Topology and its Applications

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Stable extendibility of vector bundles over \mathbb{RP}^n and the stable splitting problem

Yutaka Hemmi^{a,*}, Teiichi Kobayashi^b

^a Department of Mathematics, Faculty of Science, Kochi University, Kochi 780-8520, Japan ^b Asakura-ki 292-21, Kochi 780-8066, Japan

ARTICLE INFO

Article history: Received 15 April 2008 Received in revised form 5 July 2008 Accepted 14 July 2008

MSC: primary 55R50 secondary 55N15

Keywords: Vector bundle Stably extendible Extendible Real projective space Power of vector bundle Tensor product KO-theory K-theory

1. Introduction

ABSTRACT

Let F be the real number field R or the complex number field C, and let RP^n denote the real projective *n*-space. In this paper, we study the conditions for a given *F*-vector bundle over RP^n to be stably extendible to RP^m for every m > n, and establish the formulas on the power $\zeta^r = \zeta \otimes \cdots \otimes \zeta$ (*r*-fold) of an *F*-vector bundle ζ over RP^n . Our results are improvements of the previous papers [T. Kobayashi, H. Yamasaki, T. Yoshida, The power of the tangent bundle of the real projective space, its complexification and extendibility, Proc. Amer. Math. Soc. 134 (2005) 303-310] and [Y. Hemmi, T. Kobayashi, Min Lwin Oo, The power of the normal bundle associated to an immersion of RP^n , its complexification and extendibility, Hiroshima Math. J. 37 (2007) 101-109]. Furthermore, we answer the stable splitting problem for F-vector bundles over RP^n by means of arithmetic conditions.

© 2008 Elsevier B.V. All rights reserved.

Let F be either the real number field R or the complex number field C, and let X be a space and A its subspace. A t-dimensional F-vector bundle ζ over A is said to be stably extendible (respectively extendible) to X if and only if there is a t-dimensional F-vector bundle over X whose restriction to A is stably equivalent (respectively equivalent) to ζ (cf. [4,10]). For simplicity, we use the same letter for a vector bundle and its equivalence class.

In this paper, we study the problem of determining conditions for a given F-vector bundle over RP^n to be stably extendible to RP^m for every $m \ge n$. In case F = R, the answers for the problem have been obtained when ζ is the power τ^r of the tangent bundle $\tau = \tau (RP^n)$ of RP^n [8] and when ζ is the power ν^r of the normal bundle ν associated to an immersion of RP^n in euclidean space in [2]. These results are as follows.

Let \otimes denote the tensor product and $\phi(n)$ the number of integers q such that $0 < q \leq n$ and $q \equiv 0, 1, 2$ or 4 mod 8.

Theorem 1.1. (*Cf.* [8, Theorem A].) Let $\tau^r = \tau(RP^n) \otimes \cdots \otimes \tau(RP^n)$ be the r-fold power of the tangent bundle $\tau(RP^n)$. Then τ^r is stably extendible to \mathbb{RP}^m for every $m \ge n$ if and only if there is an integer x satisfying

 $(n+2)^r - n^r \le x 2^{\phi(n)+1} \le (n+2)^r + n^r.$

Corresponding author.

E-mail addresses: hemmi@math.kochi-u.ac.jp (Y. Hemmi), kteiichi@lime.ocn.ne.jp (T. Kobayashi).

^{0166-8641/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2008.07.006

Theorem 1.2. (*Cf.* [2, Theorem 3.2].) Let $v^r = v \otimes \cdots \otimes v$ be the *r*-fold power of the normal bundle *v* associated to an immersion of \mathbb{RP}^n in euclidean (n + k)-space \mathbb{R}^{n+k} , where k > 0. Then v^r is stably extendible to \mathbb{RP}^m for every $m \ge n$ if and only if there is an integer *x* satisfying

$$(2n+k+2)^r - k^r \leq x 2^{\phi(n)+1} \leq (2n+k+2)^r + k^r.$$

The first purpose of this paper is to obtain the complete answer for any *R*-vector bundle over RP^n . Let ξ_n be the canonical line bundle over RP^n . Then, for any *R*-vector bundle ζ over RP^n , there is an integer *s* such that ζ is stably equivalent to $s\xi_n$ (cf. [1, Theorem 7.4]). We have

