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Let F be the real number field R or the complex number field C , and let RP n denote the
real projective n-space. In this paper, we study the conditions for a given F -vector bundle
over RP n to be stably extendible to RP m for every m > n, and establish the formulas on
the power ζ r = ζ ⊗ · · · ⊗ ζ (r-fold) of an F -vector bundle ζ over RP n . Our results are
improvements of the previous papers [T. Kobayashi, H. Yamasaki, T. Yoshida, The power of
the tangent bundle of the real projective space, its complexification and extendibility, Proc.
Amer. Math. Soc. 134 (2005) 303–310] and [Y. Hemmi, T. Kobayashi, Min Lwin Oo, The
power of the normal bundle associated to an immersion of RP n , its complexification and
extendibility, Hiroshima Math. J. 37 (2007) 101–109]. Furthermore, we answer the stable
splitting problem for F -vector bundles over RP n by means of arithmetic conditions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let F be either the real number field R or the complex number field C , and let X be a space and A its subspace.
A t-dimensional F -vector bundle ζ over A is said to be stably extendible (respectively extendible) to X if and only if
there is a t-dimensional F -vector bundle over X whose restriction to A is stably equivalent (respectively equivalent) to ζ

(cf. [4,10]). For simplicity, we use the same letter for a vector bundle and its equivalence class.
In this paper, we study the problem of determining conditions for a given F -vector bundle over RP n to be stably ex-

tendible to RP m for every m � n. In case F = R , the answers for the problem have been obtained when ζ is the power τ r of
the tangent bundle τ = τ (RP n) of RP n [8] and when ζ is the power νr of the normal bundle ν associated to an immersion
of RP n in euclidean space in [2]. These results are as follows.

Let ⊗ denote the tensor product and φ(n) the number of integers q such that 0 < q � n and q ≡ 0,1,2 or 4 mod 8.

Theorem 1.1. (Cf. [8, Theorem A].) Let τ r = τ (RP n)⊗· · ·⊗τ (RP n) be the r-fold power of the tangent bundle τ (RP n). Then τ r is stably
extendible to RP m for every m � n if and only if there is an integer x satisfying

(n + 2)r − nr � x2φ(n)+1 � (n + 2)r + nr .

* Corresponding author.
E-mail addresses: hemmi@math.kochi-u.ac.jp (Y. Hemmi), kteiichi@lime.ocn.ne.jp (T. Kobayashi).
0166-8641/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2008.07.006

https://core.ac.uk/display/82258925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:hemmi@math.kochi-u.ac.jp
mailto:kteiichi@lime.ocn.ne.jp
http://dx.doi.org/10.1016/j.topol.2008.07.006


Y. Hemmi, T. Kobayashi / Topology and its Applications 156 (2008) 268–273 269
Theorem 1.2. (Cf. [2, Theorem 3.2].) Let νr = ν ⊗ · · · ⊗ ν be the r-fold power of the normal bundle ν associated to an immersion
of RP n in euclidean (n + k)-space Rn+k, where k > 0. Then νr is stably extendible to RP m for every m � n if and only if there is an
integer x satisfying

(2n + k + 2)r − kr � x2φ(n)+1 � (2n + k + 2)r + kr .

The first purpose of this paper is to obtain the complete answer for any R-vector bundle over RP n . Let ξn be the canonical
line bundle over RP n . Then, for any R-vector bundle ζ over RP n , there is an integer s such that ζ is stably equivalent to sξn

(cf. [1, Theorem 7.4]). We have

Theorem A. Let ζ be a t-dimensional R-vector bundle over RP n which is stably equivalent to sξn, where s is an integer. Then ζ is stably
extendible to RP m for every m � n if and only if there is an integer a satisfying

−s � a2φ(n) � t − s.

As an application to the r-fold power, we have

Theorem B. Let ζ be a t-dimensional R-vector bundle over RP n which is stably equivalent to sξn, where s is an integer, and let
ζ r = ζ ⊗ · · · ⊗ ζ be the r-fold power of ζ . Then ζ r is stably extendible to RP m for every m � n if and only if there is an integer a
satisfying

(t − 2s)r − tr � a2φ(n)+1 � (t − 2s)r + tr .

