactions occurring at
both the ortho and para positions of the starting phenol.

Known unknowns

So what work still needs to be done? The following discussion
outlines what I have identified as being key pieces of the puzzle
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that are missing and therefore hindering efforts at designing a
highly selective aryl iodide catalyst. This is not meant to be an
exhaustive list and there are surely some unknowns that have been
overlooked.

Most glaring is the lack of mechanistic understanding of these
reactions. This is understandable as many of the intermediates that
would be the most interesting to study spectroscopically are too
unstable to isolate or too fleeting to detect easily (e.g., phenoxenium
ions). To our knowledge, even a ‘simple’ kinetic study of iodine(III)-
or iodine(V)-mediated oxidative dearomatization has not been per-
formed.50 Further confusing the matter are the seemingly contradic-
tory solvent effects on enantioselectivity observed by Kita and
Ishihara/Uyanik. These results have been interpreted as evidence
for a change in mechanism (i.e., Scheme 1, path A in non-polar sol-
vents; Scheme 1, path B in polar solvents). However, the structure
of the iodine(III) intermediates may also be changing, which would
lead to different levels of enantiocontrol. For example, in the case of
the Ishihara/Uyanik catalyst, polar solvents may disrupt the hydro-
gen bonds offered by the amide portions of the catalyst.

Surprisingly, the extreme reactivity of phenoxenium ions21,22

has not been considered in this context. Could it be possible that
such an intermediate is trapped by the nucleophile before it has
time to become separated from any chiral environment provided
by the aryl iodide? If so, then the question of whether k3-iodane
3 decomposes by an associative or dissociative mechanism does
not really matter. In principle, both could lead to high enantiose-
lectivity, provided an iodine(III)-bound phenoxide can be designed
to favor exposure of one enantioface of the phenol over the other.
Notably, both Kita and Ishihara/Uyanik saw little-to-no asymmet-
ric induction with methoxy substituted naphthols.37,40 This might
suggest that phenoxenium ion stability plays an important role:
a more stable phenoxenium ion would have time to become sol-
vent separated from the reduced aryl iodide.

Assuming for the moment that the preferred mechanism is the
direct addition of the nucleophile (Scheme 1, path A), the three-
dimensional shape of the iodine(III)-bound phenoxide will be crit-
ical for controlling which enantioface is exposed to the nucleo-
phile. The problem in this case is that these complexes are too
reactive to be adequately characterized by spectroscopic means.
While Kita has proposed a model for explaining the observed selec-
tivity, this is an empirical model. What happens after one of the
iodine(III) centers is reduced? Is the other able to act indepen-
dently (perhaps with a less organized model) or does the reoxida-
tion of the first iodine atom happen too quickly? Similarly, Ishihara
and Uyanik have shown some evidence for hydrogen bonding in
their iodine(III) system (Scheme 9), but exactly how this translates
to stereoselectivity once the substrate is bound is not clear.

The problem of structure also arises when one strips away the
matter of enantioselectivity and simply considers running these
reactions catalytically. What is the oxidation state of the iodine
atom? Most likely, reactions run with mCPBA stop at iodine(III),
but Quideau’s results46 suggest that iodine(V) may be possible in
some cases. If iodine(III) is formed, then what are the other ligands
around the iodine atom besides the aromatic group (e.g., Scheme 4).
If the initially formed iodine(III) intermediate looks like complex C
in Scheme 4, then which ligand undergoes substitution with the
phenol? The ligand environment will almost certainly have a pro-
found influence on both the reactivity and shape of the presumed
iodine(III) phenoxide. Also, how does changing the electronics of
the aryl iodide affect conversion and catalyst activity? Many sim-
ple aryl iodides can function as catalysts, with differing levels of
efficiency, but these observations have really only been qualitative
in nature.3a,34b,51 How these substituents influence the kinetics of
the reaction are not well established.

Going forward, computational techniques will certainly play an
increasingly important role in answering these questions. Indeed,
computational studies of hypervalent iodine compounds have been
performed, but have not addressed the questions posed here.26,27,52

The trouble with this approach is that without some experimental
support (kinetics, transition state energies, etc.), computational
results will not be entirely conclusive. Nevertheless, they will play
an important role in designing new mechanistic experiments. For
example, computational work by Goddard53,54 and Legault55 has
shown that some iodine(V) and iodine(III) compounds must
undergo a ‘hypervalent twist’ before a bound substrate can
undergo oxidation. This twisting was also incorporated into Qui-
deau’s proposed mechanisms for ortho-hydroxylation.46

Similarly, computational investigation into the structure of cer-
tain key intermediates may prove beneficial for the rational design
of novel catalyst architectures. The advantage being that the reac-
tivity of intermediates that are too unstable for structural studies
(NMR, X-ray) can still be probed. Once again, without some spec-
troscopic characterization of these intermediates it will be difficult
to say how meaningful these theoretical results will be, but as
these regents are synthesized and tested, the corresponding mod-
els and proposals can be further refined.

Unknown unknowns

By their very nature, unknown unknowns cannot be delineated,
but they surely exist. Only by continued experimentation will new
unknowns be revealed. Further experiments can then be designed
and more knowns generated.
Concluding thoughts

Through this article I hope to have conveyed to the reader that
asymmetric hypervalent iodine-mediated dearomatization of phe-
nols is a tractable problem. In some ways, this problem can be likened
to the field of asymmetric transition metal catalysis. In that field, a
multitude of chiral ligands have been developed both to render a par-
ticular reaction asymmetric and to realize improved selectivity/reac-
tivity in existing transformations. Often, the first ligand pulled from
the shelf is effective at demonstrating that a particular transformation
can be rendered asymmetric (say 20% ee or higher), but only through
continued screening of different ligand architectures (e.g., BINAP,
Trost ligand, PHOX, MOP, etc.) will synthetically useful levels of
enantioselectivity be realized (>90% ee).56 At present, the primary
problem of enantioselective aryl iodide catalysis is that only a handful
of catalyst architectures have been described and few, if any, are com-
mercially available. Only with the continued development (rational
or otherwise) of new architectures57 will a truly general catalyst for
asymmetric dearomatization be discovered.

Even though critical knowledge gaps still exist in this area, I find
it remarkable how much rational catalyst design can still be
accomplished. Furthermore, I think it is reasonable to conclude
that as the mechanistic and structural questions raised above are
answered, our ability to further evolve these designs will progress.
The only way this can be accomplished is through continued
experimentation, both at the bench and in silico. With this in mind
I leave the reader with another quote or, perhaps, a rallying cry. . .

‘‘Data! Data! Data!’’ he cried impatiently. ‘‘I can’t make bricks
without clay.’’
[Sir Arthur Conan Doyle, The Adventure of the Copper Beeches]
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