Theorem A. Let ζ be a *t*-dimensional *R*-vector bundle over \mathbb{RP}^n which is stably equivalent to $s\xi_n$, where *s* is an integer. Then ζ is stably extendible to \mathbb{RP}^m for every $m \ge n$ if and only if there is an integer a satisfying

 $-s \leq a 2^{\phi(n)} \leq t - s.$

As an application to the *r*-fold power, we have

Theorem B. Let ζ be a t-dimensional R-vector bundle over \mathbb{RP}^n which is stably equivalent to $s\xi_n$, where s is an integer, and let $\zeta^r = \zeta \otimes \cdots \otimes \zeta$ be the r-fold power of ζ . Then ζ^r is stably extendible to \mathbb{RP}^m for every $m \ge n$ if and only if there is an integer a satisfying

$$(t-2s)^r - t^r \leq a 2^{\phi(n)+1} \leq (t-2s)^r + t^r.$$

Theorem B is an improvement of Theorem 1.1. In fact, for the tangent bundle $\tau = \tau (RP^n)$, we have s = n + 1 and t = n. Hence we obtain the inequalities of Theorem 1.1 by using x instead of a in the inequalities of Theorem B if r is even, and -x instead of a in the inequalities of Theorem B if r is odd. Furthermore, this is also an improvement of Theorem 1.2. In fact, for the normal bundle associated to an immersion of RP^n in R^{n+k} , we have s = -n - 1 and t = k. Hence we obtain the inequalities of Theorem 1.2 by using x instead of a in the inequalities of Theorem B.

In case F = C, the answers for the problem have been obtained when ζ is the complexification $c\tau^r$ of the power τ^r in [8] and when ζ is the complexification $c\nu^r$ of the power ν^r in [2]. These results are as follows.

For a real number *z*, let [*z*] denote the largest integer *n* with $n \leq z$.

Theorem 1.3. (*Cf.* [8, Theorem B].) Let $c\tau^r = c(\tau(\mathbb{R}^{p_n}) \otimes \cdots \otimes \tau(\mathbb{R}^{p_n}))$ be the complexification of the *r*-fold power τ^r of the tangent bundle $\tau(\mathbb{R}^{p_n})$. Then $c\tau^r$ is stably extendible to \mathbb{R}^{p_m} for every $m \ge n$ if and only if there is an integer *y* satisfying

$$(n+2)^r - n^r \leq y 2^{\lfloor n/2 \rfloor - 1} \leq (n+2)^r + n^r$$

Theorem 1.4. (*Cf.* [2, Theorem 5.2].) Let $cv^r = c(v \otimes \cdots \otimes v)$ be the complexification of the r-fold power v^r of the normal bundle v associated to an immersion of \mathbb{RP}^n in \mathbb{R}^{n+k} , where k > 0. Then cv^r is stably extendible to \mathbb{RP}^m for every $m \ge n$ if and only if there is an integer y satisfying

$$(2n+k+2)^r - k^r \leq y 2^{\lfloor n/2 \rfloor + 1} \leq (2n+k+2)^r + k^r.$$

The second purpose of this paper is to obtain the complete answer for any *C*-vector bundle over \mathbb{RP}^n . Let $c\xi_n$ be the complexification of the canonical line bundle over \mathbb{RP}^n . Then, for any *C*-vector bundle ζ over \mathbb{RP}^n , there is an integer *s* such that ζ is stably equivalent to $sc\xi_n$ (cf. [9, Theorem 3.8]). We have

Theorem C. Let ζ be a *t*-dimensional *C*-vector bundle over \mathbb{RP}^n which is stably equivalent to $sc\xi_n$, where *s* is an integer. Then ζ is stably extendible to \mathbb{RP}^m for every $m \ge n$ if and only if there is an integer *b* satisfying

$$-s \leq b2^{[n/2]} \leq t-s.$$

As an application to the *r*-fold power, we have

Theorem D. Let ζ be a t-dimensional C-vector bundle over \mathbb{RP}^n which is stably equivalent to $sc\xi_n$, where s is an integer, and let $\zeta^r = \zeta \otimes \cdots \otimes \zeta$ be the r-fold power of ζ . Then ζ^r is stably extendible to \mathbb{RP}^m for every $m \ge n$ if and only if there is an integer b satisfying

 $(t-2s)^r - t^r \leq b2^{[n/2]+1} \leq (t-2s)^r + t^r.$

As in the previous case, Theorem D is an improvement of Theorems 1.3 and 1.4.

