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Abstract

We consider quantum invariants of 3-manifolds associated with arbitrary simple Lie algebras.
Using the symmetry principle we show how to decompose the quantum invariant as the product of
two invariants, one of them is the invariant corresponding to the projective group. We then show that
the projective quantum invariant is always an algebraic integer, if the quantum parameter is a prime
root of unity. We also show that the projective quantum invariant of rational homology 3-spheres
has a perturbative expansion a la Ohtsuki. The presentation of the theory of quantum 3-manifold
invariants is self-contained.
 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

0.1. For a simple Lie algebrag over C with Cartan matrix(aij ) let d = maxi �=j |aij |.
Thusd = 1 for theADE series,d = 2 for BCF andd = 3 for G2. The quantum group
associated withg is a Hopf algebra overQ(q1/2), whereq1/2 is the quantum parameter. To
fix the order let us point out that ourq is q2 in [3,4,20] orv2 in the book [11]. For example,
the quantum integer is given by

[n] = qn/2 − q−n/2

q1/2 − q−1/2 .
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0.2. Modular categories, and hence quantum 3-manifold invariants associated withg,
can be defined only whenq a root of unity of orderr divisible by d , since this fact
guarantees that the so-calledS-matrix is invertible. Forr not divisible byd , quantum
invariants can still be defined, but modular categories might not exist. In this paper we
will focus mainly in the more general situation, whenr may or may not be divisible byd .
The reason is eventually we wantr to be a prime number. Note that 3-manifold invariants
for the case whenr is not divisible byd �= 1 have not been studied earlier.

We will present a self-contained theory of quantum 3-manifold invariants, for arbitrary
simple Lie algebra. By making use of an integrality result (Proposition 1.6) we will
establish the existence of quantum invariants without using the theory of quantum groups
at roots of unity. (We use quantum group and link invariants with general parameter, and
only in the last minute, replaceq by a root of unity.) The quantum invariant of a manifold
M will be denoted byτg

M(q), considered as a function with domain roots of unity.

0.3. Although the usual construction of modular category might fail, say whenr is a
prime number andd �= 1, we will show that by using the root lattice instead of the weight
lattice in the construction, one can still get a modular category. Actually the construction
goes through for a much larger class of numbersr—one needs only thatr is coprime
with d det(aij ). The corresponding 3-manifolds invariant, denoted byτ

Pg

M (q), could be
considered as the invariant associated to the projective group—the smallest complex Lie
group whose Lie algebra isg. The reason is that the set of all highest weights of modules
of the projective group spans the root lattice. As in the case ofg, the invariantτPg

M can also
be defined whenr is not coprime withd det(aij ) (although modular categories might not
exist).

0.4. We will show that in most cases,τPg

M is finer thanτg

M . More precisely, ifr is
coprime with det(aij ), then

τ
g

M = τ
Pg

M × τGM, (0.1)

where τGM is the 3-manifold invariant associated with the center groupG (which is
isomorphic to the quotient of the weight lattice by the root lattice) and a naturally defined
bilinear form on it. The invariantτGM is a weak invariant, since it is determined by the first
homology group and the linking form on its torsion (see [15,2,20]). In some casesτGM ≡ 0,
and henceτg is trivial, althoughτPg is not.

The invariant associated to the projective group was first introduced and the splitting
(0.1) was obtained by Kirby and Melvin forg = sl2, and Kohno and Takata forg = sln.
Recently Sawin [18], based on the work of Müger and Bruguierre, established a similar
result, but he considered only the caser divisible by d , and the groupG cyclic (so he
excludes a half of the seriesD case). Whend = 2, the result (0.1) complements Sawin’s
work, i.e., it covers the case that is not considered by Sawin. Whend = 1, (0.1) overlaps
with Sawin’s work. But even in this case, our method is quite different, it can be uniformly
applied to any simple Lie algebra, and in addition, we get the integrality and perturbative
expansion of quantum 3-manifold invariants (see below).
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0.5. We will show that unlikeτg, the “projective” invariantτPg

M is always an algebraic
integer, provided that the orderr is an odd prime. In fact, we will prove that in this case,
τ
Pg

M (q) ∈ Z[q]. A priori, both τPg

M and τg

M are rational functions in a fractional power

of q . Integrality of τPg

M for g = sl2 was first established by Murakami [14] by difficult
computations, forg = sln by Takata and Yokota [19] and Masbaum and Wenzl [13], based
on an idea of Roberts. We will use a different approach that is good for all simple Lie
algebras.

0.6. Finally we will show thatτPg

M , with M a rational homology 3-sphere, has a

“perturbative expansion a la Ohtsuki”. The functionτPg

M can be defined only at roots of
unity, and we want to expand it aroundq = 1. For the caseg = sl2, Ohtsuki showed that
there exists a kind of number-theoretic expansion, which we call perturbative expansion.
We proved a similar result forg = sln in [8] and will extend the result to other Lie algebras
here. We borrowed an idea using Gauss integrals from Rozansky’s work [17], although we
will not explicitly use Gauss integral.

0.7. The paper is organized as follows. In Section 1 we recall quantum link invariants
and their important properties: integrality and symmetry at roots of 1. In Section 2
we present the general theory of 3-manifold quantum invariants (not using the theory
of quantum groups at roots of unity). Invariants associated to the projective group are
considered in Section 3. Their integrality is proved in Section 4. Section 5 is devoted to the
perturbative expansion.

1. Quantum link invariants: Integrality and symmetries

1.1. Lie algebras and quantum groups.We recall here some facts from the theory of Lie
algebras and quantum groups, mainly in order to fix notation. For the theory of quantum
groups, see [3,11].

1.1.1. Lie algebra. Let (aij )1�i,j�� be the Cartan matrix of a simple complex Lie
algebrag. There are relatively prime integersd1, . . . , d� in {1,2,3} such that the matrix
(diaij ) is symmetric. Letd be the maximal of(di). The values ofd , and other data, for
various Lie algebras are listed in Table 1.

We fix a Cartan subalgebrah of g and basis rootsα1, . . . , α� in the dual spaceh∗. Leth∗
R

be theR-vector space spanned byα1, . . . , α�. The root latticeY is theZ-lattice generated

Table 1

A� B� B� C� D� D� E6 E7 E8 F4 G2
� odd � even � odd � even

d 1 2 2 2 1 1 1 1 1 2 3
D �+ 1 2 1 1 4 2 3 2 1 1 1
G Z�+1 Z2 Z2 Z2 Z4 Z2 × Z2 Z3 Z2 1 1 1
h �+ 1 2� 2� 2� 2�− 2 2�− 2 12 18 30 12 6
h∨ �+ 1 2�− 1 2�− 1 �+ 1 2�− 2 2�− 2 12 18 30 9 4
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by αi, i = 1, . . . , �. Define the scalar product onh∗
R

so that (αi |αj ) = diaij . Then
(α|α)= 2 for everyshortrootα.

Let Z+ be the set of all non-negative integers. The weight latticeX (respectively the set
of dominant weightsX+) is the set of allλ ∈ h∗

R
such that〈λ,αi 〉 := 2(λ|αi)/(αi |αi) ∈ Z

(respectively〈λ,αi 〉 ∈ Z+) for i = 1, . . . , �. Let λ1, . . . , λ� be the fundamental weights,
i.e., theλi ∈ h∗

R
are defined by〈λi,αj 〉 = δij , or (λi |αj )= diδij . ThenX is theZ-lattice

generated byλ1, . . . , λ�. The root latticeY is a subgroup of the weight latticeX, and the
quotientG = X/Y is called thefundamental group. If µ ∈ X andα ∈ Y , then(µ|α) is
always an integer. On the root latticeY , the form(·|·) is even.

Let ρ be the half-sum of all positive roots. Thenρ = λ1 + · · · + λ� ∈X+, and 2ρ ∈ Y .
LetC denote the fundamental chamber:

C = {
x ∈ h

∗
R

| (x|αi)� 0, i = 1, . . . , �
}
.

The Weyl groupW is the group generated by reflections in the walls ofC. In the
chamberC there is exactly one root of length

√
2; it is called the short highest root, and

denoted byα0.
For a positive integerr let

Cr = {
x ∈C | (x|α0) < r

}
.

Then the topological closure�Cr is a simplex. The reflections in the walls of�Cr generate
the affine Weyl groupWr . One also hasWr =W � rY, whererY denotes the translations
by vectorsry, y ∈ Y .

