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Abstract

We consider quantum invariants of 3-manifolds associated with arbitrary simple Lie algebras.
Using the symmetry principle we show how to decompose the quantum invariant as the product of
two invariants, one of them is the invariant corresponding to the projective group. We then show that
the projective quantum invariant is always an algebraic integer, if the quantum parameter is a prime
root of unity. We also show that the projective quantum invariant of rational homology 3-spheres
has a perturbative expansion a la Ohtsuki. The presentation of the theory of quantum 3-manifold
invariants is self-contained.
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0. Introduction

0.1. For asimple Lie algebrg over C with Cartan matrix(a;;) let d = max; |a;;|.
Thusd = 1 for the ADE series,d = 2 for BCF andd = 3 for G2. The quantum group
associated witly is a Hopf algebra ove®(¢/2), whereg1/2 is the quantum parameter. To
fix the order let us point out that oyris ¢2 in [3,4,20] orv? in the book [11]. For example,
the quantum integer is given by

qn/2 _ q—n/Z

[n] = 175
2 _g-12
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0.2. Modular categories, and hence quantum 3-manifold invariants associated, with
can be defined only wheg a root of unity of orderr divisible by d, since this fact
guarantees that the so-calldématrix is invertible. Forr not divisible byd, quantum
invariants can still be defined, but modular categories might not exist. In this paper we
will focus mainly in the more general situation, whemay or may not be divisible by.

The reason is eventually we wanto be a prime number. Note that 3-manifold invariants
for the case when is not divisible byd # 1 have not been studied earlier.

We will present a self-contained theory of quantum 3-manifold invariants, for arbitrary
simple Lie algebra. By making use of an integrality result (Proposition 1.6) we will
establish the existence of quantum invariants without using the theory of quantum groups
at roots of unity. (We use quantum group and link invariants with general parameter, and
only in the last minute, replacgby a root of unity.) The quantum invariant of a manifold
M will be denoted byc,ﬁ (g), considered as a function with domain roots of unity.

0.3. Although the usual construction of modular category might fail, say whina

prime number and # 1, we will show that by using the root lattice instead of the weight
lattice in the construction, one can still get a modular category. Actually the construction
goes through for a much larger class of numbersone needs only that is coprime

with d det(a;;). The corresponding 3-manifolds invariant, denotedr§59(q), could be
considered as the invariant associated to the projective group—the smallest complex Lie
group whose Lie algebra g The reason is that the set of all highest weights of modules
of the projective group spans the root lattice. As in the casg ihie invarian'rrjf,;g can also

be defined when is not coprime withd det(a;;) (although modular categories might not
exist).

0.4. We will show that in most casesyf;g is finer thant;,. More precisely, ifr is
coprime with defz;;), then

1131 = r{,}g X rAC,;,, (0.2)

where r,fj is the 3-manifold invariant associated with the center graugwhich is
isomorphic to the quotient of the weight lattice by the root lattice) and a naturally defined
bilinear form on it. The invariant; is a weak invariant, since it is determined by the first
homology group and the linking form on its torsion (see [15,2,20]). In some e&ses0,

and hence 9 is trivial, althoughr ©9 is not.

The invariant associated to the projective group was first introduced and the splitting
(0.1) was obtained by Kirby and Melvin fgr= sl,, and Kohno and Takata fgr= sl,.
Recently Sawin [18], based on the work of Miiger and Bruguierre, established a similar
result, but he considered only the casdivisible by d, and the grougs cyclic (so he
excludes a half of the serid3 case). Whenl = 2, the result (0.1) complements Sawin’s
work, i.e., it covers the case that is not considered by Sawin. Wheri, (0.1) overlaps
with Sawin’s work. But even in this case, our method is quite different, it can be uniformly
applied to any simple Lie algebra, and in addition, we get the integrality and perturbative
expansion of quantum 3-manifold invariants (see below).
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0.5.  We will show that unliker ¢, the “projective” invariamr,ﬁg is always an algebraic
integer, provided that the orderis an odd prime. In fact, we will prove that in this case,

t1%(q) € ZIq]. A priori, both 7,8 andz?, are rational functions in a fractional power

of ¢. Integrality of rﬂg for g = sl was first established by Murakami [14] by difficult
computations, fog = sl, by Takata and Yokota [19] and Masbaum and Wenzl| [13], based
on an idea of Roberts. We will use a different approach that is good for all simple Lie
algebras.

0.6. Finally we will show thatrf;g, with M a rational homology 3-sphere, has a

“perturbative expansion a la Ohtsuki”. The functiﬁﬁg can be defined only at roots of
unity, and we want to expand it arougd= 1. For the casg = sl», Ohtsuki showed that
there exists a kind of number-theoretic expansion, which we call perturbative expansion.
We proved a similar result fgr = sl, in [8] and will extend the result to other Lie algebras
here. We borrowed an idea using Gauss integrals from Rozansky’s work [17], although we
will not explicitly use Gauss integral.

0.7. The paper is organized as follows. In Section 1 we recall quantum link invariants

and their important properties: integrality and symmetry at roots of 1. In Section 2

we present the general theory of 3-manifold quantum invariants (not using the theory
of quantum groups at roots of unity). Invariants associated to the projective group are
considered in Section 3. Their integrality is proved in Section 4. Section 5 is devoted to the
perturbative expansion.

1. Quantum link invariants. Integrality and symmetries

1.1. Lie algebras and quantum groupsWe recall here some facts from the theory of Lie
algebras and quantum groups, mainly in order to fix notation. For the theory of quantum
groups, see [3,11].

1.1.1. Lie algebra. Let (a;;)1<i,j<¢ be the Cartan matrix of a simple complex Lie
algebrag. There are relatively prime integeds, ..., d, in {1, 2, 3} such that the matrix
(d;a;j) i1s symmetric. Letd be the maximal ofd;). The values ot/, and other data, for
various Lie algebras are listed in Table 1.

We fix a Cartan subalgebheof g and basis rootss, . .., a, in the dual spacg*. Lethy,
be theR-vector space spanned by, ..., a,. The root latticeY is theZ-lattice generated

Table 1

Ay By By Cy Dy Dy Eg E7 Eg Fy Go

¢odd  Ceven ¢ odd £ even

d 1 2 2 2 1 1 1 1 1 2 3
D +1 2 1 1 4 2 3 2 1 1 1
G Zg41 Zo Zo Zo ym Zo x ZLp Z3 Zo 1 1 1
h +1 2 2 2 20-2 -2 12 18 30 12 6
hY +1 2—-1 2—-1 t+1 2 -2 2€—-2 12 18 30 9 4
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by «;, i =1,...,¢. Define the scalar product o, so that(w;|e;) = dia;j. Then
(x|a) = 2 for everyshortroota.

LetZ, be the set of all non-negative integers. The weight latideespectively the set
of dominant weightsx ;) is the set of all. € h, such that(A, «;) := 2(A|e;) /(i) € Z
(respectively(r, «;) € Zy) fori =1,...,¢. Let A, ..., A be the fundamental weights,
i.e., thea; € by, are defined byA;, ;) = &;;, or (Aila;) = d;é;;. ThenX is theZ-lattice
generated by, ..., A¢. The root latticeY is a subgroup of the weight latticé, and the
quotientG = X/Y is called thefundamental grouplf © € X anda € Y, then(u|a) is
always an integer. On the root latti¢e the form(:|-) is even.