Finally, we study the problem of determining the conditions for a given *t*-dimensional *F*-vector bundle over RP^n to be stably equivalent to a sum of *t F*-line bundles over RP^n , where F = R or *C*. This problem is the stable splitting problem for *F*-vector bundles over RP^n . We answer the problem by arithmetic conditions.

For F = R, combining Theorem 1 of [5] with Theorem A, we have

Theorem E. Let ζ be a t-dimensional R-vector bundle over RPⁿ which is stably equivalent to $s\xi_n$, where s is an integer. Then ζ is stably equivalent to a sum of t R-line bundles over RPⁿ if and only if there is an integer a satisfying

$$-s \leq a2^{\phi(n)} \leq t-s.$$

For F = C, combining Theorem 2 of [5] with Theorem C, we have

Theorem F. Let ζ be a t-dimensional C-vector bundle over \mathbb{RP}^n which is stably equivalent to sc_{ξ_n} , where s is an integer. Then ζ is stably equivalent to a sum of t C-line bundles over \mathbb{RP}^n if and only if there is an integer b satisfying

 $-s \leq b2^{[n/2]} \leq t - s.$

This paper is arranged as follows. In Section 2 we prove Theorem A, establish the formula in $KO(RP^n)$ on the *r*-fold power ζ^r of the *R*-vector bundle ζ over RP^n , and prove Theorem B. In Section 3 we prove Theorem C, establish the formula in $K(RP^n)$ on the *r*-fold power ζ^r of the *C*-vector bundle ζ over RP^n , and prove Theorem D. In Section 4 we study the stable splitting problem for *F*-vector bundles over RP^n .

2. Proofs of Theorems A and B

We recall the following result on stable non-extendibility of an *R*-vector bundle over *RP*^{*n*}.

Theorem 2.1. (*Cf.* [6, Theorem 4.1].) Let α be a k-dimensional R-vector bundle over \mathbb{RP}^n . Assume that there is a positive integer ℓ such that α is stably equivalent to $(k + \ell)\xi_n$ and $k + \ell < 2^{\phi(n)}$. Then $n < k + \ell$ and α is not stably extendible to \mathbb{RP}^m for every $m \ge k + \ell$.

Proof of Theorem A. The proof of the "if" part: By the assumption we have $\zeta = s\xi_n + t - s$ in $KO(RP^n)$. By Theorem 7.4 of [1] the equality $a2^{\phi(n)}(\xi_n - 1) = 0$ holds in $\widetilde{KO}(RP^n)$ for any integer *a*. Hence we obtain the equality

$$\zeta = (a2^{\phi(n)} + s)\xi_n + t - s - a2^{\phi(n)}$$

in $KO(RP^n)$. Set $X = a2^{\phi(n)} + s$ and $Y = t - s - a2^{\phi(n)}$. Then we may take *a* so that $X \ge 0$ and $Y \ge 0$ by the assumption, and $\zeta = X\xi_n + Y$ in $KO(RP^n)$. Since the Whitney sum $X\xi_n \oplus Y$ is extendible to RP^m for every $m \ge n$, ζ is stably extendible to RP^m for every $m \ge n$.

The proof of the "only if" part: We prove the contraposition. Assume that every integer a satisfies

 $a2^{\phi(n)} < -s$ or $t - s < a2^{\phi(n)}$.