Finite-dimensional simpleg-modules are parametrized byX+: for everyλ ∈X+, there
corresponds a unique simpleg-module�Λλ.

The Coxeter number and the dual Coxeter numbers are defined byh= 1 + (α0|ρ) and
h∨ = 1+ maxα>0

(α|ρ)
d

, see Table 1. Note thatdh∨ � h.
1.1.2. The quantum groupU and its category of representations.The quantum group

U = Uq(g) associated tog is a Hopf algebra defined overQ[q±1/2D], whereq1/2 is the
quantum parameter andD is the least positive integer such that(µ|µ′) ∈ 1

D
Z for every

µ,µ′ ∈ X (see [11]). The categoryC of finite-dimensionalU -modules of type 1 is a
ribbon category. In this paper we consider onlyU -modules of type 1. The introduction
of the fractional powerq1/2D is necessary for the definition of the braiding. Finite-
dimensional simpleU -modules of type 1 are also parametrized byX+: for everyλ ∈X+,
there corresponds a unique simpleU -moduleΛλ, a deformation of�Λλ. Actually, the
Grothendieck ring of finite-dimensionalU -modules of type 1 is isomorphic to that of finite-
dimensionalg-modules.

The reader should not confuse ourq with the quantum parameter used in the definition
of quantum groups by several authors. For example, ourq is equal toq2 in [3,4,20], orv2

in Lusztig book [11].

1.2. Quantum link invariants.
1.2.1. General. SupposeL is a framed oriented link withm ordered components, then

the quantum invariantJL(V1, . . . , Vm), for V1, . . . , Vm ∈ C, is defined (sinceC is a ribbon
category), with values inZ[q1/2D]. The modulesV1, . . . , Vm are usually called the colors.
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The fact thatJL has integer coefficients follows from Lusztig’s theory of canonical basis
(see a detailed proof in [9]).

We will also use another normalization of the quantum invariant:

QL(V1, . . . , Vm) := JL(V1, . . . , Vm)× JU(m)(V1, . . . , Vm).

HereU(m) is the 0 framing trivial link ofm components. This normalization is more
suitable for the study of quantum 3-manifold invariants, and will help us to get rid of the
± sign in many formulas.

Since finite-dimensional irreducibleU -modules are parametrized byX+, we define

QL(µ1, . . . ,µm) :=QL(Λµ1−ρ, . . . ,Λµm−ρ).

Note the shift byρ. This definition is good only forµj ∈ ρ+X+ =X∩ (interior ofC).
We defineQL(µ1, . . . ,µm) for arbitraryµj ∈X by requiring thatQL(µ1, . . . ,µm)= 0 if
one of theµj ’s is on the boundary ofC, and thatQL(µ1, . . . ,µm) is component-wise
invariant under the action of the Weyl groupW , i.e., for everyw1, . . . ,wm ∈W ,

QL

(
w1(µ1), . . . ,wm(µm)

) =QL(µ1, . . . ,µm).

1.2.2. Example. Supposeg = sl2. For a knotK, the invariantJK(N), withN a positive
integer, is known as the colored Jones polynomial. HereN stands for the unique simple
sl2-module of dimensionN . SupposeK is the right-hand trefoil, see Fig. 1. Then

JK(N)= [N]q1−N
∞∑
n=0

q−nN (
1 − q1−N)(

1 − q2−N) · · · (1 − qn−N )
.

The sum is actually finite, for any positive integerN . Similar formulas have also been
obtained by Gelca and Habiro.

For the figure 8 knot (also obtained by Habiro)

JK(N) = [N]
∞∑
n=0

q−nN (
1 − qN−1)(1− qN−2) · · · (1− qN−n)

× (
1− qN+1)(1 − qN+2) · · · (1− qN+n).

1.2.3. The trivial knot. SupposeU is the trivial knot. ThenJU(V ) is called the
quantum dimensionof V ; its value is well known:

JU(µ) = 1

ψ

∏
positive rootsα

(
q(µ|α)/2 − q−(µ|α)/2) (1.1)

= 1

ψ

∑
w∈W

sn(w)q(µ|w(ρ)), (1.2)

where sn(w) is the sign ofw and

ψ =
∏
α>0

(
q(ρ|α)/2 − q−(ρ|α)/2) =

∑
w∈W

sn(w)q(ρ|w(ρ)). (1.3)
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Fig. 1. The trefoil, figure 8 knot and the Hopf link.

Note thatJU(ρ) = 1, andJU(−µ) = (−1)sJU (µ), wheres is the number of positive
roots. Also

ψ = q−|ρ|2 ∏
α>0

(
q(α|ρ) − 1

)
. (1.4)

Hence ifq is a root of unity of orderr � dh∨ � 1+ maxα>0(α|ρ), thenψ �= 0.
1.2.4. The Hopf link. Let H be the Hopf link, see Fig. 1, with framing 0 on each

component. Then

JH (µ,λ)= 1

ψ

∑
w∈W

sn(w)q(µ|w(λ)). (1.5)

For a proof, see [20]. Note thatJH (µ,ρ)= JU(µ).

1.3. Integrality. In general,JL andQL contain fractional powers ofq . The integrality,
formulated below, shows that the fractional powers can be factored out.

Theorem 1.1 (Integrality [9]).Supposeµ1, . . . ,µm ∈X+. ThenQL(Λµ1, . . . ,Λµm) is in
qp/2Z[q±1], wherep is a (generally fractional) number determined by the linking matrix
lij ofL:

p =
∑

1�i,j�m
lij (µi |µj)+

∑
1�i�m

lii(2ρ|µi) ∈ 1

D
Z.

If all µj ’s are in theroot lattice, then the numberp is even. Hence we have

Corollary 1.2. If all theµj ’s are in theroot lattice, thenQL(Λµ1, . . . ,Λµm) is in Z[q±1].

1.4. The first symmetry principle.Supposef,g ∈ Z[q±1/2D]. We say thatf equalsg at
rth roots of unityand write

f
(r)= g,

if there is a numbera ∈ 1
2DZ such thatf,g ∈ qaZ[q±1], and for everyrth root of unityξ ,

one has

q−af |q=ξ = q−ag|q=ξ .
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There is no need to fix a 2Dth root ofξ .
An equivalent definition:f,g ∈ Z[q±1/2D] are equalrth roots of unity if for every

2Drth rootζ of unity, one hasf |q1/2D=ζ = g|q1/2D=ζ .
Recall that the simplex�Cr is a fundamental domain of the affine Weyl groupWr .

Theorem 1.3 (First symmetry principle, see [9]).At rth roots of unity, the quantum
invariantQL is component-wiseinvariant under the action of the affine Weyl groupWr .
This means, for everyw1, . . . ,wm ∈Wr ,

QL

(
w1(µ1), . . . ,wm(µm)

) (r)= QL(µ1, . . . ,µm).

If one of theµ1, . . . ,µm is on the boundary of�Cr , thenJL(µ1, . . . ,µm)
(r)= 0.

1.5. The second symmetry principle.
1.5.1. Action ofG on �Cr . There is an action of the center groupG=X/Y on �Cr , and

althoughQL is not really invariant under this action, it almost is. Let us first describe the
action. Forµ ∈ �Cr andg ∈G=X/Y let g̃ ∈X be a lift ofg, and define

g(µ)= µ+ rg̃ ∈ (X modWr)≡ �Cr.
Another way to look at the action ofG is the following. Recall thatWr =W � rY . Note

thatX is invariant under the action of the Weyl group. LetŴr be the group generated by
W and translations byrX. ThenŴr =W � rX. If λ ∈X andw ∈W , thenw(λ)− λ is in
Y . This impliesWr is anormal subgroupof Ŵr . We have an exact sequence

1 →Wr → Ŵr →G→ 1.

Taking the action of̂Wr modulo the action ofWr , we get the action ofG on �Cr . For
more details and examples of actions ofG, see [9].

On the groupG there is a symmetric bilinear form with values inQ/Z defined as
follows. Supposeg1, g2 ∈G=X/Y . Let g̃1, g̃2 ∈X be respectively lifts ofg1, g2. Define
(g1|g2) := (g̃1|g̃2) ∈ Q/Z. (Actually, (g1|g2) ∈ 1

D
Z/Z.) Similarly, for µ ∈ X andg ∈ G

one can define(µ|g) ∈ 1
D

Z/Z.
1.5.2. Second symmetry principle.