Let p be the half-sum of all positive roots. Then=11+---+ i€ X, and D €Y.

Let C denote the fundamental chamber:

C={xeby|(xla;) >0, i=1,....¢}.

The Weyl groupW is the group generated by reflections in the wallsCofin the
chamberC there is exactly one root of lengti2; it is called the short highest root, and
denoted byxp.

For a positive integer let

Cr= {x e C | (x|ao) <r}.

Then the topological closul€. is a simplex. The reflections in the wallsGf generate
the affine Weyl grou,.. One also ha®/, = W x rY, whererY denotes the translations
by vectors'y, yeY.

Finite-dimensional simplg-modules are parametrized By, : for everya € X, there
corresponds a unique simplemoduleA;,.

The Coxeter number and the dual Coxeter numbers are definkadsdy+ (ao|p) and
hY =1+ max,-o 4?2, see Table 1. Note that:" > .

1.1.2. The quantum group and its category of representationsThe quantum group
U = U,(g) associated tg is a Hopf algebra defined ové(q*/?P], whereq'/? is the
guantum parameter anfl is the least positive integer such th@at|u') € %Z for every
w, 1w’ € X (see [11]). The categorg of finite-dimensional/-modules of type 1 is a
ribbon category. In this paper we consider otdymodules of type 1. The introduction
of the fractional power;1/2? is necessary for the definition of the braiding. Finite-
dimensional simplé/-modules of type 1 are also parametrizedXy: for everyx € X,
there corresponds a unique simplemodule A,, a deformation ofA;. Actually, the
Grothendieck ring of finite-dimensionalmodules of type 1 is isomorphic to that of finite-
dimensional-modules.

The reader should not confuse @uwith the quantum parameter used in the definition
of quantum groups by several authors. For examplegdsrequal tag? in [3,4,20], orv?
in Lusztig book [11].

1.2. Quantum link invariants.

1.2.1. General. Supposd. is a framed oriented link with: ordered components, then
the quantum invariant; (V, ..., V,;), for Vi, ..., V,, € C, is defined (sinc€ is a ribbon
category), with values ifL[¢1/2”]. The moduled/, ..., V,, are usually called the colors.
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The fact that/; has integer coefficients follows from Lusztig’s theory of canonical basis
(see a detailed proofin [9]).
We will also use another normalization of the quantum invariant:

Or(Vi, ..., Vi) :i=Jr(V1, ..., Vi) X Jgen (V1, ..., Vin).

Here U is the 0 framing trivial link ofm components. This normalization is more
suitable for the study of quantum 3-manifold invariants, and will help us to get rid of the
= sign in many formulas.

Since finite-dimensional irreduciblé-modules are parametrized &y, , we define

Qr(ua, ..o ptm) = QL(Apy—ps ooy Apy—p)-

Note the shift byp. This definition is good only for; € p+ X = X N (interior of C).
We defineQ (i1, ..., wn) for arbitraryu ; € X by requiring thatQ, (u1, ..., um) =0 if
one of theu;’s is on the boundary o€, and thatQ; (u1, ..., u,) is component-wise
invariant under the action of the Weyl grolip, i.e., for everyws, ..., w, € W,

Or(wi(pa). - .- W (tm)) = QL (U1 - -, fm).

1.2.2. Example. Supposeg = sl,. For a knotX , the invariant/x (N), with N a positive
integer, is known as the colored Jones polynomial. Hérstands for the unique simple
slo-module of dimensioV. SupposeX is the right-hand trefoil, see Fig. 1. Then

n=0

The sum is actually finite, for any positive integgr Similar formulas have also been
obtained by Gelca and Habiro.
For the figure 8 knot (also obtained by Habiro)

Jgk(N) = [N1Y g™ (1—g" N (1-¢""?)- - (1-¢"")
n=0

« (1—qN+l)(l—qN+2)'~'(1—qN+").

1.2.3. The trivial knot. SupposeU is the trivial knot. ThenJy (V) is called the
quantum dimensioaf V; its value is well known:

o =~ [ (g% g (1.1)

v positive rootsy
1
— J Z Sn(w)q(“'w(p)), (1.2)
weW
where sitw) is the sign ofw and
¥ =T (q®2 — g=@l72) = 37 snw)q w e, (1.3)

a>0 weW
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QU

a) b) <)

Fig. 1. The trefoil, figure 8 knot and the Hopf link.

Note thatJy (p) = 1, andJy (—u) = (—1)%Jy (), wheres is the number of positive
roots. Also

v = q—|p|2 H(qwm) ~1). 1.4)
a>0

Hence ifg is a root of unity of order > dh™ > 1+ maX,-o(a|p), thenyr # 0.
1.2.4. The Hopf link. Let H be the Hopf link, see Fig. 1, with framing 0 on each
component. Then

1
Jo(u. )=y snw)g ™). (1.5)
weW

For a proof, see [20]. Note thdiy (i, p) = Jy ().

1.3. Integrality. In general,J; and Q; contain fractional powers af. The integrality,
formulated below, shows that the fractional powers can be factored out.

Theorem 1.1 (Integrality [9]). Supposeus, ..., um € X4. ThenQp(Ay,, ..., Ay,) isin
qP/?Z[q*], wherep is a(generally fractional number determined by the linking matrix
ll‘j of L:

1
p= Y Ljulup+ Y Li2plpi) € 2.
1<i, j<m 1<i<m

Ifall u;’s are in theroot lattice, then the numbep is even. Hence we have
Corollary 1.2. If all the 1 ;s are in theroot latticg thenQy (A, ..., Ay,) isin Zlg*.

1.4. The first symmetry principle.Supposef, g € Z[¢*/?P]. We say thatf equalsg at
rth roots of unityand write

)
f=g

if ther:e is a numbes € %Z such thatf, g € ¢*Z[g*'], and for everyth root of unityé,
one has

9 flg=¢ =9 8lg=¢.
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There is no need to fix ar2th root ofé&.

An equivalent definition:f, g € Z[¢*/?P] are equal-th roots of unity if for every
2Drth root¢ of unity, one ha$‘|q1/zn=; =glgvan—; .

Recall that the simpleg, is a fundamental domain of the affine Weyl grokip.

Theorem 1.3 (First symmetry principle, see [9])At rth roots of unity, the quantum
invariant Q; is component-wisénvariant under the action of the affine Weyl group.
This means, for evenys, ..., w,;;, € W,,

0L (w11, - Wi () 2 QL1 .. ).

If one of thew, . .., wm is on the boundary of ., thenJy (i1, ..., tm) @ 0.

1.5. The second symmetry principle.

1.5.1. Action ofG onC,. There is an action of the center groGp= X/Y onC,, and
althoughQ/, is not really invariant under this action, it almost is. Let us first describe the
action. Foru € C, andg € G = X/Y letg € X be alift of g, and define

gw)=pu+rge(XmodWw,) =C,.