Let *A* be the maximum integer such that $A2^{\phi(n)} < -s$. Then, since $(A + 1)2^{\phi(n)} \ge -s$, we have $t - s < (A + 1)2^{\phi(n)}$ by the assumption. Put $\alpha = \zeta$, k = t and $\ell = (A + 1)2^{\phi(n)} - t + s$ in Theorem 2.1. Then $\ell > 0$, $k + \ell = (A + 1)2^{\phi(n)} + s < 2^{\phi(n)}$ and $(k + \ell)\xi_n = \{(A + 1)2^{\phi(n)} + s\}\xi_n = s\xi_n + (A + 1)2^{\phi(n)}$ in $KO(RP^n)$ by Theorem 7.4 of [1]. Hence we see that $n < (A + 1)2^{\phi(n)} + s$ and that ζ is not stably extendible to RP^m for every $m \ge (A + 1)2^{\phi(n)} + s$. \Box

In the next theorem we establish the formula in $KO(RP^n)$ on the power ζ^r of ζ .

Theorem 2.2. Let ζ be a t-dimensional R-vector bundle over \mathbb{RP}^n which is stably equivalent to $s\xi_n$, where s is an integer, and let $\zeta^r = \zeta \otimes \cdots \otimes \zeta$ be the r-fold power of ζ . Then the following holds in $KO(\mathbb{RP}^n)$.

$$\zeta^{r} = -2^{-1} \{ (t-2s)^{r} - t^{r} \} \xi_{n} + 2^{-1} \{ (t-2s)^{r} + t^{r} \}.$$

Proof. Since $\zeta = s\xi_n + t - s$ in $KO(RP^n)$, the equality clearly holds for r = 1.

Assume that the equality holds for $r \ge 1$. Then

$$\begin{aligned} \zeta^{r+1} &= \zeta \otimes \zeta^r \\ &= (s\xi_n + t - s) \Big[-2^{-1} \big\{ (t - 2s)^r - t^r \big\} \xi_n + 2^{-1} \big\{ (t - 2s)^r + t^r \big\} \Big] \\ &= -2^{-1} \big\{ (t - 2s)^{r+1} - t^{r+1} \big\} \xi_n + 2^{-1} \big\{ (t - 2s)^{r+1} + t^{r+1} \big\} \end{aligned}$$

since $\xi_n \otimes \xi_n = 1$. Hence the desired equality holds for any positive integer *r* by induction on *r*.

Theorem 2.2 is an improvement of Lemma 2.1 of [8] and Theorem 2.1 of [2].

Proof of Theorem B. The dimension of ζ^r is t^r and, by Theorem 2.2, ζ^r is stably equivalent to $2^{-1}\{t^r - (t-2s)^r\}\xi_n$. Hence the result follows from Theorem A. \Box

Using Theorem 2.2, we have the next theorem that is an improvement of Theorem 2.4 of [8] and Theorem 2.2 of [2].

Theorem 2.3. Under the assumption of Theorem 2.2, the following holds in $KO(RP^n)$ for any integer a.

 $\zeta^{r} = 2^{-1} \{ a 2^{\phi(n)+1} - (t-2s)^{r} + t^{r} \} \xi_{n} + 2^{-1} \{ (t-2s)^{r} + t^{r} - a 2^{\phi(n)+1} \}.$

Proof. Adding $a2^{\phi(n)}(\xi_n - 1) = 0$ (cf. [1, Theorem 7.4]) to the equality in Theorem 2.2, we have the desired equality.

Using Theorem 2.3, we have the next theorem that is an improvement of Theorem 2.3 of [2].

Theorem 2.4. Assume that there is an integer a satisfying the inequalities of Theorem B. Then, under the assumption of Theorem 2.2, the Whitney sum decomposition

 $\zeta^{r} = 2^{-1} \{ a 2^{\phi(n)+1} - (t-2s)^{r} + t^{r} \} \xi_{n} \oplus 2^{-1} \{ (t-2s)^{r} + t^{r} - a 2^{\phi(n)+1} \}$

holds as *R*-vector bundles if $n < t^r$.

Proof. Set $X = 2^{-1} \{ a 2^{\phi(n)+1} - (t-2s)^r + t^r \}$ and $Y = 2^{-1} \{ (t-2s)^r + t^r - a 2^{\phi(n)+1} \}$. Then, by the assumption, $X \ge 0$ and $Y \ge 0$, and, by Theorem 2.3, $\zeta^r = X\xi_n + Y$ in $KO(RP^n)$. If $n (= \dim RP^n) < t^r (= \dim \zeta^r = \dim(X\xi_n \oplus Y))$, then we have $\zeta^r = X\xi_n \oplus Y$ as *R*-vector bundles (cf. [3, Theorem 1.5, p. 100]). \Box

As for extendibility, we have

Theorem 2.5. In addition to the assumption of Theorem B, assume that $n < t^r$. Then ζ^r is extendible to \mathbb{R}^{P^m} for every $m \ge n$ if and only if there is an integer a satisfying the inequalities of Theorem B.