Theorem 1.4 [9]. Supposeµ1, . . . ,µm ∈ �Cr andg1, . . . , gm ∈G. Then

QL

(
g1(µ1), . . . , gm(µm)

) (r)= qrt/2QL(µ1, . . . ,µm). (1.6)

Here t depends only on the linking matrix(lij ) ofL:

t = (r − h)
∑

1�i,j�m
lij (gi |gj )+ 2

∑
1�i,j�m

lij (gi |µj − ρ),

with h being the Coxeter number of the Lie algebrag (see Table1).

For the special casesg = sl2 andg = sln, the theorem was proved by Kirby and Melvin
[5], and Kohno and Takata [6]. In [5,6], the “twisting factor”qrt/2 is derived by direct
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computations. The proof given in [9] for general simple Lie algebra used a tensor product
theorem of Lusztig.

Corollary 1.5. If µj − ρ is in the root lattice andµj ∈ �Cr , then,

QL

(
g1(µ1), . . . , gm(µm)

) (r)= q
r(r−h)

2 [∑ lij (gi |gj )]QL(µ1, . . . ,µm).

Remark 1.5.1. When(r, d) �= 1, we can strengthen both symmetry principles using the
Weyl alcove defined by thelonghighest root, see [9].

1.6. More integrality. The result of this subsection is new and will help us to define
quantum invariants of 3-manifold without using the complicated theory of quantum groups
at roots of unity.

Every finite-dimensionalU -moduleV decomposes as the direct sum ofλ-homogeneous
components,λ ∈X+ (recall that we work with general parameter). Here aλ-homogeneous
componentEλ is the maximal submodule isomorphic to the sum of several copies of
Λλ. Eachλ-homogeneous component defines a projectionπλ :V → Eλ and an inclusion
ιλ :Eλ → V .

Suppose a linkL is the closure of a(n,n)-tangleT , as shown in Fig. 2(a). LetV1, . . . , Vn
are the colors of the strands shown (some of them may come from the same component).
Consider aλ-homogeneous componentEλ of V1 ⊗ · · · ⊗ Vn. Cut then strands and insert
2 “coupons” with operatorsπλ, ιλ in them; we got a “tangle with coupons”(T ,λ), see
Fig. 2(b). Ribbon category can be used a define isotopy invariant of objects like(T ,λ),
denoted byJ(T ,λ), which is generally in the fractional fieldQ(q1/2D) (see [20]). The
following proposition, whose proof is based on the result of [9] and borrows an idea from
[13], shows that for the special case(T ,λ), the quantum invariant is a Laurent polynomial
in q1/2D.

Proposition 1.6. In the above setting,J(T ,λ) is in the ringZ[q±1/2D], and in that ring, it is
divisible by the quantum dimensionJU(Λλ).

Fig. 2.
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Proof. According to the general theory,JT acts as aU -endomorphism ofV1 ⊗ · · · ⊗ Vn.
HenceJT commutes withιλ ◦ πλ. Note thatEλ must be of the formΛλ ⊗N , whereN is
a vector space overQ(q1/2D). OnEλ =Λλ ⊗N the operatorJT acts as id⊗ R, whereR
is an operator acting onN . It follows that

J(L,λ) = tr(R)× JU(Λλ). (1.7)

Eigenvalues ofR are also eigenvalues ofJT which can be represented by a matrix
with entries inZ[q±1/2D] (see [9], the proof used only the theory of quantum groups with
general parameter). Hence tr(R) is in the ringI of algebraic integers overZ[q±1/2D]. On
the other hand, that the decomposition ofV1 ⊗ · · · ⊗ Vn into λ-homogeneous components
can be done over the fractional fieldQ(q1/2D) meansR can be represented by a matrix
with entries inQ(q1/2D). Thus tr(R) ∈ Q(q1/2D). SinceI ∩ Q(q1/2D) = Z[q±1/2D], we
have that tr(R) ∈ Z[q±1/2D]. The proposition now follows from (1.7).✷
Remark 1.6.1. We will use the proposition in the following way. First, sinceJ(T ,λ) is a
Laurent polynomial inq1/2D, we can plug any non-zero value ofq1/2D in J(T ,λ). Next, for
special values ofq1/2D annihilatingJU(Λλ), the value ofJ(T ,λ) is 0. Also note that

JL(µ1, . . . ,µm)=
∑
λ

J(T ,λ). (1.8)

2. Quantum 3-manifold invariants

2.1. Introduction. Quantum invariants of 3-manifolds can be constructed only whenq is
a root of unity of some orderr. In previously known cases,r must be divisible byd , since
this will ensure that the so-calledS-matrix is invertible. Our construction of 3-manifold
invariants is slightly in more general situation: we will get invariants of 3-manifolds even
in the case whenr is not divisible byd . For this reason we will give a new (but not
quite new) proof of the existence of quantum invariants of 3-manifolds. We will use only
quantum groups with general parameter to define link invariants, and only on the last step
we replaceq by a root of unity inlink invariants. In this paper, a 3-manifold is always
closed and oriented.

For the reader to have an idea how the quantum 3-manifold invariant looks like, let
us give here the value for the Poincare Homology 3-sphere P (obtained by surgery on a
left-hand trefoil with framing−1), with g = sl2:

τ
sl2
P (q)= 1

1 − q

∞∑
n=0

qn
(
1− qn+1)(1− qn+2) · · · (1 − q2n+1).

Hereq is a root of unity, and the sum is easily seen to be finite. Similar, but different
formula has also been obtained by Lawrence and Zagier, using some calculation involving
modular forms, see [7].
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WhenM is the Brieskorn sphereΣ(2,3,7) (obtained by surgery on the right-hand
trefoil with framing−1):

τ
sl2
M (q)= 1

1 − q

∞∑
n=0

q−n(n+2)(1 − qn+1)(1 − qn+2) · · · (1− q2n+1).
Againq must be a root of unity for the above expression to have meaning.

2.1.1. Heuristic. The values ofQL(µ1, . . . ,µm) are inZ[q±1/2D]. The infinite sum∑
µj∈XQL(µ1, . . . ,µm) does not have any meaning. It is believed (and there are

reasons for this) that the sum is invariant under the second Kirby move, and hence
almost defines a 3-manifold invariant. The problem is to regularize the infinite sum∑

µj∈XQL(µ1, . . . ,µm). One solution is based on the fact that atrth roots of unity,
QL(µ1, . . . ,µm) is periodic (the first symmetry principle), so we should use the sum with
µj ’s run over the set�Cr .

2.2. Sum over�Cr .
2.2.1. General. Let us fix a positive integerr � dh∨, called theshifted level, and a

primitive rth root of unityξ . At some stage we also need a primitive 2Drth root ζ of 1
such thatζ 2D = ξ . Let

F
g

L(ξ; ζ )=
∑

µj∈�Cr∩X
QL(µ1, . . . ,µm)|q1/2D=ζ .

Certainlyζ determinesξ , but we prefer to keepξ in the notationF g

L(ξ; ζ ) since in later
cases, the whole thing depends only onξ but notζ , and in those cases we will dropζ in
the notation.

Recall thath= (ρ|α0)+1 is the Coxeter number. Letk = r−h. Then we have (recalling

the shift byρ and the fact thatQL
(r)= 0 on the boundary of�Cr )

F
g

L(ξ; ζ )=
∑
µj∈�Ck

QL(Λµ1, . . . ,Λµm)|q1/2D=ζ . (2.1)

The following half-open parallelepipedPr is a fundamental domain of the grouprY :

Pr = {
x = c1α1 + · · · + c�α� ∈ h∗

R
| 0� c1, . . . , c� < r

}
.

Since�Cr is a fundamental domain ofWr =W � rY , we have, due to the first symmetry
principle,

F
g

L(ξ; ζ )= 1

|W |
∑

µj∈ �Pr∩X
QL(µ1, . . . ,µm)|q1/2D=ζ . (2.2)

2.2.2. The Gauss sum.The following is a quadratic Gauss sum on the abelian group
X/rY ≡ Pr ∩X, with ζ used to define fractional powers ofξ :

γ g(ξ, ζ ) :=
∑

µ∈Pr∩X
ξ

1
2(|µ|2−|ρ|2).
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Criteria for vanishing of a Gauss sum are known, see, e.g., [2]. Using the explicit
structure of simple Lie algebras and the criterion one can prove the following.

Proposition 2.1. The Gauss sumγ g(ξ, ζ )= 0 if and only ifr is odd andg is eitherC� with
arbitrary �, or B� with even�.

The following lemma uses the well known trick of completing the square.