Another way to look at the action @t is the following. Recall thaW, = W x rY. Note
that X is invariant under the action of the Weyl group. i€t be the group generated by
W and translations byX. ThenW, = W x rX. If A € X andw € W, thenw()) — A is in
Y. This impliesW, is anormal subgroupf W,. We have an exact sequence

l—>W,—>VT/,—>G—>1.

Taking the action oiVT/r modulo the action o#,, we get the action o& on C,. For
more details and examples of actiongbfsee [9].

On the groupG there is a symmetric bilinear form with values @/Z defined as
follows. Suppose1, g2 € G = X/Y. Let g1, g2 € X be respectively lifts 0f1, g». Define
(g1lg2) := (g1/82) € Q/Z. (Actually, (g1]g2) € %Z/Z.) Similarly, foru € X andg € G
one can definéu|g) € 5Z/Z.

1.5.2. Second symmetry principle.

Theorem 1.4 [9]. SUPPOS&L1, ..., im € Cr andgs, ..., gn € G. Then

oL (gl(ul), cees 8m (Mm)) & q”/z Or(11, ...y Wm). (1.6)
Herer depends only on the linking matrik;) of L:
t=(r—h Y ljilgn+2 Y lj(gilu—p),
1<i,j<m 1<i,j<m
with i being the Coxeter number of the Lie algelgrésee Tablel).

For the special casgs= sl, andg = sl,,, the theorem was proved by Kirby and Melvin
[5], and Kohno and Takata [6]. In [5,6], the “twisting factag”'/? is derived by direct
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computations. The proof given in [9] for general simple Lie algebra used a tensor product
theorem of Lusztig.

Corollary 1.5.If 1; — p is in the root lattice ands; € C,, then,

(r) r(r—h) ol
01 (g1(11);s -+ s gm(um)) Z g 2 ZGIIT O (ua, o, ).

Remark 1.5.1. When(r,d) # 1, we can strengthen both symmetry principles using the
Weyl alcove defined by thieng highest root, see [9].

1.6. More integrality. The result of this subsection is new and will help us to define
quantum invariants of 3-manifold without using the complicated theory of quantum groups
at roots of unity.

Every finite-dimensiondl-moduleV decomposes as the direct sumiefiomogeneous
components) € X (recall that we work with general parameter). Hevelaomogeneous
componentE; is the maximal submodule isomorphic to the sum of several copies of
A,. Eachi-homogeneous component defines a projectipnV — E, and an inclusion
Ly Ey—> V.

Suppose alinlL is the closure of &, n)-tangleT , as shownin Fig. 2(a). Léfy, ..., V,
are the colors of the strands shown (some of them may come from the same component).
Consider a.-homogeneous componeff, of V1 ® --- ® V,,. Cut then strands and insert
2 “coupons” with operatorg;, ¢, in them; we got a “tangle with couponsT, 1), see
Fig. 2(b). Ribbon category can be used a define isotopy invariant of objectéTlike,
denoted byJr.;), which is generally in the fractional fiel@(q/??) (see [20]). The
following proposition, whose proof is based on the result of [9] and borrows an idea from

[13], shows that for the special cagg, 1), the quantum invariant is a Laurent polynomial
0 1/2D
ing .

Proposition 1.6. In the above settinglr ;) is in the ringZ[¢**/?P], and in that ring, itis
divisible by the quantum dimensidg (A,).

\/nx

(@) L (b) (T.2)

Fig. 2.
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Proof. According to the general theoryy acts as d/-endomorphismoV1 ® --- ® V,,.
HenceJr commutes with; o ;. Note thatE; must be of the form; ® N, whereN is
a vector space ovéd(¢1/2P). On E; = A, ® N the operatot acts as i&® R, whereR
is an operator acting oN. It follows that

Jiny =tr(R) x Jy(Ay). 1.7)

Eigenvalues ofR are also eigenvalues off which can be represented by a matrix
with entries inZ[¢*Y/2P] (see [9], the proof used only the theory of quantum groups with
general parameter). HencéRy is in the ringZ of algebraic integers ové{g*/?”]. On
the other hand, that the decompositionaf® - - - ® V,, into A-homogeneous components
can be done over the fractional fielt(g/?”) meansR can be represented by a matrix
with entries inQ(¢/2P). Thus t(R) € Q(¢¥/?P). SinceZ N Q(¢¥/?P) = Z[¢*/?P], we
have that tR) € Z[¢*%?P]. The proposition now follows from (1.7).0

Remark 1.6.1. We will use the proposition in the following way. First, singgr ;) is a
Laurent polynomial i /2P, we can plug any non-zero value@¥2” in Jr ;). Next, for
special values of /2P annihilatingJy (4;), the value of/z ;) is 0. Also note that

Jo(u, ooy ) = ZJ(T,A)- (1.8)
Py

2. Quantum 3-manifold invariants

2.1. Introduction. Quantum invariants of 3-manifolds can be constructed only vghisn
a root of unity of some ordet. In previously known cases,must be divisible by/, since
this will ensure that the so-calle$imatrix is invertible. Our construction of 3-manifold
invariants is slightly in more general situation: we will get invariants of 3-manifolds even
in the case whem is not divisible byd. For this reason we will give a new (but not
quite new) proof of the existence of quantum invariants of 3-manifolds. We will use only
quantum groups with general parameter to define link invariants, and only on the last step
we replaceg by a root of unity inlink invariants In this paper, a 3-manifold is always
closed and oriented.

For the reader to have an idea how the quantum 3-manifold invariant looks like, let
us give here the value for the Poincare Homology 3-sphere P (obtained by surgery on a
left-hand trefoil with framing—1), with g = sl,:

oo
‘E;lz(q) — 1 i p Zq"(l _ qn+1) (l _ qn+2) . (1 _ q2n+l).
n=0

Heregq is a root of unity, and the sum is easily seen to be finite. Similar, but different
formula has also been obtained by Lawrence and Zagier, using some calculation involving
modular forms, see [7].
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When M is the Brieskorn sphere’ (2, 3, 7) (obtained by surgery on the right-hand
trefoil with framing—1):

00
T/?/['Z(q) — 1 i p Zq—n(n+2) (1 _ qn+l) (1 _ qn+2) . (1 _ q2n+1)'
n=0

Againg must be a root of unity for the above expression to have meaning.

2.1.1. Heuristic. The values ofQy (i1, ..., um) are inZ[g*?P]. The infinite sum
Zwex Or(u1,..., ) does not have any meaning. It is believed (and there are
reasons for this) that the sum is invariant under the second Kirby move, and hence
almost defines a 3-manifold invariant. The problem is to regularize the infinite sum
Zu,ex Or(u1, ..., un). One solution is based on the fact thatr#t roots of unity,
Or(u1, ..., uy) is periodic (the first symmetry principle), so we should use the sum with
[ j's run over the sec;.

2.2. Sum ovec, .

2.2.1. General. Let us fix a positive integer > dh", called theshifted leveland a
primitive rth root of unity&. At some stage we also need a primitivB:2h root¢ of 1
such that 2P =¢. Let

FRPED= Y Quua, ... m)lgyzo_;.

pLjEErﬂX

Certainly¢ determines, but we prefer to keep in the notationFLg(g; ) since in later
cases, the whole thing depends onlyghut not¢, and in those cases we will drgpin
the notation.