Theorem B is an improvement of Theorem 1.1. In fact, for the tangent bundle τ = τ (RP n), we have s = n + 1 and t = n.
Hence we obtain the inequalities of Theorem 1.1 by using x instead of a in the inequalities of Theorem B if r is even, and −x
instead of a in the inequalities of Theorem B if r is odd. Furthermore, this is also an improvement of Theorem 1.2. In fact,
for the normal bundle associated to an immersion of RP n in Rn+k , we have s = −n − 1 and t = k. Hence we obtain the
inequalities of Theorem 1.2 by using x instead of a in the inequalities of Theorem B.

In case F = C , the answers for the problem have been obtained when ζ is the complexification cτ r of the power τ r

in [8] and when ζ is the complexification cνr of the power νr in [2]. These results are as follows.
For a real number z, let [z] denote the largest integer n with n � z.

Theorem 1.3. (Cf. [8, Theorem B].) Let cτ r = c(τ (RP n) ⊗ · · · ⊗ τ (RP n)) be the complexification of the r-fold power τ r of the tangent
bundle τ (RP n). Then cτ r is stably extendible to RP m for every m � n if and only if there is an integer y satisfying

(n + 2)r − nr � y2[n/2]−1 � (n + 2)r + nr .

Theorem 1.4. (Cf. [2, Theorem 5.2].) Let cνr = c(ν ⊗ · · · ⊗ ν) be the complexification of the r-fold power νr of the normal bundle ν
associated to an immersion of RP n in Rn+k, where k > 0. Then cνr is stably extendible to RP m for every m � n if and only if there is an
integer y satisfying

(2n + k + 2)r − kr � y2[n/2]+1 � (2n + k + 2)r + kr .

The second purpose of this paper is to obtain the complete answer for any C-vector bundle over RP n . Let cξn be the
complexification of the canonical line bundle over RP n . Then, for any C-vector bundle ζ over RP n , there is an integer s such
that ζ is stably equivalent to scξn (cf. [9, Theorem 3.8]). We have

Theorem C. Let ζ be a t-dimensional C-vector bundle over RP n which is stably equivalent to scξn, where s is an integer. Then ζ is
stably extendible to RP m for every m � n if and only if there is an integer b satisfying

−s � b2[n/2] � t − s.

As an application to the r-fold power, we have

Theorem D. Let ζ be a t-dimensional C-vector bundle over RP n which is stably equivalent to scξn, where s is an integer, and let
ζ r = ζ ⊗ · · · ⊗ ζ be the r-fold power of ζ . Then ζ r is stably extendible to RP m for every m � n if and only if there is an integer b
satisfying

(t − 2s)r − tr � b2[n/2]+1 � (t − 2s)r + tr .

As in the previous case, Theorem D is an improvement of Theorems 1.3 and 1.4.
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Finally, we study the problem of determining the conditions for a given t-dimensional F -vector bundle over RP n to be
stably equivalent to a sum of t F -line bundles over RP n , where F = R or C . This problem is the stable splitting problem for
F -vector bundles over RP n . We answer the problem by arithmetic conditions.

For F = R , combining Theorem 1 of [5] with Theorem A, we have

Theorem E. Let ζ be a t-dimensional R-vector bundle over RP n which is stably equivalent to sξn, where s is an integer. Then ζ is stably
equivalent to a sum of t R-line bundles over RP n if and only if there is an integer a satisfying

−s � a2φ(n) � t − s.

For F = C , combining Theorem 2 of [5] with Theorem C, we have

Theorem F. Let ζ be a t-dimensional C-vector bundle over RP n which is stably equivalent to scξn, where s is an integer. Then ζ is
stably equivalent to a sum of t C-line bundles over RP n if and only if there is an integer b satisfying

−s � b2[n/2] � t − s.

This paper is arranged as follows. In Section 2 we prove Theorem A, establish the formula in KO(RP n) on the r-fold
power ζ r of the R-vector bundle ζ over RP n , and prove Theorem B. In Section 3 we prove Theorem C, establish the formula
in K (RP n) on the r-fold power ζ r of the C-vector bundle ζ over RP n , and prove Theorem D. In Section 4 we study the
stable splitting problem for F -vector bundles over RP n .

2. Proofs of Theorems A and B

We recall the following result on stable non-extendibility of an R-vector bundle over RP n .

Theorem 2.1. (Cf. [6, Theorem 4.1].) Let α be a k-dimensional R-vector bundle over RP n. Assume that there is a positive integer � such
that α is stably equivalent to (k + �)ξn and k + � < 2φ(n) . Then n < k + � and α is not stably extendible to RP m for every m � k + �.