Lemma 2.2. Supposeβ ∈X. Then∑
µ∈Pr∩X

ξ
1
2 (|µ|2−|ρ|2)ξ (β|µ) = γ g(ξ, ζ )× ξ− 1

2 |β|2.

Proof. Completing the square, we see that

1

2

(|µ|2 − |ρ|2) + (β|µ)= (|µ+ β|2 − |ρ|2) − 1

2
|β|2.

It remains to notice that everything is invariant under the translationrY , and bothPr and
Pr + β are fundamental domains ofrY . ✷
2.3. Invariance under the second Kirby move.

Proposition 2.3. Suppose that the orderr of ξ is greater than or equal todh∨. Then
F

g

L(ξ, ζ ) does not depend on the orientation ofL and is invariant under the second Kirby
move.

Proof. Using linearity we extend the invariantJL to the case when the colors are elements
of theZ[q±1/2D]-module freely generated byΛλ,λ ∈X+. Then

F
g

L(ξ, ζ )= JL(ω, . . . ,ω)|q1/2D=ζ ,

where

ω =
∑

µ∈int(Cr )∩X
JU(µ)Λµ−ρ =

∑
µ∈�Ck∩X

JU(Λµ)Λµ.

The independence of orientation is simple: If we reverse the orientation of one
component, and at the same time change the color fromV to the dualV ∗, then the quantum
link invariant remains the same. It is known that the alcove�Ck , (herek = r−h), is invariant
under taking dual, i.e., the dual ofΛµ, µ ∈ �Ck , is anotherΛµ∗ , with µ∗ again in �Ck .
Moreover,JU(Λµ) = JU(Λ

∗
µ). Henceω is invariant underµ→ µ∗, andJL(ω, . . . ,ω) is

unchanged if we reverse the orientation of one component.
Let us consider the 2nd Kirby moveL → L′, as described in Fig. 3, with blackboard

framing. In bothL,L′ letK be the singled out unknot component with framing 1.
Then we have to show that

JL(ω, . . . ,ω)
(r)= JL′(ω, . . . ,ω).
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Fig. 3.

Fig. 4.

It is enough to show that for everyµ1, . . . ,µm ∈X+,

JL(µ1, . . . ,µm,ω)
(r)= JL′(µ1, . . . ,µm,ω).

Here we supposeL andL′ havem+ 1 components withK being the(m+ 1)st.
Suppose the colors of then strands coming out from the boxT areV1, . . . , Vn. (Each

Vi is one ofΛµj−ρ or their duals.) The moduleV1 ⊗ · · · ⊗Vn is completely reducible over
Q(q1/2D), so we decompose it into homogeneous components. Using (1.8) to decompose
JL andJL′ into sums of quantum invariants of “tangles with coupons”, see Fig. 3(c), (d). In
each tangle with coupons there is only one strand, with color a homogeneous component,
piercing throughK. Now putq1/2D = ζ (see Remark 1.6.1). We see that it’s remain to
prove the following lemma, which is essentially the statement of the proposition for the
case whenn= 1. ✷
Lemma 2.4. SupposeJU(λ)|q1/2D=ζ �= 0. Then

JZ(λ,ω)|q1/2D=ζ = JZ′(λ,ω)|q1/2D=ζ ,
whereZ,Z′ are the(1,1)-tangles in Fig.4.

Proof. Note that both sides ofJZ(λ,ω) andJZ′(λ,ω) are scalar operator acting onΛλ−ρ .
Closing Z, we get the Hopf linkH+ with framing 1 on both components. Similarly,
closingZ′ we get the trivial linkU2 with framing 1 on the second component. Since
JU(λ)|q1/2D=ζ �= 0, the identity to prove is equivalent to

JH+(λ,ω)
(r)= JU2(λ,ω). (2.3)
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Let us first calculate

u=
∑

µ∈Pr∩X
q

|µ|2−|ρ|2
2 JU(µ)JH (λ,µ)|q1/2D=ζ .

We have, withq1/2D = ζ ,

u = 1

ψ2

∑
µ∈Pr∩X

∑
w,w′∈W

sn(ww′) q
|µ|2−|ρ|2

2 q(µ|w(λ)+w′(ρ)) by formula(1.5)

= 1

ψ2γ
g(ξ, ζ )

∑
w,w′∈W

sn(ww′) q− 1
2 (|λ|2+|ρ|2+2(λ|w−1w′(ρ)) by Lemma 2.2

= 1

ψ2
γ g(ξ, ζ ) q− |ρ|2+|λ|2

2 |W |
∑
w∈W

sn(w)q(−λ|w(ρ))

= 1

ψ
q− |ρ|2+|λ|2

2 |W |γ g(ξ, ζ ) JU(−λ) by (1.2).

Thus∑
µ∈Pr∩X

q
|µ|2−|ρ|2

2 JU(µ)JH(λ,µ)
(r)= (−1)s|W |

ψ
q− |ρ|2+|λ|2

2 |W |γ g(ξ, ζ ) JU(λ). (2.4)

Recall that forQL, increasing by 1 the framing of a component colored byΛµ−ρ results

in a factorq(|µ|2−|ρ|2)/2. The left-hand side of (2.3) is

LHS= 1

|W |q
|µ|2−|ρ|2

2
∑

µ∈Pr∩X
q

|µ|2−|ρ|2
2 JU(µ)JH(λ,µ) |q1/2D=ζ.

The right-hand side is

RHS= JU(λ)
1

|W |
∑

µ∈Pr∩X
q

|µ|2−|ρ|2
2 JU(µ)

2 |q1/2D=ζ

= JU(λ)
1

|W |
∑

µ∈Pr∩X
q

|µ|2−|ρ|2
2 JH (µ,ρ) JU (µ) |q1/2D=ζ.

Hence it follows from (2.4) thatLHS= RHS. ✷
Let us record here the formula forFU+(ξ; ζ ), whereU+ is the unknot with framing 1.

F
g

U+(ξ; ζ )= 1

|W |
∑

µ∈Pr∩X
q

|µ|2−|ρ|2
2 JH (ρ,µ)JU (µ) |q1/2D=ζ ,

and hence (2.4) gives

F
g

U+(ξ; ζ )= γ g(ξ; ζ )∏
α>0(1− q(α|ρ))

. (2.5)

Remark 2.4.1. In the proof we used the first symmetry principle, whose proof required
the theory of quantum groups at roots of unity. However, if we definedFL using the sum
overPr ∩X at the beginning, then we would not have to use the first symmetry principle.
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2.4. Quantum invariants.
2.4.1. Definition. SupposeU± are the unknot with framing±1. Note thatF g

U±(ξ; ζ )
are complex conjugate to each other. IfF

g

U±(ξ; ζ ) �= 0, then one can define invariant of the
3-manifoldM obtained by surgery alongL by the formula:

τ
g

M(ξ; ζ ) := FL(ξ; ζ )
FU+(ξ; ζ )σ+ FU−(ξ; ζ )σ− .

Hereσ+, σ− are the number of positive and negative eigenvalues of the linking matrix of
L. If F g

U±(ξ; ζ )= 0, then letτg

M(ξ; ζ )= 0 for every 3-manifoldM.

Here are the cases whenF g

U±(ξ; ζ )= 0.

Proposition 2.5. Suppose the orderr of the rootξ satisfiesr � dh∨. ThenF g

U±(ξ; ζ )= 0
if and onlyr is odd andg is eitherB� with even� or C� with arbitrary �. In particular, if
r is divisible byd , thenF g

U±(ξ; ζ ) is not equal to 0.

Proof. The proposition follows from formula (2.5) and Proposition 2.1.✷
Remark 2.5.1. Only in the two cases listed in the proposition are the invariants trivial. But
FU± �= 0 does mean that the so-calledS-matrix is invertible.

2.4.2. Comparison with known cases.In the literature, only the caser divisible byd
was considered. In that caser = dr ′, and the numberr ′ − h∨ is called the level of the
theory (see [4]). Also in this case one can construct a modular category, and a topological
quantum field theory.

Here we consider both cases whenr is or is not divisible byd . In the latter case, the
level should ber − h.

In the book [20] modular category, and hence quantum invariants, was constructed for
simple Lie algebras withd = 1. Later work of [1] established the existence of modular
category for every simple Lie algebra, at shifted levelr divisible byd , see a rigorous proof
in [4]. We will explain here why the invariant of [4] is coincident with ours, whenr is
divisible byd .

