RANTES G-401A polymorphism is associated with allergen sensitization and FEV₁ in Chinese children

⁷Department of Paediatrics, The Chinese University of Hong Kong, 6/F, Clinical Sciences Building, Prince of Wales Hospital, Shatin, N.T., Hong Kong SAR, China

⁸Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China

Received 21 July 2003; accepted 2 June 2004

Summary G-401A polymorphism in RANTES promoter was associated with near-fatal asthma and atopic dermatitis in children. We studied whether gain-of-function mutations in RANTES gene were associated with asthma and atopy-related traits in Chinese children. Plasma total and aeroallergen-specific IgE concentrations were measured using micro-particle immunoassay and fluorescent enzyme immunoassay, respectively. Restriction fragment length polymorphism was used to genotype RANTES G-401A and C-28G. One hundred and twenty-nine asthmatic children and 66 controls were recruited. Their mean logarithmic plasma total IgE concentrations were 2.53 and 1.98, respectively (P < 0.0001). RANTES G-401A was not associated with physician-diagnosed asthma (P = 0.408). However, RANTES -401A allele was significantly associated with IgE sensitization to cat (odds ratio 2.35; 95% CI 1.15–4.77; P = 0.010). Those homozygous for -401A had higher plasma cat-specific IgE levels (P = 0.034). Subjects having -401A were also more likely to have mold-specific IgE (odds ratio 3.82; 95% CI 1.24–12.14; P = 0.007). On spirometry, those with -401A/A had lower forced expiratory volume in 1-s (FEV₁; P = 0.044). RANTES C-28G was not associated with any outcome in this study. In conclusion, the gain-of-function mutation at -401 of RANTES promoter is associated with sensitization to cat and mold allergens and FEV₁ in Chinese children.

© 2004 Elsevier Ltd. All rights reserved.

KEYWORDS
Asthma;
Atopy;
Polymorphism;
Regulated on activation, normal T cell expressed and secreted;
Spirometry

Introduction

Regulated on activation, normal T cell expressed and secreted (RANTES) is one of the most extensively studied C–C chemokines in allergic inflammation.¹ Elevated RANTES level was detected in bronchoalveolar lavage fluid of patients with acute asthma and following allergen challenge.²–⁴ Genome-wide screen in African Americans also linked asthma to the C–C chemokine gene cluster on chromosome 17p12-17q11.²⁻⁵ Two mutations at -401 and -28 in RANTES resulted in increased transcriptional activity of the mutant promoter.⁶⁻⁹ In Caucasian adults, RANTES G-401A was associated with asthma, skin test positivity and forced expiratory volume in 1-s (FEV₁).¹⁰ This polymorphism was also associated with atopic dermatitis in German children.⁷ This study aims at investigating...
the relation between RANTES promoter polymorphisms and various asthma and atopy phenotypes in Chinese children.

Patients and methods

Subjects

This study recruited unrelated Chinese children aged 5–18 years with asthma diagnosed according to American Thoracic Society criteria. Briefly, these patients had a 6-month history of recurrent cough, dyspnea or wheezing that was relieved by bronchodilator and reversibility and/or hyperreactivity on pulmonary function studies. These asthmatic patients were recruited from pediatric clinics of a university teaching hospital. Non-allergic controls were recruited among those referred for assessment of minor complaints. All subjects were free from infection for four weeks before study. The Clinical Research Ethics Committee of our university approved this study.

Clinical assessments

Following written consent, plasma samples were collected from subjects for total IgE by microparticle immunoassay (IMx analyser, Abbott Laboratories, Abbott Park, IL, USA), and specific IgE to locally relevant aeroallergens (D. pteronyssinus, cat, dog, cockroaches and mixed molds) by fluorescent enzyme immunoassay (AutoCAP system, Pharmacia Diagnostics AB, Uppsala, Sweden). Atopy is defined by one aeroallergen-specific IgE. All asthmatics also underwent simple spirometry, and results were compared with local references.

Genotyping RANTES polymorphisms

RANTES G-401A and C-28G were genotyped by restriction fragment length polymorphism as described. Briefly, the primers for G-401A were (F) 5'-GCC TCA ATT TAC AGT GTG-3' and (R) 5'-TGC TTA TTC ATT ACA GAT GTT-3', and those for C-28G were (F) 5'-ACA GAG ACT CGA ATT TCC GGA-3' and (R) 5'-CCA CGT GCT GTG ATC TTC-3'. Fifty nanograms genomic DNA was amplified with 25 pmol of each primer and 1 unit Taq polymerase (MBI Fermentas, Amherst, NY, USA) or 0.75 unit Ampli Taq Gold (Applied Biosystems, Foster City, CA, USA). Polymerase chain reaction consisted of 95°C for 5 min, 38 cycles of 94°C for 45 s, 53°C for 45 s and 72°C for 45 s, and 72°C for 7 min. MaeII cut the product into two bands (112 and 23 bp) for -401G, whereas MnlI digested the product into three bands (126, 27 and 20 bp) for -28C. Genotypes of 8 random samples from each of G-401A and C-28G were confirmed by direct sequencing using BigDye Terminator Cycle sequencing kit (Applied Biosystems, Foster City, CA, USA).