Proof of Theorem A. The proof of the “if” part: By the assumption we have ζ = sξn + t − s in KO(RP n). By Theorem 7.4 of [1]
the equality a2φ(n)(ξn − 1) = 0 holds in K̃O(RP n) for any integer a. Hence we obtain the equality

ζ = (
a2φ(n) + s

)
ξn + t − s − a2φ(n)

in KO(RP n). Set X = a2φ(n) + s and Y = t − s − a2φ(n) . Then we may take a so that X � 0 and Y � 0 by the assumption,
and ζ = Xξn + Y in KO(RP n). Since the Whitney sum Xξn ⊕ Y is extendible to RP m for every m � n, ζ is stably extendible
to RP m for every m � n.

The proof of the “only if” part: We prove the contraposition. Assume that every integer a satisfies

a2φ(n) < −s or t − s < a2φ(n).

Let A be the maximum integer such that A2φ(n) < −s. Then, since (A + 1)2φ(n) � −s, we have t − s < (A + 1)2φ(n) by the
assumption. Put α = ζ , k = t and � = (A + 1)2φ(n) − t + s in Theorem 2.1. Then � > 0, k + � = (A + 1)2φ(n) + s < 2φ(n) and
(k +�)ξn = {(A +1)2φ(n) + s}ξn = sξn + (A +1)2φ(n) in KO(RP n) by Theorem 7.4 of [1]. Hence we see that n < (A +1)2φ(n) + s
and that ζ is not stably extendible to RP m for every m � (A + 1)2φ(n) + s. �

In the next theorem we establish the formula in KO(RP n) on the power ζ r of ζ .

Theorem 2.2. Let ζ be a t-dimensional R-vector bundle over RP n which is stably equivalent to sξn, where s is an integer, and let
ζ r = ζ ⊗ · · · ⊗ ζ be the r-fold power of ζ . Then the following holds in KO(RP n).

ζ r = −2−1{(t − 2s)r − tr}ξn + 2−1{(t − 2s)r + tr}.

Proof. Since ζ = sξn + t − s in KO(RP n), the equality clearly holds for r = 1.
Assume that the equality holds for r � 1. Then

ζ r+1 = ζ ⊗ ζ r

= (sξn + t − s)
[−2−1{(t − 2s)r − tr}ξn + 2−1{(t − 2s)r + tr}]

= −2−1{(t − 2s)r+1 − tr+1}ξn + 2−1{(t − 2s)r+1 + tr+1}

since ξn ⊗ ξn = 1. Hence the desired equality holds for any positive integer r by induction on r. �
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Theorem 2.2 is an improvement of Lemma 2.1 of [8] and Theorem 2.1 of [2].

Proof of Theorem B. The dimension of ζ r is tr and, by Theorem 2.2, ζ r is stably equivalent to 2−1{tr − (t − 2s)r}ξn . Hence
the result follows from Theorem A. �

Using Theorem 2.2, we have the next theorem that is an improvement of Theorem 2.4 of [8] and Theorem 2.2 of [2].

Theorem 2.3. Under the assumption of Theorem 2.2, the following holds in KO(RP n) for any integer a.

ζ r = 2−1{a2φ(n)+1 − (t − 2s)r + tr}ξn + 2−1{(t − 2s)r + tr − a2φ(n)+1}.

Proof. Adding a2φ(n)(ξn − 1) = 0 (cf. [1, Theorem 7.4]) to the equality in Theorem 2.2, we have the desired equality. �
Using Theorem 2.3, we have the next theorem that is an improvement of Theorem 2.3 of [2].

Theorem 2.4. Assume that there is an integer a satisfying the inequalities of Theorem B. Then, under the assumption of Theorem 2.2,
the Whitney sum decomposition

ζ r = 2−1{a2φ(n)+1 − (t − 2s)r + tr}ξn ⊕ 2−1{(t − 2s)r + tr − a2φ(n)+1}

holds as R-vector bundles if n < tr .