If d = 1, then the set of modulesΛµ, with µ+ ρ ∈ Cr forms a modular category (see
[1,4]), hence the 3-manifold invariant derived from the modular category is exactly our
τ

g

M(ξ; ζ ).
Supposed > 1, andr is divisible by d . In this case the above set of modules does

not form a modular category. There is a smaller simplexC′
r ⊂ Cr with the corresponding

affine Weyl groupW ′
r such thatCr consists of several copies ofC′

r under the action of
W ′
r ; and the modular category consists ofΛµ with µ + ρ ∈ C′

r . The corresponding 3-
manifold invariant is thus obtained by taking the sum over the smaller simplexC′

r . The first
symmetry principle is valid ifCr,Wr are replaced withC′

r ,W
′
r (for details see [9]). Due

to this symmetry, the sum ofQL over the bigger simplexCr is simply a constant times the
sum overC′

r . This is the reason why we can useCr to define the same 3-manifold invariant.
This smaller simplexC′

r is constructed using thelonghighest root.
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3. Quantum invariant of the projective group

3.1. Preliminaries. There is a simply-connected complex Lie groupG corresponding to
g. The invariantτg

M is associated toG. LetG be the center group ofG. It is known thatG
is isomorphic toX/Y , and|G| = det(aij ). For every subgroupG′ ⊂G, there corresponds
a Lie groupG/G′, and there is a quantum invariant associated with this quotient group. We
will describe here a method to construct them, focusing on the extreme case whenG′ =G.
We will see that there are many shifted levelsr for which the invariantτg

M is trivial, but

at the same time the invariant of the projective group, denoted byτ
Pg

M , is non-trivial, and
even defined by a modular category. We will see that ifr and det(aij ) are coprime, i.e.,
(r,det(aij ))= 1, then the invariant associated to the projective group is not trivial.

3.1.1. The latticeρ + Y .

Lemma 3.1. For every positive integerr, the latticeρ + Y is invariant under the action of
Wr .

Proof. Recall thatWr = W � rY . The fact thatρ + Y is invariant underrY is obvious.
Thatρ + Y is invariant under the action ofW follows from the fact thatw(ρ)− ρ belongs
to Y . (Actually,w(µ)−µ ∈ Y for everyµ ∈X.) ✷

3.1.2. Sums over the root lattice.Let k = r − h, and ξ is a root of unity of order
r � dh∨ � h. Let

F
Pg

L (ξ)=
∑

µj∈(�Ck∩Y )
QL(Λµ1, . . . ,Λµm)|q=ξ .

The definition is the same as in (2.1), except that we sum overµj ’s which are in the
root lattice. Note that there is no need to fix a 2Dth root ofξ , since by Corollary 1.2, there
is no fractional power ofq .

Recalling the shift byρ, we have

F
Pg

L (ξ)=
∑

µj∈�Cr∩(ρ+Y )
QL(µ1, . . . ,µm)|q=ξ .

Lemma 3.1 and the first symmetry principle show that

F
Pg

L (ξ)= 1

|W |
∑

µj∈ρ+(Pr∩Y )
QL(µ1, . . . ,µm)|q=ξ .

3.1.3. Gauss sum.We will encounter a Gauss sum on the groupY/rY . From now on
let

∑
r stands for

∑
µ∈ρ+(Pr∩Y ). Put

γ Pg(ξ) :=
∑
r

ξ
|µ|2−|ρ|2

2 .
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Then, the same proof of Lemma 2.2 gives us:

Lemma 3.2. Supposeβ ∈ Y . Then∑
r

ξ
|µ|2−|ρ|2

2 ξ(µ|β) = γ Pg(ξ)× ξ− |β|2
2 .

3.2. Definition of invariants associated to the projective group.Recall thatH is the
Hopf link. Let Sλ,µ = JH (λ,µ)|q=ξ . Let the matrixS have entriesSλ,µ with λ,µ ∈
Interior(Cr)∩ (ρ + Y ).

Theorem 3.3.

(a) Suppose the orderr of ξ is greater than or equal todh∨. ThenFPg

L (ξ) is invariant
under the2nd Kirby move and does not depend on the orientation ofL.

(b) If r is coprime withd det(aij ), then the matrixS is invertible.

(c) If r is coprime withdet(aij ), thenFPg

U± (ξ) �= 0.

Proof. Notice that ifλ,µ ∈ Y , then in the decomposition ofΛλ ⊗ Λµ into irreducible
modules one encounters onlyΛν with ν ∈ Y . This is a well known fact: The irreducible
modules of the groupG/G have highest weights inX+ ∩ Y , and finite-dimensionalG/G-
modules are completely reducible.

Using this fact one can repeat the proof of Proposition 2.3 to get a proof of part (a).
(b) We will show thatS�S is a non-zero constant times the identity matrix. Here�S is the

complex conjugate. We know thatψ �= 0 whenq = ξ , sincer � dh∨ (see 1.2.3). Using
(1.5) and

∑
µ∈�Cr∩(ρ+Y ) = 1

|W |
∑

r , we have

|W |ψ2(S�S )
λ,ν

=
∑
r

∑
w,w′∈W

sn(ww′)ξ (µ|w(λ)−w′(ν))

=
∑

w,w′∈W
sn(ww′)

[∑
r

ξ (µ|w(λ)−w′(ν))
]
.

Let Y ∗ be the lattice dual toY , overZ, with respect to the scalar product. Ifw(λ) −
w′(ν) /∈ rY ∗, then there is a fundamental rootαi such that(αi |w(λ) − w′(ν)) /∈ rZ. It
follows that the sum in the square bracket is 0, sinceξn + ξ2n + · · · + ξ(r−1)n = 0 if n is
not divisible byr, and

∑
r is the sum over a fundamental domain ofrY .

We will find out whenw(λ)−w′(ν) ∈ rY ∗. Note first thatw(λ)−w′(ν) ∈ Y . We’ll find
the intersectionrY ∗ ∩ Y .

The latticeY ∗ is spanned byλ1/d1, . . . , λ�/d�, whereλ1, . . . , λ� are the fundamental
weights. Thus the order ofY ∗/X is d1d2, . . . , d�, a factor ofd�. The order ofX/Y is
det(aij ). Thus the grouprY ∗/rY ≡ Y ∗/Y has order a factor ofd� × det(aij ).

The groupY/rY has orderr�. By assumption, the orders of two groupsrY ∗/rY and
Y/rY are co-prime. Their intersection must be trivial. Hencew(λ)−w′(ν), belonging to
bothrY ∗ andY , must belong torY . But this meansλ andν are in the sameWr -orbit. This
could happen forλ, ν ∈ Int(Cr) if and only ifw =w′ andλ= ν.
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Whenw = w′ andλ= ν, the sum in the square bracket isr�. Thus(S�S) is a non-zero
constant times the identity.

(c) One can prove (c) directly using the criterion of vanishing of Gauss sums. Or one
can use the following arguments. If, in addition,r is coprime withd , then by (b), theS
matrix is non-degenerate. In this case it is known thatF

Pg

U± (ξ) �= 0 (see [20]). Suppose

now (r, d) �= 1. Thenr is divisible byd . Formula (3.2) below shows thatFPg

U+ (ξ) is a

factor ofF g

U+(ξ, ζ ), which is not 0 by Proposition 2.5 (for some 2Dth rootζ of ξ ). Hence

F
Pg

U± (ξ) �= 0. ✷
If FPg

U± (ξ)= 0, we defineτPg

M (ξ)= 0, otherwise, let

τ
Pg

M (ξ) := F
Pg

L (ξ)

(F
Pg

U+ (ξ))
σ+(FPg

U− (ξ))
σ−
, (3.1)

whereM is obtained fromS3 by surgery along the framed linkL.

Remark 3.3.1. (a) Theorem 3.3, part (b) shows that whenr is co-prime withd det(aij ), the
set of all modulesΛµ, with µ ∈ �Ck ∩ Y (note the root latticeY here), generates a modular
category. Here one has to use the reduced quotient structure as in [1,4]. At the same time,
if Y is replaced byX, then the resulting category, usually considered by algebraists (say, in
earlier papers of H. Andersen) might not be a modular category. The reason is theS-matrix
might not be invertible. There are values ofr when theS-matrix is invertible for theY
case, but not for theX case.

(b) WheneverFPg

U± (ξ) �= 0, one has non-trivial invariants. In addition to the cases

described in the theorem, there are other cases whenF
Pg

U± (ξ) �= 0. For example, using
the criterion for the vanishing of Gauss sum, one can also prove that wheneverr is odd
(for all g), FPg

U± (ξ) �= 0. On the other hand, there are cases whenF
Pg

U± (ξ) = 0: Examples
include the caseg = sl2, r is divisible by 4.