Recall that: = (p|ao) + 1 is the Coxeter number. Let=r — k. Then we have (recalling

the shift byp and the fact thaQ . “oonthe boundary of,)
FRE D =Y QiAo Ap,)lgueo_, (2.1)
1j€Cx
The following half-open parallelepipe®. is a fundamental domain of the group:
Pr:{x:clal—i—-n—}—ceag ebpl0<cy,....cp <r}.
SinceC, is a fundamental domain a¥, = W x rY, we have, due to the first symmetry

principle,

1
FL& O =g > 0L )l gyev_- (2.2)
M_/Gf_’rﬂx

2.2.2. The Gauss sumThe following is a quadratic Gauss sum on the abelian group
X/rY = P, N X, with ¢ used to define fractional powers &f

yiE = Y g3 ulP=1pP?),

nerP.NX
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Criteria for vanishing of a Gauss sum are known, see, e.g., [2]. Using the explicit
structure of simple Lie algebras and the criterion one can prove the following.

Proposition 2.1. The Gauss sum? (&, ¢) = 0if and only ifr is odd andy is eitherC, with
arbitrary ¢, or By with even?.

The following lemma uses the well known trick of completing the square.

Lemma 2.2. Supposgs € X. Then
Z §%<|u|2—|p|2)§(ﬁ|m — 9, 0) x g—%lﬂlz'

neP-NX

Proof. Completing the square, we see that

1 1
E('“'Z — o) + Blw) = (I + BI2 = 1p1?) — 5|/3|2.

It remains to notice that everything is invariant under the translatigrand bothP, and
P, + B are fundamental domains ef. O

2.3. Invariance under the second Kirby move.

Proposition 2.3. Suppose that the order of & is greater than or equal telz". Then
FLg (&, ¢) does not depend on the orientationfofind is invariant under the second Kirby
move.

Proof. Using linearity we extend the invariaiit to the case when the colors are elements
of the Z[¢*™?P]-module freely generated by;, » € X.,. Then

FlE D=, ..., 0w,

where

o= Y W Au—p= Y JuAw) Ap

weint(CHNX nweCynNX

The independence of orientation is simple: If we reverse the orientation of one
component, and at the same time change the color ffamthe dualvV*, then the quantum
link invariant remains the same. It is known that the alc6yg(herek = r — h), is invariant
under taking dual, i.e., the dual of,, u € Cy, is anotherA,, with ©* again inCy.
Moreover,Jy (Ay) = JU(A;). Hencew is invariant undep — p*, andJi (o, ..., ) is
unchanged if we reverse the orientation of one component.

Let us consider the 2nd Kirby move — L’, as described in Fig. 3, with blackboard
framing. In bothL, L’ let K be the singled out unknot component with framing 1.

Then we have to show that

JL(a),...,a))(L—)JL/(a),...,a)).



136 T.T.Q. Le / Topology and its Applications 127 (2003) 125-152

(Yo

L L @
a) b) c) d)
Fig. 3.
d/gD O
l
z zZ
Fig. 4.

It is enough to show that for evepyi, ..., um € X4,

Tt s @) 2 Ty (s, @),

Here we supposg andL’ havem + 1 components witlk being the(m + 1)st.

Suppose the colors of thestrands coming out from the bdx are Vs, ..., V,. (Each
Vi isone ofA,,;_, or their duals.) The modulé; ® - - - ® V,, is completely reducible over
Q(¢/2P), so we decompose it into homogeneous components. Using (1.8) to decompose
Jr andJ;, into sums of quantum invariants of “tangles with coupons”, see Fig. 3(c), (d). In
each tangle with coupons there is only one strand, with color a homogeneous component,
piercing throughk . Now putg/2? = ¢ (see Remark 1.6.1). We see that it's remain to
prove the following lemma, which is essentially the statement of the proposition for the
casewhem =1. O

Lemma 2.4. Supposey (1)| /20—, # 0. Then
Jz (A, a))|q1/20=§ =Jz(, w)|q1/20:§»
whereZ, Z’ are the(1, 1)-tangles in Fig 4.

Proof. Note that both sides aofz (A, w) andJz (1, w) are scalar operator acting on,_,.
Closing Z, we get the Hopf linkH, with framing 1 on both components. Similarly,
closing Z' we get the trivial linkU, with framing 1 on the second component. Since
JuM)|g12p—; #0, the identity to prove is equivalent to

T, O 0) 2 Ty, 0 w). (2.3)
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Let us first calculate
- > 4

nerP.NX
We have, withy /2P = ¢,

= XX s

pnePNX w,w'ew

12D

by formula(1.5)

96.0) Y snww)g B HFHAP20TG) by ) emma 22

w,w'eW

1

Sn(w)q(—klw(p))

= iVE‘(S g~
wz ’ weW

1 2
=—q 2z |W[y%E ) Ju(=») by (1.2).

v
Thus
2ol , 1241112
T 0@ EEE G e oo, @4
nePrNX

Recall that forQ;,, increasing by 1 the framing of a component colorediby , results
in a factorg (1*~1°1®/2_ The left-hand side of (2.3)is
1 wz loI? m
LHS= o Y " 0 Jn G ) e
nePNX

The right-hand side is

1 lial
RHS = JU(A)W > oq" -
nerP.NX
2—ipl?
= JU()»)— > @ T T 0) Ty ) Lo
;LePrﬂX

Hence it follows from (2.4) thatHS=RHS O

Let us record here the formula f(ﬁb (&; ¢), whereU, is the unknot with framing 1.

1 ll?—
Fo.&0=mn 2 a 10 100 0,
nerPNX
and hence (2.4) gives
g(&.

PP y9(&;¢)
FU+ (E» é‘) - l_[a>0(l _ q(—alp)) .
Remark 2.4.1. In the proof we used the first symmetry principle, whose proof required

the theory of quantum groups at roots of unity. However, if we defifigdising the sum
over P, N X at the beginning, then we would not have to use the first symmetry principle.

(2.5)
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2.4. Quantum invariants.
2.4.1. Definition. Supposd/. are the unknot with framing-1. Note thathi &;0)

are complex conjugate to each otherFﬁi (&; ¢) # 0, then one can define invariant of the
3-manifoldM obtained by surgery along by the formula:

FL(§;:0)
Fu, (§;0)7 Fy_(§;¢)°~

Hereo,, o_ are the number of positive and negative eigenvalues of the linking matrix of
L.If Fj, (& 2) =0, then letry (&; ¢) = O for every 3-manifoldW.

Here are the cases Wh(:ﬂ[?)i (&;¢2)=0.

T (E ) =

Proposition 2.5. Suppose the order of the rooté satisfies > dh". Theani &;0)=0
if and onlyr is odd andg is either B, with even¢ or C, with arbitrary £. In particular, if
r is divisible byd, thenFj_ (¢; ¢) is not equal to 0.

Proof. The proposition follows from formula (2.5) and Proposition 2.11

Remark 2.5.1. Only in the two cases listed in the proposition are the invariants trivial. But
Fy, # 0 does mean that the so-call€ematrix is invertible.