Proof. By Theorem 2.2 of [7], for $m \ge n$, ζ^r is extendible to RP^m if and only if ζ^r is stably extendible to RP^m , provided $n < t^r$. Hence the result follows from Theorem B. \Box

This result is an improvement of the results on extendibility obtained from [8, Theorem A] and [2, Theorem A].

3. Proofs of Theorems C and D

We recall the following result on stable non-extendibility of a C-vector bundle over RP^n .

Theorem 3.1. (*Cf.* [6, Theorem 2.1].) Let α be a k-dimensional *C*-vector bundle over \mathbb{RP}^n . Assume that there is a positive integer ℓ such that α is stably equivalent to $(k + \ell)c\xi_n$ and $k + \ell < 2^{[n/2]}$. Then $n < 2k + 2\ell$ and α is not stably extendible to \mathbb{RP}^m for every $m \ge 2k + 2\ell$.

Proof of Theorem C. The proof of the "if" part: By the assumption we have $\zeta = sc\xi_n + t - s$ in $K(RP^n)$. By Theorem 3.8 of [9] the equality $b2^{[n/2]}(c\xi_n - 1) = 0$ holds in $\widetilde{K}(RP^n)$ for any integer *b*. Hence we obtain the equality

$$\zeta = (b2^{[n/2]} + s)c\xi_n + t - s - b2^{[n/2]}$$

in $K(RP^n)$. Set $V = b2^{[n/2]} + s$ and $W = t - s - b2^{[n/2]}$. Then we may take *b* so that $V \ge 0$ and $W \ge 0$ by the assumption, and $\zeta = Vc\xi_n + W$ in $K(RP^n)$. Since the Whitney sum $Vc\xi_n \oplus W$ is extendible to RP^m for every $m \ge n$, ζ is stably extendible to RP^m for every $m \ge n$.

The proof of the "only if" part: We prove the contraposition. Assume that every integer b satisfies

 $b2^{[n/2]} < -s$ or $t - s < b2^{[n/2]}$.

Let *B* be the maximum integer such that $B2^{[n/2]} < -s$. Then, since $(B+1)2^{[n/2]} \ge -s$, we have $t - s < (B+1)2^{[n/2]}$ by the assumption. Put $\alpha = \zeta$, k = t and $\ell = (B+1)2^{[n/2]} - t + s$ in Theorem 3.1. Then $\ell > 0$, $k + \ell = (B+1)2^{[n/2]} + s < 2^{[n/2]}$ and $(k + \ell)c\xi_n = \{(B+1)2^{[n/2]} + s\}c\xi_n = sc\xi_n + (B+1)2^{[n/2]}$ in $K(RP^n)$ by Theorem 3.8 of [9]. Hence we see that $n < (B+1)2^{[n/2]+1} + 2s$ and that ζ is not stably extendible to RP^m for every $m \ge (B+1)2^{[n/2]+1} + 2s$. \Box

In the next theorem we establish the formula in $K(\mathbb{RP}^n)$ on the power ζ^r of ζ .

Theorem 3.2. Let ζ be a t-dimensional C-vector bundle over \mathbb{RP}^n which is stably equivalent to $sc\xi_n$, where s is an integer, and let $\zeta^r = \zeta \otimes \cdots \otimes \zeta$ be the r-fold power of ζ . Then the following holds in $K(\mathbb{RP}^n)$.

 $\zeta^{r} = -2^{-1} \{ (t-2s)^{r} - t^{r} \} c \xi_{n} + 2^{-1} \{ (t-2s)^{r} + t^{r} \}.$

Proof. Since $\zeta = sc\xi_n + t - s$ in $K(RP^n)$ and since $c\xi_n \otimes c\xi_n = c(\xi_n \otimes \xi_n) = 1$, the proof is parallel to that of Theorem 2.2.