(c) The invariantτPg

M is the invariant associated with the projective group, since the root
lattice is spanned by highest weights of finite-dimensional irreducible modules ofG/G. If
G′ is a subgroup ofG, then one can construct invariant associated withG/G′ by using the
latticeY ′ generated by the set of all highest weights ofG/G′. The construction is similar.

3.3. Invariant associated to a finite abelian group with a bilinear form.On the group
G=X/Y there is defined the symmetric bilinear form(·|·) with values in 1

D
Z/Z ⊂ Q/Z.

For any such group there is a way to define invariants of 3-manifolds which carry only
the information about the homology groups and the linking form on the torsion of the first
homology group, see [15,2,20]. We will present here the theory in the form most convenient
for us.

Again ζ is root of unity of order 2Dr, andξ = ζ 2D. Define

FGL (ξ; ζ ) :=
∑

gi,gj∈G
ξr(r−h)×

1
2

∑
lij (gi |gj ),



142 T.T.Q. Le / Topology and its Applications 127 (2003) 125–152

wherelij is the linking matrix ofL. Here we useζ to define fractional powers ofξ .
Then

FGU±(ξ; ζ )=
∑
g∈G

ξr(r−h)(g|g)/2

is a Gauss sum. IfFGU±(ξ; ζ )= 0, we defineτGM(ξ; ζ )= 0, otherwise we define, for

τGM(ξ; ζ ) := FGL (ξ; ζ )
(FGU+)

σ+ (FGU−)
σ−
,

for M obtained by surgery on a framed linkL. It is a 3-manifold invariants. In general,
ζ r(r−h) is a root of unity of order 2D. If ζ r(r−h) = exp(2π i/2D), then our invariant is
coincident with those in [2].

3.4. Splitting.

Lemma 3.4. Suppose(r,det(aij ))= 1. Then

(a) G acts freely on the set�Cr ∩X.
(b) In eachG-orbit of �Cr ∩X there is exactly one element inρ + Y .

Proof. (a) Note that�Cr ∩X is a finite set. Supposeg(µ) = µ for someµ ∈ �Cr ∩X, we
will show thatg is the identity ofG. There is a liftg̃ ∈X of G such that

rg̃ +µ= µ (modWr),

which, due toWr =W � rY , means there isw ∈W such that

rg̃ +µ ∈w(µ)+ rY.

Sincew(µ)−µ ∈ Y , it follows thatrg̃ ∈ Y , or rg = 0 inG. Because(r, |G|)= 1, this
impliesg = 0 inG.

(b) UsingX/Y = rX/Y (since(r, |G|)= 1), we have

X = Y + rX.

Hence(ρ + Y )+ rX =X. This shows that in eachG-orbit there is at least one element
in ρ + Y . The proof of part (a) shows that eachG-orbit contains at most one element in
ρ + Y . ✷

Suppose(r,det(aij ))= 1. By the above lemma and the second symmetry principle (see
Corollary 1.5), one has

F
g

L(ξ; ζ )= FGL (ξ; ζ )FPg

L (ξ). (3.2)

Hence we have the following splitting theorem

Theorem 3.5. Suppose(r,det(aij ))= 1 andζ is a 2Drth root of unity,ξ = ζ 2D. Then

τ
g

M(ξ; ζ )= τ
Pg

M (ξ) τGM(ξ; ζ ).
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Remark 3.5.1. (a) The invariantτGM(ξ; ζ ) carries only the information about the first
homology group and the linking form on its torsion; it is a weak invariant, and sometimes
it is equal to 0, in which caseτg

M(ξ; ζ )= 0. HenceτPg

M (ξ) is in general a finer invariant.

For example, ifg = B�, andr is odd, thenτg

M(ξ; ζ )= 0, butτPg

M (ξ) is in general not 0.
(b) Whenr is not coprime with det(aij ), there are cases when bothτg and τPg are

non-trivial, but there is no simple relation between the two invariants. Examples of such
case are:g = sln and(r, n) �= 1, g =D� andr even, andg = C� with � odd andr even.

(c) The splitting of Theorem 3.5 fits very well with the Gussarov–Habiro theory of
finite type 3-manifold invariants: In that theory one has first to partition the set of 3-
manifolds into subset of ones with the same homology and linking form, then defines finite
type invariants in each subset using a suitable filtration. The invariantτG corresponds to
homology and the linking form, andτPg can be expanded into power series, at least for
rational homology 3-spheres (see below), that gives rise to finite type invariants.

(d) The projective quantum invariants were defined and the splitting theorem was proved
in Kirby and Melvin [5] for g = sl2 and Kohno and Takata [6] forg = sln. For the case
when r is divisible by d , a similar splitting has also been obtained by Sawin [18], but
his proof does not go through for all simple Lie algebras, he has to exclude a half ofD

series. Ford = 2, Sawin’s result and Theorem 3.5 addressdifferentcases, and hence they
complement each other.

4. Integrality

Theorem 4.1. Suppose thatr � dh∨ is a prime and not a factor of|W | det(aij ), andξ a

primitive r-th root of unity. ThenτPg

M (ξ) is in Z[ξ ] = Z[exp(2π i/r)].

The theorem was proved in theg = sl2 case by Murakami [14] (see also [12]) and
g = sln by Takata and Yokota [19] and Masbaum and Wenzl [13]. It is conjectured that
even whenr is a not prime, one also hasτPg

M (ξ) ∈ Z[ξ ]. The remaining part of this section
is devoted to a proof of this theorem.

4.1. General facts. For a, b ∈ Z[ξ ], we write a ∼ b if there is a unitu in Z[ξ ] such
that a = ub. Supposer is an odd prime. It is known that(ξ − 1) is prime in Z[ξ ],
and r ∼ (ξ − 1)r−1. It follows that (r − 1)! is coprime with(ξ − 1). If (n, r) = 1 then
(ξn − 1)∼ (ξ − 1).

Formula (1.1) shows that for everyλ ∈ Y ,

JU(Λλ)|q=ξ ∼ 1.

To prove the theorem, we have to show that the numerator of the right-hand side of (3.1)
is divisible by the denominator. First we will show that the denominator is just a power of
(ξ − 1), then we show that the numerator can be decomposed as a sum of simple terms,
each divisible by that power of(ξ − 1).
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4.2. Gauss sum again.Supposeb is an integer. Recall that
∑
r stands for

∑
µ∈ρ+(Pr∩Y ).

Let

γ
Pg

b (ξ)=
∑
r

ξb
|µ|2−|ρ2|

2 .

Note that forµ ∈ ρ + Y , |µ|2 − |ρ|2 is always an even number. Henceγ Pg

b (ξ) ∈ Z[ξ ].

Lemma 4.2. Supposer is an odd prime not a factor ofd det(aij ). Thenγ Pg

b (ξ) is divisible

by (ξ − 1)
r−1

2 �. Moreover, ifb is not divisible byr, then

γ
Pg

b (ξ)∼ (ξ − 1)
r−1

2 �.

Proof. If b is divisible byr, thenγ Pg

b (ξ)= r� ∼ (ξ − 1)�(r−1), and we are done.
Supposeb is not divisible byr. Thenξb is a root of 1 of orderr. Hence there is a

Galois automorphismσ of the field Z(ξ) over Q such thatσ(ξb) = exp(2π i/r). Since
σ(ξ − 1)∼ ξ − 1, it’s enough to prove the lemma in the caseξb = exp(2π i/r). In this case

γ
Pg

b (ξ)=
∑

µ∈Pr∩Y
exp

[
π i

r

(|µ+ ρ|2 − |ρ|2)].
Sincer is odd, and(µ|ρ) ∈ Z, one has

|µ+ ρ|2 − |ρ|2 ≡ ∣∣µ+ (r + 1)ρ
∣∣2 − (r + 1)2|ρ|2 (mod 2r).

It follows that

γ
Pg

b (ξ)= exp

[−π i

r
(r + 1)2|ρ|2

] ∑
µ∈Pr∩Y

exp

[
π i

r

(|µ+ (r + 1)ρ|2)].
Notice that(r + 1)ρ ∈ Y sincer + 1 is even, and use therY -invariance, we have

γ
Pg

b (ξ)= exp

[
−π i

r
(r + 1)2|ρ|2

] ∑
µ∈Pr∩Y

exp
π i|µ|2
r

.