2.4.2. Comparison with known casedn the literature, only the casedivisible by d
was considered. In that case= dr’, and the number’ — 1" is called the level of the
theory (see [4]). Also in this case one can construct a modular category, and a topological
guantum field theory.

Here we consider both cases wheis or is not divisible byd. In the latter case, the
level should be — .

In the book [20] modular category, and hence quantum invariants, was constructed for
simple Lie algebras witld = 1. Later work of [1] established the existence of modular
category for every simple Lie algebra, at shifted levdlvisible byd, see a rigorous proof
in [4]. We will explain here why the invariant of [4] is coincident with ours, whers
divisible byd.

If d =1, then the set of modules,,, with © + p € C, forms a modular category (see
[1,4]), hence the 3-manifold invariant derived from the modular category is exactly our
(& 0).

Supposel > 1, andr is divisible by d. In this case the above set of modules does
not form a modular category. There is a smaller simgléexc C, with the corresponding
affine Weyl groupW, such thatC, consists of several copies 6f. under the action of
W/, and the modular category consists 4f, with x + p € C,.. The corresponding 3-
manifold invariant is thus obtained by taking the sum over the smaller sinfjlekhe first
symmetry principle is valid itC,, W, are replaced wittC,., W, (for details see [9]). Due
to this symmetry, the sum @ ; over the bigger simpleg, is simply a constant times the
sum overC;,. This is the reason why we can uSgto define the same 3-manifold invariant.
This smaller simplexC;. is constructed using tHeng highest root.
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3. Quantum invariant of the projective group

3.1. Preliminaries. There is a simply-connected complex Lie grag@igorresponding to

g. The invariantc,ﬁ is associated tg. Let G be the center group @. It is known thatG

is isomorphic toX /Y, and|G| = det(a;;). For every subgroug’ C G, there corresponds

alLie groupG/G’, and there is a quantum invariant associated with this quotient group. We

will describe here a method to construct them, focusing on the extreme cas&\whead.

We will see that there are many shifted levelfor which the invariant, is trivial, but

at the same time the invariant of the projective group, denotexﬁ%yis non-trivial, and

even defined by a modular category. We will see that#nd deta;;) are coprime, i.e.,

(r,det(a;j)) = 1, then the invariant associated to the projective group is not trivial.
3.1.1. The latticep + Y.

Lemma 3.1. For every positive integer, the latticep + Y is invariant under the action of
W,.

Proof. Recall thatW, = W x rY. The fact thato + Y is invariant underY is obvious.
Thatp + Y is invariant under the action a¥ follows from the fact thatv(p) — p belongs
toY. (Actually,w(un) —u €Y foreveryue X.) 0O

3.1.2. Sums over the root latticeLet k = r — h, and& is a root of unity of order
r>=dhY >h. Let

Ff® = Y QulApy..... Ap,)lg=¢.

wje(CiNY)

The definition is the same as in (2.1), except that we sum py&rwhich are in the
root lattice. Note that there is no need to fix @#h root of&, since by Corollary 1.2, there
is no fractional power of.

Recalling the shift by, we have

FA® = Y Ou(ui.tm)lg=.

1 €CrN(p+Y)

Lemma 3.1 and the first symmetry principle show that

1
Fo @) = i Y 0u(ua o tm)lg=¢.

nj€p+(PrNY)

3.1.3. Gauss sum.We will encounter a Gauss sum on the grdyfrY. From now on
let) ", standsfor}_ ., pny) Put

Pg 12— o2
yPeE =y & 7 .
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Then, the same proof of Lemma 2.2 gives us:

Lemma 3.2. Supposes € Y. Then
Yty Pae) g

3.2. Definition of invariants associated to the projective grouRecall thatH is the
Hopf link. Let S, , = Ju (A, w)ly=¢. Let the matrixS have entriesSy , with A, u €
Interio(C,) N (p + Y).

Theorem 3.3.

(a) Suppose the order of £ is greater than or equal tah". ThenFLPg(s) is invariant
under the2nd Kirby move and does not depend on the orientatioh. of
(b) If r is coprime withd det(a;;), then the matrixs is invertible.

(c) If r is coprime withdet(a;;), thenij (&) #0.

Proof. Notice that ifA, u € Y, then in the decomposition o, ® A, into irreducible
modules one encounters only;, with v € Y. This is a well known fact: The irreducible
modules of the groug /G have highest weights iX . NY, and finite-dimensionay/ G-
modules are completely reducible.

Using this fact one can repeat the proof of Proposition 2.3 to get a proof of part (a).

(b) We will show thatSs is a non-zero constant times the identity matrix. Hgiie the
complex conjugate. We know that # 0 wheng = &, sincer > dh" (see 1.2.3). Using
(1.5) andy_ 2, We have

reCN(p+Y) =
|W|I/f2(5§)x,v = Z Z s(ww’)g HIw eI —w' 0)
roww'eW
= Z sn(ww’)|:zg(ulw(k)—w’(u))}
w,w'eWw r

Let Y* be the lattice dual t&’, overZ, with respect to the scalar product.uf()) —
w'(v) ¢ rY*, then there is a fundamental rogt such that(a; |w(A) — w'(v)) ¢ rZ. It
follows that the sum in the square bracket is 0, siflte- €2 + --- + £~V =Qif n is
not divisible byr, and) , is the sum over a fundamental domairnrof.

We will find out whenw (1) — w’(v) € rY*. Note first thatw (1) — w’(v) € Y. We'll find
the intersectiomY*NY.

The latticeY™* is spanned by.1/d1, ..., A¢/de, Wherers, ..., A, are the fundamental
weights. Thus the order of*/ X is did, ..., d, a factor ofd‘. The order ofX/Y is
det(a;;). Thus the groupY*/rY = Y*/Y has order a factor aft x det(a;;).

The groupY/rY has order-*. By assumption, the orders of two groups*/rY and
Y/rY are co-prime. Their intersection must be trivial. Hemgg.) — w’(v), belonging to
bothrY* andY, must belong teY. But this meansg. andv are in the samé&,.-orbit. This
could happen fok, v € Int(C,) if and only if w = w’ andi = v.
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Whenw = w’ and = v, the sum in the square bracketfs Thus(SS) is a non-zero
constant times the identity.

(c) One can prove (c) directly using the criterion of vanishing of Gauss sums. Or one
can use the following arguments. If, in additionis coprime withd, then by (b), theS

matrix is non-degenerate. In this case it is known tﬁéf(é) # 0 (see [20]). Suppose

now (r,d) # 1. Thenr is divisible byd. Formula (3.2) below shows tha’tﬁf(é) is a
factor ofFf/’+ (&, ¢), which is not 0 by Proposition 2.5 (for somé@®#h root¢ of &£). Hence

Fi2®#0. O
If F(’;f (§) =0, we definer},%(¢) = 0, otherwise, let

FPo)
Pg Pg ’
(FL8 )0+ (F ()

Ty (&) = (3.1)

whereM is obtained froms® by surgery along the framed link.