Theorem 3.2 is an improvement of Lemma 4.1 of [8] and Theorem 4.1 of [2].

Proof of Theorem D. The dimension of ζ^r is t^r and, by Theorem 3.2, ζ^r is stably equivalent to $2^{-1}\{t^r - (t-2s)^r\}c\xi_n$. Hence the result follows from Theorem C. \Box

Using Theorem 3.2, we have the next theorem that is an improvement of Theorem 4.3 of [8] and Theorem 4.2 of [2].

Theorem 3.3. Under the assumption of Theorem 3.2, the following holds in $K(\mathbb{RP}^n)$ for any integer b.

 $\zeta^{r} = 2^{-1} \{ b 2^{[n/2]+1} - (t-2s)^{r} + t^{r} \} c \xi_{n} + 2^{-1} \{ (t-2s)^{r} + t^{r} - b 2^{[n/2]+1} \}.$

Proof. Adding $b2^{[n/2]}(c\xi_n - 1) = 0$ (cf. [9, Theorem 3.8]) to the equality in Theorem 3.2, we have the desired equality.

Using Theorem 3.3, we have the next theorem that is an improvement of Theorem 4.3 of [2].

Theorem 3.4. Assume that there is an integer b satisfying the inequalities of Theorem D. Then, under the assumption of Theorem 3.2, the Whitney sum decomposition

$$\zeta^{r} = 2^{-1} \left\{ b 2^{[n/2]+1} - (t-2s)^{r} + t^{r} \right\} c \xi_{n} \oplus 2^{-1} \left\{ (t-2s)^{r} + t^{r} - b 2^{[n/2]+1} \right\}$$

holds as C-vector bundles if $n/2 \leq t^r$.

Proof. Set $V = 2^{-1} \{ b 2^{[n/2]+1} - (t-2s)^r + t^r \}$ and $W = 2^{-1} \{ (t-2s)^r + t^r - b 2^{[n/2]+1} \}$. Then, by the assumption, $V \ge 0$ and $W \ge 0$, and, by Theorem 3.3, $\zeta^r = V c \xi_n + W$ in $K(RP^n)$. If $\langle n/2 \rangle (= \langle (\dim RP^n)/2 \rangle) \le t^r (= \dim \zeta^r = \dim(V c \xi_n \oplus W))$, then we have $\zeta^r = V c \xi_n \oplus W$ as *C*-vector bundles (cf. [3, Theorem 1.5, p. 100]), where $\langle x \rangle$ denotes the smallest integer *q* with $x \le q$. Since t^r is an integer, the condition $\langle n/2 \rangle \le t^r$ is equivalent to $n/2 \le t^r$. Thus, we have the desired result. \Box

As for extendibility, we have

Theorem 3.5. In addition to the assumption of Theorem D, assume that $n/2 \le t^r$. Then ζ^r is extendible to \mathbb{RP}^m for every $m \ge n$ if and only if there is an integer b satisfying the inequalities of Theorem D.

Proof. By Theorem 2.3 of [7], for $m \ge n$, ζ^r is extendible to RP^m if and only if ζ^r is stably extendible to RP^m , provided $\langle n/2 \rangle \le t^r$, which is equivalent to $n/2 \le t^r$ since t^r is an integer. Hence the result follows from Theorem D. \Box

This result is an improvement of the results on extendibility obtained from [8, Theorem B] and [2, Theorem B].

4. The stable splitting problem for vector bundles over RP^n

For a positive integer *i* write $i = q2^{\nu(i)}$, where *q* is some odd integer, and define, for a positive integer *k*,

 $\beta(k) = \min\{i - \nu(i) - 1 \mid k < i\}.$

In [5], we call $\beta(k)$ the Schwarzenberger number.

For F = R, the following theorem is proved by Kobayashi and Yoshida.

Theorem 4.1. (See [5, Theorem 1].) Let ζ be a t-dimensional R-vector bundle over \mathbb{RP}^n , where t > 0, and consider the following four conditions.

(1) ζ is stably extendible to \mathbb{RP}^m for every $m \ge n$.