The first factor is a unit inZ[ξ ]. If P is the matrix(diaij ) (so that(αi |αj )= Pij ), then
the second factor is

∑
µ∈Pr∩Y

exp
π i|µ|2
r

=
∑

!k∈(Z/rZ)�
exp

[
π i

r
!ktP !k

]
.

It is known that this Gauss sum is∼(ξ − 1)
r−1

2 �. (This fact can be proved by diag-
onalizing the matrixP and use the value of the 1-variable Gauss sum. The matrixP is
non-degenerate overZ/rZ since detP andr are coprime.) ✷
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Lemma 4.3.

(a) Supposeb is an integer coprime withr. Letb∗ be an integer such thatbb∗ ≡ 1 (modr).
Then∑

r

ξb
|µ|2−|ρ2|

2 ξ(µ|β) = ξ−b∗β2/2γ
Pg

b (ξ). (4.1)

(b) Supposer is an odd prime, then the left-hand side of(4.1) is divisible by(ξ − 1)
r−1

2 �.

Proof. (a) The proof is similar to that of Lemma 2.2, using the trick of completing the
square.

(b) If b is not divisible byr, then the statement follows from part (a) and Lemma 4.2.
Supposeb is divisible byr. Then theLHS is either 0 orr�, which is∼(ξ − 1)�(r−1). ✷
4.3. Unknots and simple lens spaces.LetUb be the unknot with framingb. We will first
find the prime factors ofFPg

Ub
.

Proposition 4.4.

(a) Supposer � dh∨ and is coprime withb. Let b∗ be an integer such thatbb∗ ≡ 1
(modr). Then

F
Pg

Ub
(ξ)= ξ(1−b∗)|ρ|2 γ Pg

b (ξ) JU (b
∗ρ)∏

α>0(1− ξ(α|ρ))
. (4.2)

(b) If, in addition,r is an odd prime, thenFPg

Ub
(ξ)∼ (ξ − 1)(r�−dimg)/2.

Proof. (a) The proof is similar to that of (2.5): withq = ξ in ψ ,

F
Pg

Ub
(ξ) = 1

|W |ψ2

∑
r

ξb
|µ|2−|ρ|2

2

( ∑
w∈W

sn(w)ξ(µ|w(ρ))
)2

= 1

|W |ψ2

∑
r

ξb
|µ|2−|ρ|2

2
∑

w,w′∈W
sn(ww′)ξ (µ|w(ρ)+w′(ρ)).

Sincew(ρ) ∈ ρ + Y we havew(ρ)+w′(ρ) ∈ 2ρ + Y = Y . Using (4.1),

F
Pg

Ub
(ξ) = 1

|W |ψ2
γ
Pg

b (ξ) ξ−b∗|ρ|2 ∑
w,w′∈W

sn(ww′)ξ−b∗(w(ρ)|w′(ρ))

= γ
Pg

b ξ−b∗|ρ|2

|W |ψ2 |W |
∑
w∈W

sn(w)ξ(−b∗ρ|w(ρ))

= γ
Pg

b (ξ) ξ−b∗|ρ|2

ψ
JU

(−b∗ρ
)
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= γ
Pg

b (ξ) ξ (1−b∗)|ρ|2JU(b∗ρ)∏
α>0(1− ξ(α|ρ))

by (1.4).

(b) follows from part (a), Lemma 4.2, and the fact thats = (dimg − �)/2. ✷
Corollary 4.5. Supposer � dh∨ is an odd prime, andb is not divisible byr. Then
τ
Pg

M (ξ)∼ 1, i.e.,τPg

M (ξ) is a unit inZ[ξ ], for the lens spaceM obtained by surgery along
Ub.

Remark 4.5.1. The actual value ofτPg

M (ξ), whereM is obtained by surgery onUb is (again
hereb is an integer not divisible by the odd primer)

τ
Pg

M (ξ)=
( |b|
r

)�
ξ (

sn(b)−b
2 |ρ|2)∼ ∏

α>0

1− ξ−(b∗ρ|α)

1 − ξ−(sn(b)ρ|α) . (4.3)

Here( |b|
r
) is the Legendre symbol,( x

y
)∼ is the reduction modulor, i.e.,( x

y
)∼ = xy∗.

4.4. Expansion of quantum link invariants.

Lemma 4.6. For each positive integerN one has

QL(µ1, . . . ,µm)=
N−1∑
n=0

pn(µ1, . . . ,µm)(q − 1)n +R,

whereR is in Z[q±1] and divisible by(q − 1)N , pn(µ1, . . . ,µm) is a polynomial function
onh∗

R
which takes integer values whenµj ∈ Y . Moreover the degree ofpn satisfies

deg(pn)� 2n+m(dimg − �). (4.4)

Proof. This follows easily from a counting argument in the theory of the Kontsevich
integral, using the fact thatJL is obtained from the Kontsevich integral by substituting
the Lie algebra into the chord diagrams (see [10,3]). The fact thatpk takes integer values
whenµ1, . . . ,µm ∈ Y follows from the integrality of the coefficients ofJL. Let us briefly
sketch the idea.

ExpandingJL usingq = eh̄, with h̄ a new variable, we get

JL(µ1, . . . ,µm)|q=exph̄ =
∞∑
n=0

p′
n(µ1, . . . ,µm)h̄

n,

wherep′
n is a function on(h∗

R
)m. The Kontsevich integral theory will show thatp′

n is a
polynomial function with degree at most 2n+ deg(dim(µ1))+ · · ·+ deg(dim(µm)), where
dim(µ) is the function which gives the dimension of the moduleΛ(µ−ρ). By Weyl formula,
dim(µ) is a polynomial function of degrees—the number of positive roots. Hence

deg
(
p′
n

)
� 2n+ms.

Thus forQL = JLJUm we have

QL(µ1, . . . ,µm)|q=exph̄ =
∞∑
n=0

p′′
n(µ1, . . . ,µm)h̄

n,
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where the degree ofp′′
n is less than or equal to 2n+ 2ms.

Change the variable from̄h to q − 1 = eh̄ − 1 (or h̄= ln[(q − 1)+ 1], we get

QL(µ1, . . . ,µm)=
∞∑
k=0

pn(µ1, . . . ,µm)(q − 1)n,

with deg(pn)� 2n+ 2ms. It remains to notice thats = (dimg − �)/2. ✷
4.5. A technical lemma.

Lemma 4.7. Supposer is an odd prime,p a polynomial function taking values inZ when
µ1, . . . ,µm ∈ Y . Let

x =
∑

µj∈ρ+(Pr∩Y )
p(µ1, . . . ,µm)

and

y = (ξ − 1)�m
r−1

2 −# degp
2 $,

where#z$ is the greatest integer less than or equal toz. Thenx/y ∈ Z[ξ ]. (Note thaty
may not be inZ[ξ ].)

Proof. In [8, Corollary 4.14] we proved that the quotientx/y is in Z[ξ, 1
(r−1)! ]. But y is

coprime with(r − 1)!, hence the quotient must be inZ[ξ ]. ✷
4.6. Proof of the theorem.LetN =m

r�−dimg

2 . Then the denominator of (3.1) is a factor
of (ξ − 1)N by Proposition 4.2. We will prove that the numerator is divisible by(ξ − 1)N .

Applying Lemma 4.6

QL(µ1, . . . ,µm)=
N−1∑
n=0

pn(µ1, . . . ,µm)(q − 1)n +R.

We sum overµj ∈ ρ + (Pr ∩ Y ) to getFPg

L (ξ). The term involvingR is certainly
divisible by(ξ − 1)N . For eachn the term involvingpn, by Lemma 4.7 is divisible by

(ξ − 1)�m
r−1

2 −# degpn
2 $ × (ξ − 1)n,

which, by (4.4), is divisible by(ξ − 1)N . This completes the proof of the theorem.

5. Perturbative expansion

5.1. General. Unlike the link case, quantum 3-manifold invariants can be defined only
at roots of unity, i.e., the domain of the functionτg

M(q) is the set of rational points on
the unit circle in the complex planeC. For many manifolds, eg the Poincare sphere or the
Brieskorn sphereΣ(2,3,7), there is no analytic extension of the functionτg

M aroundq = 1.
In perturbative theory, we want to expand the functionτ

g

M aroundq = 1 into power series.
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For rational homology 3-spheres, i.e., manifoldsM with 0 rational homology, and for
g = sl2, Ohtsuki showed that there is a number-theoretic expansion ofτ

Pg

M aroundq = 1,
see [16]. We established the same result for the caseg = sln, see [8]. The proof in [8] is
readily applied to any simple Lie algebra: In [8] we had to use some integrality properties
of quantum link invariants and quantum 3-manifold invariants, and there we established
these properties for the special caseg = sln. For the general simple Lie algebras, these
integrality properties are the results of [9] and Theorem 4.1.