Remark 3.3.1. (a) Theorem 3.3, part (b) shows that wheis co-prime withd det(a;;), the
set of all modulest,, with u € Cx NY (note the root lattic& here), generates a modular
category. Here one has to use the reduced quotient structure as in [1,4]. At the same time,
if Y is replaced by, then the resulting category, usually considered by algebraists (say, in
earlier papers of H. Andersen) might not be a modular category. The reasoristhgix
might not be invertible. There are valuesofvhen theS-matrix is invertible for theY
case, but not for th& case.

(b) WheneverFlff(S) # 0, one has non-trivial invariants. In addition to the cases

described in the theorem, there are other cases \mﬁr@) # 0. For example, using
the criterion for the vanishing of Gauss sum, one can also prove that whensvedd
(for all g), ij (&) # 0. On the other hand, there are cases wﬁéf(g) = 0: Examples
include the casg = sk, r is divisible by 4.

(c) The invariantA’;g is the invariant associated with the projective group, since the root
lattice is spanned by highest weights of finite-dimensional irreducible modulgs®@f If
G’ is a subgroup of7, then one can construct invariant associated @jtls’ by using the
lattice Y’ generated by the set of all highest weightsj@¢f5’. The construction is similar.

3.3. Invariant associated to a finite abelian group with a bilinear form@n the group
G = X/Y there is defined the symmetric bilinear fo(m) with values in%Z/Z C Q/Z.
For any such group there is a way to define invariants of 3-manifolds which carry only
the information about the homology groups and the linking form on the torsion of the first
homology group, see [15,2,20]. We will present here the theory in the form most convenient
for us.

Again ¢ is root of unity of order Dr, andé = ¢2P. Define

FEE o= 3 £rr=hx3 Ylij(silg))

8i.8;€G
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wherel;; is the linking matrix ofL. Here we usg to define fractional powers &f.
Then

ng (g’ é—) — Z Sr(r_h)(gkg)/z

geCG

G

is a Gauss sum. IFUi &;¢0)=0,we definer,g (&; ¢) =0, otherwise we define, for

Goo o FPED
TM(%" {) . (Fg+)g+ (Fg_)o; )

for M obtained by surgery on a framed lirk It is a 3-manifold invariants. In general,
¢"=h is a root of unity of order ®. If ¢"~" = exp(27i/2D), then our invariant is
coincident with those in [2].

3.4. Splitting.
Lemma 3.4. Supposér, det(a;;)) = 1. Then

(a) G acts freely on the sef, N X.
(b) In eachG-orbit of C, N X there is exactly one element - Y.

Proof. (a) Note thatC, N X is a finite set. Suppose(u) = u for someu € C, N X, we
will show thatg is the identity ofG. There is a liftg € X of G such that

rg +p=p (modW,),
which, due toW, = W x rY, means there i®& € W such that

rg+uecw(u)+rY.

Sincew(n) — n €Y, itfollows thatrg € Y, orrg =0 in G. Becausér, |G|) = 1, this
impliesg =0inG.
(b) UsingX/Y =rX/Y (since(r, |G|) = 1), we have

X=Y+rX.

Hence(p + Y) +r X = X. This shows that in eacfi-orbit there is at least one element
in p + Y. The proof of part (a) shows that eachorbit contains at most one element in
p+Y. O

Supposér, det(a;;)) = 1. By the above lemma and the second symmetry principle (see
Corollary 1.5), one has

FRE O =FPEOF (). (3-2)
Hence we have the following splitting theorem

Theorem 3.5. Supposér, deta;;)) =1 and¢ is a2Drth root of unity,& = z2P Then
ThE O =1 ) T E: 0.
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Remark 3.5.1. (a) The invariantr,g(g; ¢) carries only the information about the first
homology group and the linking form on its torsion; it is a weak invariant, and sometimes
it is equal to 0O, in which case,ﬁ(g; )=0. Hencer,f:g (&) is in general a finer invariant.

For example, ify = B;, andr is odd, thent ¥, (£: £) = 0, butz},% () is in general not 0.

(b) Whenr is not coprime with det;;), there are cases when both and "¢ are
non-trivial, but there is no simple relation between the two invariants. Examples of such
case areg = sl, and(r,n) # 1, g = D, andr even, angy = C; with £ odd and- even.

(c) The splitting of Theorem 3.5 fits very well with the Gussarov—Habiro theory of
finite type 3-manifold invariants: In that theory one has first to partition the set of 3-
manifolds into subset of ones with the same homology and linking form, then defines finite
type invariants in each subset using a suitable filtration. The invarfarmdorresponds to
homology and the linking form, and”? can be expanded into power series, at least for
rational homology 3-spheres (see below), that gives rise to finite type invariants.

(d) The projective quantum invariants were defined and the splitting theorem was proved
in Kirby and Melvin [5] for g = sl> and Kohno and Takata [6] fay = sl,. For the case
whenr is divisible by d, a similar splitting has also been obtained by Sawin [18], but
his proof does not go through for all simple Lie algebras, he has to exclude a half of
series. Fod = 2, Sawin’s result and Theorem 3.5 addrd#terentcases, and hence they
complement each other.

4. Integrality

Theorem 4.1. Suppose that > dh" is a prime and not a factor ofW | det(a;;), andé a
primitive r-th root of unity. Therr,ﬁg (&) isinZ[&] = Z[exp2ri/r)].

The theorem was proved in the= sl case by Murakami [14] (see also [12]) and
g = sl, by Takata and Yokota [19] and Masbaum and Wenzl [13]. It is conjectured that
even whermnr is a not prime, one also hai\'ﬁ;g (&) € Z[£]. The remaining part of this section
is devoted to a proof of this theorem.

4.1. General facts. For a, b € Z[£], we write a ~ b if there is a unitu in Z[£] such
that ¢ = ub. Supposer is an odd prime. It is known that — 1) is prime in Z[&],
andr ~ (¢ — 1)"~L. It follows that (r — 1)! is coprime with(¢ — 1). If (n,r) = 1 then
E"-D~E-D.

Formula (1.1) shows that for evekye Y,

Ju(A)lg=¢ ~ 1.

To prove the theorem, we have to show that the numerator of the right-hand side of (3.1)
is divisible by the denominator. First we will show that the denominator is just a power of
(¢ — 1), then we show that the numerator can be decomposed as a sum of simple terms,
each divisible by that power g€ — 1).
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4.2. Gauss sum again.Supposé is an integer. Recall thgt, stands fory_ . . p.y)-
Let

Pg 5 2102
v, )= &2

Note that foru € p + Y, |u|? — |p|? is always an even number. Hengg® () € Z[£].