(2) ζ is stably extendible to \mathbb{RP}^m , where $m \ge n$, $m \ge 2t - 1$ and $\phi(m) \ge \phi(n) + \beta(t)$.

- (3) ζ is stably extendible to \mathbb{RP}^m , where $m = 2^{\phi(n)} 1$.
- (4) ζ is stably equivalent to a sum of t R-line bundles over RPⁿ.

Then all the four conditions are equivalent. Moreover, when t = 1 or n = 1, 3 or 7, the conditions always hold.

Combining the above theorem with Theorem A, we have

Theorem 4.2. Let ζ be a *t*-dimensional *R*-vector bundle over \mathbb{RP}^n , where t > 0. Then each condition in Theorem 4.1 is equivalent to that there is an integer a satisfying $-s \leq a2^{\phi(n)} \leq t - s$, where $\zeta = s\xi_n + t - s$ in KO(\mathbb{RP}^n). Moreover, when t = 1 or n = 1, 3 or 7, this condition always holds.

For F = C, the following theorem is also proved by Kobayashi and Yoshida.

Theorem 4.3. (See [5, Theorem 2].) Let ζ be a t-dimensional C-vector bundle over \mathbb{RP}^n , where t > 0, and consider the following four conditions.

- (1) ζ is stably extendible to \mathbb{RP}^m for every $m \ge n$.
- (2) ζ is stably extendible to \mathbb{RP}^m , where $m \ge n$, $m \ge 4t 1$ and $\phi(m) \ge \lfloor n/2 \rfloor + \beta(2t) + 1$.
- (3) ζ is stably extendible to \mathbb{RP}^m , where $m = 2^{\lfloor n/2 \rfloor + 1} 1$.
- (4) ζ is stably equivalent to a sum of t C-line bundles over RPⁿ.

Then all the four conditions are equivalent. Moreover, when t = 1 or n = 1, 2 or 3, the conditions always hold.

Combining the above theorem with Theorem C, we have

Theorem 4.4. Let ζ be a t-dimensional C-vector bundle over \mathbb{RP}^n , where t > 0. Then each condition in Theorem 4.3 is equivalent to that there is an integer b satisfying $-s \leq b2^{[n/2]} \leq t - s$, where $\zeta = sc\xi_n + t - s$ in $K(\mathbb{RP}^n)$. Moreover, when t = 1 or n = 1, 2 or 3, this condition always holds.

Theorems E and F are contained in Theorems 4.2 and 4.4 respectively.

References

- [1] J.F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962) 603-632.
- [2] Y. Hemmi, T. Kobayashi, Min Lwin Oo, The power of the normal bundle associated to an immersion of *RPⁿ*, its complexification and extendibility, Hiroshima Math. J. 37 (2007) 101–109.
- [3] D. Husemoller, Fibre Bundles, second ed., Grad. Texts in Math., vol. 20, Springer-Verlag, New York, Heidelberg, Berlin, 1975.
- [4] M. Imaoka, K. Kuwana, Stably extendible vector bundles over the quaternionic projective spaces, Hiroshima Math. J. 29 (1999) 273-279.
- [5] T. Kobayashi, T. Yoshida, Stable extendibility of vector bundles over real projective spaces and bounds for the Schwarzenberger numbers β(k), Hiroshima Math. J. 33 (2003) 371–377.
- [6] T. Kobayashi, H. Maki, T. Yoshida, Stably extendible vector bundles over the real projective spaces and the lens spaces, Hiroshima Math. J. 29 (1999) 631–638.
- [7] T. Kobayashi, H. Maki, T. Yoshida, Extendibility and stable extendibility of normal bundles associated to immersions of real projective spaces, Osaka J. Math. 39 (2002) 315–324.
- [8] T. Kobayashi, H. Yamasaki, T. Yoshida, The power of the tangent bundle of the real projective space, its complexification and extendibility, Proc. Amer. Math. Soc. 134 (2005) 303–310.
- [9] B.J. Sanderson, Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3) 14 (1964) 137-153.
- [10] R.L.E. Schwarzenberger, Extendible vector bundles over real projective space, Quart. J. Math. Oxford Ser. (2) 17 (1966) 19-21.