5.2. The number-theoretic expansion.Supposer is a big enough prime, andξ =
exp(2π i/r). By the integrality (Theorem 4.1),

τ
Pg

M (ξ) ∈ Z[ξ ] = Z[q]/(1+ q + q2 + · · · + qr−1).
Choose a representativef (q) ∈ Z[q] of τPg

M (ξ). Formally substituteq = eh̄ in f (q):

f (q)= cr,0 + cr,1h̄+ · · · + cr,nh̄
n + · · ·

The rational numberscr,n depend onr and the representativef (q). Their denominators
must be a factors ofn!, by Theorem 4.1. Hence ifn < r − 1, we can reducecr,n modulo
r and get an element ofZ/rZ. It is easy to see that these reductionscr,n (mod r) do
not depend on the representativef (q) and hence are invariants of the 3-manifolds. The
dependence onr is a big drawback. The theorem below says that there is a numbercn,
not depending onr, such thatcr,n (mod r) is the reduction ofcn, or −cn, modulor, for
sufficiently large primer. It is easy to see that if suchcn exists, it must be unique.

Theorem 5.1. For every rational homology3-sphereM, there are a sequence of numbers
cn ∈ Z[ 1

(2n+2s)!|H1(M,Z)| ], such that for sufficiently large primer (actually any primer >

max(|H1(M,Z),dimg − �) is enough),

cr,n ≡
( |H1(M,Z)|

r

)�
cn (modr),

where( |H1(M,Z)|
r

)= ±1 is the Legendre symbol.

The seriestPg

M (h̄)= ∑∞
n=0 cnh̄

n can be considered as the perturbative expansion of the

functionτPg

M atq = 1. As mentioned above, the proof is just similar to the one for the case
g = sln in [8].

5.3. Some calculation.Let us describe here how to calculate the power seriestM , and
sketch the ideas behind the calculation.

5.3.1. Theg = sl2 and surgery on a knot case.In this case let the positive integerN
stand for the uniqueg-module of dimensionN . The invariantJL(N1, . . . ,Nm) is known
as the colored Jones polynomial. SupposeM is obtained by surgery along a knotK with
framing 1. LetK0 be the same knot with framing 0. Then

QK0(N)|q=eh̄ =
∑

2�j�n+2

cj,nN
j h̄n. (5.1)
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The restriction 2j � n+ 2 follows from the fact thatK0 has framing 0. It is known that
there is no odd order ofN : j must be even.

To obtaintM(h̄), all one needs is to replaceN2j in (5.1) by(−2)j (2j − 1)!! h̄−j , then
multiply by a universal constant:

tM(h̄)= z
∑

c2j,n(−2)j (2j − 1)!! h̄n−j ,

wherez= zsl2 = (1 − q)/2 = (1− eh̄)/2.
Presumably this was first obtained by Rozansky [17].
5.3.2. The case of general simple Lie algebra and surgery along a knot.Again assume

thatM is obtained by surgery along the knotK with framing 1, andK0 is the same
knot with framing 0. It is known that every polynomial functionp(µ) on h∗

R
are linear

combinations of functions of the formβj , β ∈ Y . Hereβj (µ) := (β|µ)j . Thus one has

QK0(µ)|q=eh̄ =
∑

2s�j�n+2s, β∈Y
cβ;j ;nβj (µ) h̄n. (5.2)

Here for each degreen the sum is finite. Again the restrictionj � 2s + n comes from
the fact thatK0 has framing 0.

To obtaintM(h), all one needs is to replaceβj (µ) in (5.2) by 0 ifj is odd,β2j (µ) by

(2j − 1)!! h̄−j (−|β|2)j , (5.3)

then multiply by a universal constant:

t
Pg

M (h̄)=
∑

cβ;2j ;n(2j − 1)!! (−|β|2)j h̄n−j × 1

|W |
∏
α>0

(
1− q(α|ρ)). (5.4)

5.3.3. A sketch of the main idea.The main idea is to separate the framing part, and
consider the sum

∑
r as a discreet Gauss integral. This was first used by Rozansky (forsl2)

in his series of important work on quantum invariants.
Recall how we defineτPg

M (ξ). One getsQK by multiplying QK0 by q(|µ|2−|ρ|2)/2.
SummingQK overµ ∈ ρ + (Pr ∩ Y ), we getFK . Then we have to divideFK by FU+ .

The result isτPg

M (ξ). A look at formula (5.2) shows that if we understand the perturbative
expansion of

∑
rq

|µ|2−|ρ|2
2 βj (µ)

FU+
, (5.5)

then we will know the perturbative expansion ofτPg

M .
If we replaceβj (µ) = (β|µ)j in (5.5) by qβ(µ) := q(β|µ), then the perturbative

expansion is easy to calculate:

∑
r ξ

|µ|2−|ρ|2
2 ξ(β|µ)

FU+
= 1

FU+
γ Pg(ξ) ξ−|β|2/2 by (4.1)

= ξ−|β|2/2 ∏
α>0

(
1− ξ(α|ρ)) by (4.2). (5.6)
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Thus the perturbative expansion of the left-hand side of (5.6) isq−|β|2/2z, with z =∏
α>0(1 − q(α|ρ)) andq = eh̄.
Now if we expandq(β|µ) = exp[h̄(β|µ)], we can see the term(β|µ)j there:

exp
[
h̄(β|µ)] =

∑
j�0

h̄j (β|µ)j
j ! .

To obtain the perturbative expansion of (5.5), we expandq−|β|2/2z into power series of
h̄, and keep only the part of degreej in µ. It is easy to see that ifj is odd, there is no part
of degreej , and if j is even, then the part of degreej is given by the formula (5.3). (In
this argument we considerµ as a variable. To be more precise, one replaceµ by tµ, with
t ∈ R a variable, then compare the terms of same degree oft .)

5.3.4. Special lens spaces.SupposeM is obtained by surgery on the unknotUb, with
b �= 0. Then from (4.3) it follows that

t
Pg

M (h̄)= q
sn(b)−b

2 |ρ|2 ∏
α>0

1− q−(ρ|α)/b

1 − q−sn(b)(ρ|α) |q=exph̄ .

5.3.5. Link with diagonal linking matrix. SupposeL is a framing link whose linking
matrix is diagonal, with non-zero integersb1, . . . , bm on the diagonal. LetL0 be the same
link with 0 framing, andM the 3-manifold obtained by surgery alongL, which is a rational
homology 3-sphere. Expandingq = eh̄ in QL0 we get

QL0(µ1, . . . ,µm)|q=eh̄

=
∑

β1,...,βm∈Y ; j1,...,jm∈Z+; n∈Z+
cβ1,...,βm;j1,...,jm;n βj11 (µ1) · · ·βjmm (µm) h̄n.

There are some restrictions onβi, ji , for a fixedn. Then to obtaintPg

M (h̄) one needs to

replaceβji (µi) by 0 if j is odd,β2j
i (µi) by

zbi b
−j
i (2j − 1)!! (−|βi |2

)j
h̄−j ,

where

zbi = 1

|W | q
|ρ|2

2 (sn(b)−b) ∏
α>0

(
1 − qsn(b)(α|ρ)).

Thus,

t
Pg

M (h̄) = zb1 · · ·zbm
∑

cβ1,...,βm; 2j1,...,2jm;n

×
m∏
i=1

(2ji − 1)!!
(−|βi |2

bi

)ji
h̄n−j1−···−jm .

The restriction onj1, . . . , jm will guarantee that the right-hand side is a formal power
series inh.
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5.3.6. General case.Suppose nowM is an arbitrary rational homology 3-sphere.
Ohtsuki showed that there are lens spacesM1, . . . ,Ml , each obtained by surgery on an
unknot with non-zero framing, such thatM ′ =M #M1 # · · ·#Ml can be obtained surgery
along a link with diagonal linking matrix, see [16]. Then one has

t
Pg

M (h̄)= t
Pg

M ′ (h̄)
(
t
Pg

M1
(h̄)

)−1 · · · (tPg

M1
(h̄)

)−1
.
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