Proof. Set X = 2−1{a2φ(n)+1 −(t −2s)r +tr} and Y = 2−1{(t −2s)r +tr −a2φ(n)+1}. Then, by the assumption, X � 0 and Y � 0,
and, by Theorem 2.3, ζ r = Xξn + Y in KO(RP n). If n(= dim RP n) < tr(= dim ζ r = dim(Xξn ⊕ Y )), then we have ζ r = Xξn ⊕ Y
as R-vector bundles (cf. [3, Theorem 1.5, p. 100]). �

As for extendibility, we have

Theorem 2.5. In addition to the assumption of Theorem B, assume that n < tr . Then ζ r is extendible to RP m for every m � n if and
only if there is an integer a satisfying the inequalities of Theorem B.

Proof. By Theorem 2.2 of [7], for m � n, ζ r is extendible to RP m if and only if ζ r is stably extendible to RP m , provided
n < tr . Hence the result follows from Theorem B. �

This result is an improvement of the results on extendibility obtained from [8, Theorem A] and [2, Theorem A].

3. Proofs of Theorems C and D

We recall the following result on stable non-extendibility of a C-vector bundle over RP n .

Theorem 3.1. (Cf. [6, Theorem 2.1].) Let α be a k-dimensional C-vector bundle over RP n. Assume that there is a positive integer �

such that α is stably equivalent to (k + �)cξn and k + � < 2[n/2] . Then n < 2k + 2� and α is not stably extendible to RP m for every
m � 2k + 2�.

Proof of Theorem C. The proof of the “if” part: By the assumption we have ζ = scξn + t − s in K (RP n). By Theorem 3.8 of [9]
the equality b2[n/2](cξn − 1) = 0 holds in K̃ (RP n) for any integer b. Hence we obtain the equality

ζ = (
b2[n/2] + s

)
cξn + t − s − b2[n/2]

in K (RP n). Set V = b2[n/2] + s and W = t − s − b2[n/2] . Then we may take b so that V � 0 and W � 0 by the assumption,
and ζ = V cξn + W in K (RP n). Since the Whitney sum V cξn ⊕ W is extendible to RP m for every m � n, ζ is stably extendible
to RP m for every m � n.

The proof of the “only if” part: We prove the contraposition. Assume that every integer b satisfies

b2[n/2] < −s or t − s < b2[n/2].

Let B be the maximum integer such that B2[n/2] < −s. Then, since (B + 1)2[n/2] � −s, we have t − s < (B + 1)2[n/2] by the
assumption. Put α = ζ , k = t and � = (B + 1)2[n/2] − t + s in Theorem 3.1. Then � > 0, k + � = (B + 1)2[n/2] + s < 2[n/2]
and (k + �)cξn = {(B + 1)2[n/2] + s}cξn = scξn + (B + 1)2[n/2] in K (RP n) by Theorem 3.8 of [9]. Hence we see that n <

(B + 1)2[n/2]+1 + 2s and that ζ is not stably extendible to RP m for every m � (B + 1)2[n/2]+1 + 2s. �
In the next theorem we establish the formula in K (RP n) on the power ζ r of ζ .
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Theorem 3.2. Let ζ be a t-dimensional C-vector bundle over RP n which is stably equivalent to scξn, where s is an integer, and let
ζ r = ζ ⊗ · · · ⊗ ζ be the r-fold power of ζ . Then the following holds in K (RP n).

ζ r = −2−1{(t − 2s)r − tr}cξn + 2−1{(t − 2s)r + tr}.

Proof. Since ζ = scξn + t − s in K (RP n) and since cξn ⊗ cξn = c(ξn ⊗ ξn) = 1, the proof is parallel to that of Theorem 2.2. �
Theorem 3.2 is an improvement of Lemma 4.1 of [8] and Theorem 4.1 of [2].

Proof of Theorem D. The dimension of ζ r is tr and, by Theorem 3.2, ζ r is stably equivalent to 2−1{tr − (t − 2s)r}cξn . Hence
the result follows from Theorem C. �

Using Theorem 3.2, we have the next theorem that is an improvement of Theorem 4.3 of [8] and Theorem 4.2 of [2].

Theorem 3.3. Under the assumption of Theorem 3.2, the following holds in K (RP n) for any integer b.

ζ r = 2−1{b2[n/2]+1 − (t − 2s)r + tr}cξn + 2−1{(t − 2s)r + tr − b2[n/2]+1}.

Proof. Adding b2[n/2](cξn − 1) = 0 (cf. [9, Theorem 3.8]) to the equality in Theorem 3.2, we have the desired equality. �
Using Theorem 3.3, we have the next theorem that is an improvement of Theorem 4.3 of [2].