Lemma4.2. Suppose is an odd prime not a factor efdet(a;;). Thenybpg(s) is divisible
by (¢ — 1)"Z"*. Moreover, ifb is not divisible by, then

yPiE ~E -1

Proof. If b is divisible byr, theny,” () = r¢ ~ (¢ — 1)“~D, and we are done.
Supposéb is not divisible byr. Then&? is a root of 1 of order. Hence there is a

Galois automorphisma of the field Z(&) over Q such thato (§7) = exp(2i/r). Since

o (¢ —1) ~ & — 1, it's enough to prove the lemma in the cg$e= exp(2ri/r). In this case

v ®= > exp[”T'(m+p|2— |p|2)].
nepP.NY

Sincer is odd, and u|p) € Z, one has

2
i+ pl? = |pl = |1+ (r + Dp|” = (- + D?|p[? (mod 2).
It follows that
Pg —7 2|12 ul 2
v, &) =exp — @ +D%pl?| D expl —(lu+(r+Dpl?) |
r nebP-NY r
Notice that(r + 1)p € Y sincer + 1 is even, and use the€ -invariance, we have

. -
prg(é)=eX|0[—n7'(r+1)2|pI2} > exp”"r‘"_

HEPNY

The first factor is a unit irZ[£]. If P is the matrix(d;a;;) (S0 that(e;|o;) = P;;), then
the second factor is

. 2 .
> expml:l“| = Y exp[%lk’Pk].

uepnNyY ke@/rz)t

It is known that this Gauss sum is(¢ — 1)%’5. (This fact can be proved by diag-
onalizing the matrixP and use the value of the 1-variable Gauss sum. The matiix
non-degenerate ové&i/rZ since defP andr are coprime.) O
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Lemma4.3.

(a) Suppose@ is an integer coprime with. Letb* be an integer such thab* = 1 (modr).
Then

2

gUIB) = g0 B2, P g) (4.1)

2
Z Eb 1] E\P
P

(b) Suppose is an odd prime, then the left-hand side(4f1)is divisible by(§ — 1)%4

Proof. (a) The proof is similar to that of Lemma 2.2, using the trick of completing the
square.

(b) If b is not divisible byr, then the statement follows from part (a) and Lemma 4.2.
Supposé is divisible byr. Then theLHSis either 0 or-¢, which is~(& — 1)¢"—D. o

4.3. Unknots and simple lens spacetet U, be the unknot with framing. We will first
find the prime factors oF[Zg.

Proposition 4.4.

(a) Supposer > dh¥ and is coprime withb. Let b* be an integer such thaib* =
(modr). Then

£(1-b")Ipl? v 8(€) Ju (b*p)
l—la>0(l - E(alp))

(b) If, in addition,r is an odd prime, thenv,z 9(€) ~ (£ — 1)rt—dimg)/2,

FpfE) =

(4.2)

Proof. (a) The proofis similar to that of (2.5): with= & in ¢,
Pg 1 h\ll\z—\/’\z (nlw(p)) 2
FylE) = |W|WZZ$ 2 (an(w)s“ , )

weW

1

_ b w2102 N & (lw(p)+w'(p))
= e P ) swwe '
r

w,w'eWw

Sincew(p) € p + Y we havew(p) + w'(p) € 2p + Y =Y. Using (4.1),

1 . . )
Fyl€) = |W|¢2prg(«§)é_b PP 3T snqwu)g @) ()

w,w'eWw
P % 2
Y gg b*1pl
|Wy2
P ek 2
y, 2(E)E0IPl

= o jy(-b*
m u(=b*p)

|W| Z Sn(w)%-(—b*/?lw(/?))

weW



146 T.T.Q. Le / Topology and its Applications 127 (2003) 125-152

Pg gy £A-0M) P J, (¥
- [Tyoo(1—g@lP) by (1.4).

(b) follows from part (a), Lemma 4.2, and the fact that (dimg — ¢)/2. O

Corollary 4.5. Supposer > dh" is an odd prime, and is not divisible byr. Then
rﬁg(s) ~1, i.e.,rﬁg(g) is a unitinZ[£], for the lens spacé/ obtained by surgery along
Up.

Remark 4.5.1. The actual value oa‘f,}g (&), whereM is obtained by surgery ol is (again
hereb is an integer not divisible by the odd primg

.L.Af;g(%-) — (lbl)es(Whﬂz)w l_[

r
a>0

1— g=®"ple)

1— g—(sn(h)pla)' (4.3)

Here("r’—') is the Legendre symbod’yi)” is the reduction module, i.e., (i)“ =xy*.
4.4. Expansion of quantum link invariants.

Lemma 4.6. For each positive integeN one has
N-1
QL(U1, s tm) =Y pui1, -, tm)(g — D" + R,
n=0
whereR is in Z[¢g*1] and divisible by(g — D)V, p,(u1, ..., um) is a polynomial function
on by which takes integer values when < Y. Moreover the degree of, satisfies

ded p,) < 2n+m(dimg — ¢). (4.4)

Proof. This follows easily from a counting argument in the theory of the Kontsevich
integral, using the fact that; is obtained from the Kontsevich integral by substituting
the Lie algebra into the chord diagrams (see [10,3]). The factigh#tkes integer values
whenusi, ..., u, € Y follows from the integrality of the coefficients of.. Let us briefly
sketch the idea.

Expanding/;, usingg = ¢", with  a new variable, we get

o
Jo(a, oy m)lg=exph = Z P, .o m)R",
n=0
where p;, is a function on(hj;)™. The Kontsevich integral theory will show thaf, is a
polynomial function with degree at most 2 degdim(u1)) + - - - +degdim(u.,)), where
dim(w) is the function which gives the dimension of the moduig — ). By Weyl formula,
dim(u) is a polynomial function of degree—the number of positive roots. Hence
dedp,) < 2n+ ms.

Thus forQ;, = J; Jy= we have

o0
Or (1, -, )l g=exph = ZPZ(ML cees )R,
n=0
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where the degree qQf] is less than or equal to2+ 2ms.
Change the variable fromto g — 1=e¢" — 1 (ori =In[(¢ — 1) + 1], we get

o0
QL1 ) = ) Pu(Hts ooy ) (g = 1),
k=0

with ded p,) < 2n + 2ms. It remains to notice that= (dimg — ¢)/2. O
4.5. Atechnical lemma.

Lemma4.7. Suppose is an odd primep a polynomial function taking values iiwhen
U1, ..., um €Y. Let

x= Y p(ua.....im)

nj€p+(PrNY)

and

r—

y=( - DT LR,

where|z] is the greatest integer less than or equalztoThenx/y € Z[&]. (Note thaty
may not be irZ[£].)

Proof. In [8, Corollary 4.14] we proved that the quotienty is in Z[&, ﬁ]. Buty is
coprime with(r — 1)!, hence the quotient must beZié]. O

4.6. Proof of the theorem.Let N = mm. Then the denominator of (3.1) is a factor
of (¢ — 1) by Proposition 4.2. We will prove that the numerator is divisiblgby- 1)V
Applying Lemma 4.6
N-1

QL(it, s tm) = Y pait, -, tm)(g — D" + R.
n=0

We sum overu; € p + (P- NY) to get FLPg(g). The term involvingR is certainly
divisible by (¢ — 1)V. For each: the term involvingp,,, by Lemma 4.7 is divisible by

- T g -1,
which, by (4.4), is divisible byg — 1)". This completes the proof of the theorem.

5. Perturbative expansion

5.1. General. Unlike the link case, quantum 3-manifold invariants can be defined only
at roots of unity, i.e., the domain of the functiat} (¢) is the set of rational points on
the unit circle in the complex plar@. For many manifolds, eg the Poincare sphere or the
Brieskorn spher&’ (2, 3, 7), there is no analytic extension of the functit.ﬁp aroundy = 1.

In perturbative theory, we want to expand the functirﬁparoundq =1 into power series.
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For rational homology 3-spheres, i.e., manifoldswith O rational homology, and for

g = sh, Ohtsuki showed that there is a number-theoretic expansimﬁ%broundq =1,

see [16]. We established the same result for the gasesl,, see [8]. The proof in [8] is
readily applied to any simple Lie algebra: In [8] we had to use some integrality properties
of quantum link invariants and quantum 3-manifold invariants, and there we established
these properties for the special cgse- sl,. For the general simple Lie algebras, these
integrality properties are the results of [9] and Theorem 4.1.

5.2. The number-theoretic expansiorSupposer is a big enough prime, and =
exp(2ri/r). By the integrality (Theorem 4.1),

Ty ) € ZIE1=ZIq)/(1+q +q°+---+4" ).
Choose a representatiyéq) € Z[q] of r,f;g (¢£). Formally substitutgy = ¢” in f(g):
f(CI):Cr,O+Cr,1h+"'+Cr,nhn +

The rational numbers. , depend on and the representativ&(g). Their denominators
must be a factors of!, by Theorem 4.1. Hence if < r — 1, we can reduce, , modulo
r and get an element d&/rZ. It is easy to see that these reductiens (mod r) do
not depend on the representatifé;) and hence are invariants of the 3-manifolds. The
dependence on is a big drawback. The theorem below says that there is a number
not depending om, such that,, (modr) is the reduction ot,, or —c,, modulor, for
sufficiently large prime-. It is easy to see that if sueh exists, it must be unique.

Theorem 5.1. For every rational homolog®-sphereM, there are a sequence of numbers
cn € Z[WM], such that for sufficiently large prime(actually any prime- >

max(|H1(M, Z), dimg — £) is enough,
_ <|H1(M,Z)|

r,n =

¢
) ¢, (modr),

r

|Hy(M.Z)|\ _
)=

where +1is the Legendre symbol.

The serieaﬁg (h) =>"7° ycni™ can be considered as the perturbative expansion of the

function rﬂg atg = 1. As mentioned above, the proof is just similar to the one for the case
g =sl, in[8].

5.3. Some calculation. Let us describe here how to calculate the power sejigsand
sketch the ideas behind the calculation.

5.3.1. Theg = sk and surgery on a knot caseln this case let the positive integéfr
stand for the uniqug-module of dimensioV. The invariant/; (N1, ..., Ny) is known
as the colored Jones polynomial. Supp#sés obtained by surgery along a knkt with
framing 1. Letk © be the same knot with framing 0. Then

Qxo(Mlymr = Y cjnN/H". (5.1)
2<j<n+2
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The restriction 2 < n + 2 follows from the fact thak © has framing 0. It is known that
there is no odd order @¥: j must be even.

To obtainty (h), all one needs is to repladé?’ in (5.1) by (—2)/ (2j — D)!'A~/, then
multiply by a universal constant:

tu(h) =2 c2jn(—=2)7 (2j — DA,

wherez =752 = (1—¢)/2=(1—€")/2.

Presumably this was first obtained by Rozansky [17].

5.3.2. The case of general simple Lie algebra and surgery along a kAgain assume
that M is obtained by surgery along the kn&t with framing 1, andk® is the same
knot with framing 0. It is known that every polynomial functigrix) on by, are linear
combinations of functions of the forgy, 8 € Y. Herep’ () := (8|w)’. Thus one has

Qxo(Wlymer = Y. cpjnP GO (5.2)
2s<j<n+2s, BeY

Here for each degreethe sum is finite. Again the restrictioh< 2s + n comes from
the fact thatk © has framing 0. _ .
To obtainty, (h), all one needs is to replagd (1) in (5.2) by 0 if j is odd, 8%/ () by

@j - DuaI (-1, (5.3)
then multiply by a universal constant:
i ; 1
f,ﬁg(ﬁ) = Zcﬂ;Zj;n(zj - (—I,BIZ)] " x Wi 1_[(1 —q ). (5.4)
a>0

5.3.3. A sketch of the main ideaThe main idea is to separate the framing part, and
consider the sur _, as a discreet Gauss integral. This was first used by RozanslstA{for
in his series of important work on quantum invariants.

Recall how we define,,%(£). One getsQx by multiplying Qo by qn=1e/2,
SummingQk overu € p + (P, NY), we getFg. Then we have to dividéx by Fy, .
The result iSc,f;g (&). A'look at formula (5.2) shows that if we understand the perturbative
expansion of

0" B w
Fy ’

(5.5)

+

then we will know the perturbative expansionvgﬁg.
If we replaceg’(n) = (Blw)! in (5.5) by g#(n) := ¢1™, then the perturbative
expansion is easy to calculate:

|ul2—|p2
2

Bl
A —Fl yPeE e B2 by @)

Uy
— g1B?/2 [Ta-&“?) by@2. (5.6)

a>0

26

Fy

+
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Thus the perturbative expansion of the left-hand side of (5.6)7€°/2z, with z =

[Tyo0(l—¢©@”) andg = €. .
Now if we expand; #1") = expl7i(B|i)], we can see the ters|w)’ there:

il J
exdrBlw] =) %

jz0

To obtain the perturbative expansion of (5.5), we expané!*/2z into power series of
i, and keep only the part of degrg¢en . It is easy to see that if is odd, there is no part
of degreej, and if j is even, then the part of degrgds given by the formula (5.3). (In
this argument we consider as a variable. To be more precise, one repjad® ¢ 1, with
t € R avariable, then compare the terms of same degreé of

5.3.4. Special lens spacesSupposeV is obtained by surgery on the unkrigg, with
b #0. Then from (4.3) it follows that

P snb)=b 2
bl m=q 2 "]

a>0

1— g (pl)/b

1— g—Snb)(pla) lg=exph-

5.3.5. Link with diagonal linking matrix. SupposeL is a framing link whose linking
matrix is diagonal, with non-zero integefs . . ., b, on the diagonal. LeL? be the same
link with 0 framing, andV the 3-manifold obtained by surgery alohgwhich is a rational
homology 3-sphere. Expandigg= ¢" in Q0 we get

QLO(I’le ) Mm)'q:eh

— J1 ] n
- Z cﬁl’"-ngm;jl ----- Jmin 131 (H’l) “ (N«m) h
By Bm €Y j1ojm€Zy; n€Z+

There are some restrictions @p j;, for a fixedn. Then to obtair’cj;,g (h) one needs to
replaces; (;) by O'if j is odd, (1;) by

2 b (2) =D (—IBiP) A

where
1 2
2 = — g T SO)= b)l—[ gS@n))
|W| a>0
Thus,

Pg ey _
ty (1) = zp, - thZC,sl ..... Bins 210 2jmsn

|'Bl|2 g n—j1—=jm
x ]_[(2 i — DIt h .

i=1 l

The restriction onys, ..., j, will guarantee that the right-hand side is a formal power
series in.
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5.3.6. General case.Suppose nowM is an arbitrary rational homology 3-sphere.
Ohtsuki showed that there are lens spatgs..., M;, each obtained by surgery on an
unknot with non-zero framing, such that’ = M # M1 #- - -# M; can be obtained surgery
along a link with diagonal linking matrix, see [16]. Then one has

G () = R (G ) - (2 m)
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