Theorem 3.4. Assume that there is an integer b satisfying the inequalities of Theorem D. Then, under the assumption of Theorem 3.2,
the Whitney sum decomposition

ζ r = 2−1{b2[n/2]+1 − (t − 2s)r + tr}cξn ⊕ 2−1{(t − 2s)r + tr − b2[n/2]+1}

holds as C-vector bundles if n/2 � tr .

Proof. Set V = 2−1{b2[n/2]+1 − (t − 2s)r + tr} and W = 2−1{(t − 2s)r + tr − b2[n/2]+1}. Then, by the assumption, V � 0 and
W � 0, and, by Theorem 3.3, ζ r = V cξn + W in K (RP n). If 〈n/2〉(= 〈(dim RP n)/2〉) � tr(= dim ζ r = dim(V cξn ⊕ W )), then
we have ζ r = V cξn ⊕ W as C-vector bundles (cf. [3, Theorem 1.5, p. 100]), where 〈x〉 denotes the smallest integer q with
x � q. Since tr is an integer, the condition 〈n/2〉 � tr is equivalent to n/2 � tr . Thus, we have the desired result. �

As for extendibility, we have

Theorem 3.5. In addition to the assumption of Theorem D, assume that n/2 � tr . Then ζ r is extendible to RP m for every m � n if and
only if there is an integer b satisfying the inequalities of Theorem D.

Proof. By Theorem 2.3 of [7], for m � n, ζ r is extendible to RP m if and only if ζ r is stably extendible to RP m , provided
〈n/2〉 � tr , which is equivalent to n/2 � tr since tr is an integer. Hence the result follows from Theorem D. �

This result is an improvement of the results on extendibility obtained from [8, Theorem B] and [2, Theorem B].

4. The stable splitting problem for vector bundles over RP n

For a positive integer i write i = q2ν(i) , where q is some odd integer, and define, for a positive integer k,

β(k) = min
{

i − ν(i) − 1
∣∣ k < i

}
.

In [5], we call β(k) the Schwarzenberger number.
For F = R , the following theorem is proved by Kobayashi and Yoshida.

Theorem 4.1. (See [5, Theorem 1].) Let ζ be a t-dimensional R-vector bundle over RP n, where t > 0, and consider the following four
conditions.

(1) ζ is stably extendible to RP m for every m � n.
(2) ζ is stably extendible to RP m, where m � n, m � 2t − 1 and φ(m) � φ(n) + β(t).
(3) ζ is stably extendible to RP m, where m = 2φ(n) − 1.
(4) ζ is stably equivalent to a sum of t R-line bundles over RP n.

Then all the four conditions are equivalent. Moreover, when t = 1 or n = 1,3 or 7, the conditions always hold.
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Combining the above theorem with Theorem A, we have

Theorem 4.2. Let ζ be a t-dimensional R-vector bundle over RP n, where t > 0. Then each condition in Theorem 4.1 is equivalent to
that there is an integer a satisfying −s � a2φ(n) � t − s, where ζ = sξn + t − s in KO(RP n). Moreover, when t = 1 or n = 1,3 or 7, this
condition always holds.

For F = C , the following theorem is also proved by Kobayashi and Yoshida.

Theorem 4.3. (See [5, Theorem 2].) Let ζ be a t-dimensional C-vector bundle over RP n, where t > 0, and consider the following four
conditions.

(1) ζ is stably extendible to RP m for every m � n.
(2) ζ is stably extendible to RP m, where m � n, m � 4t − 1 and φ(m) � [n/2] + β(2t) + 1.
(3) ζ is stably extendible to RP m, where m = 2[n/2]+1 − 1.
(4) ζ is stably equivalent to a sum of t C-line bundles over RP n.

Then all the four conditions are equivalent. Moreover, when t = 1 or n = 1,2 or 3, the conditions always hold.

Combining the above theorem with Theorem C, we have

Theorem 4.4. Let ζ be a t-dimensional C-vector bundle over RP n, where t > 0. Then each condition in Theorem 4.3 is equivalent to
that there is an integer b satisfying −s � b2[n/2] � t − s, where ζ = scξn + t − s in K (RP n). Moreover, when t = 1 or n = 1,2 or 3,
this condition always holds.

Theorems E and F are contained in Theorems 4.2 and 4.4 respectively.
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