Statistical analysis

The demographic and clinical data were analyzed using Student t-test, χ² or Fisher exact test as appropriate. The distribution of RANTES genotypes or alleles between patients and controls were analyzed by χ² or Fisher exact test. Plasma IgE concentrations and FEV₁ between different RANTES genotypes were analyzed by analysis of variance or Kruskal–Wallis test. P-values less than 0.05 were considered significant.

Results

One hundred twenty-nine asthmatics and 66 controls, with mean (SD) ages of 9.9 (3.4) years and 10.5 (4.6) years (P = 0.35), were recruited. Eighty-two (64%) patients and 41 (62%) controls were males (P = 0.84). Table 1 summarizes the clinical characteristics of our patients. The mean (SD) log-transformed total IgE concentration was 2.53 (0.59) kIU/l in patients and 1.98 (0.78) kIU/l in controls (P < 0.0001). Ninety-seven (75%) asthmatics and 29 (44%) controls had increased plasma total IgE (OR 3.87, 95% CI 1.97–7.63; P < 0.0001), and 113 (88%) patients and 33 (50%) controls were atopic (OR 7.06, 95% CI 3.28–15.37; P < 0.0001).
Asthma was also significantly associated with sensitization to *D. pteronyssinus* (OR 5.40, 95% CI 2.60–11.29; *P* < 0.0001) and cat (OR 5.24, 95% CI 1.11–33.80; *P* = 0.017).

The distributions of *RANTES* -401 and -28 alleles followed Hardy–Weinberg equilibrium. Table 2 summarizes genotype and allele frequencies of *RANTES* G-401A in various asthma or atopy phenotypes. *RANTES*-401A was associated with the presence of cat-specific IgE (OR 2.35; 95% CI 1.15–4.77; *P* = 0.010). Plasma cat-specific IgE concentrations were higher in subjects with -401A/A as compared to G/A and G/G (*P* = 0.034 for trend). Sensitization to mixed molds was also more common in subjects carrying -401A (OR 3.82; 95% CI 1.24–12.14; *P* = 0.007). Spirometrically, 20 (16%) asthmatics had FEV1 ≤80%. Fig. 1 shows that FEV1 was significantly lower in patients with -401A/A.

RANTES -28G was present in 10% patients and 9% controls. None of them was homozygous for this

Table 1 Clinical characteristics and lung functions of our 129 asthmatic patients.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic data</td>
<td></td>
</tr>
<tr>
<td>Age at assessment in years, mean (SD)</td>
<td>9.9 (3.4)</td>
</tr>
<tr>
<td>Male gender, n (%)</td>
<td>82 (64)</td>
</tr>
<tr>
<td>Coexisting physician-diagnosed allergic rhinitis*, n (%)</td>
<td>104 (81)</td>
</tr>
<tr>
<td>Coexisting physician-diagnosed atopic dermatitis*, n (%)</td>
<td>45 (35)</td>
</tr>
<tr>
<td>Details on asthma prophylaxis</td>
<td></td>
</tr>
<tr>
<td>Number of patients receiving inhaled corticosteroids, n (%)</td>
<td>73 (57)</td>
</tr>
<tr>
<td>Median (range) daily dose of inhaled beclomethasone dipropionate or equivalent in µg</td>
<td>200 (100–1000)</td>
</tr>
<tr>
<td>Median (interquartile range) FEV1, % predicted</td>
<td>98 (85–111)</td>
</tr>
</tbody>
</table>

*The diagnoses of allergic rhinitis and atopic dermatitis were made according to the criteria listed in references, 14, 15 respectively.

Table 2 The relationship between asthma or atopy phenotypes and *RANTES* G-401A.

<table>
<thead>
<tr>
<th>Groups</th>
<th>−401 Genotypes</th>
<th>−401 Alleles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G/G (%) G/A (%) A/A (%)</td>
<td>P-value*</td>
</tr>
<tr>
<td>Cat-sensitized</td>
<td>7 (35) 6 (30) 7 (35)</td>
<td>0.008</td>
</tr>
<tr>
<td>With not cat-sensitized</td>
<td>88 (51) 68 (39) 18 (10)</td>
<td>1.0</td>
</tr>
<tr>
<td>Mixed mold-sensitized</td>
<td>1 (13) 4 (50) 3 (38)</td>
<td>0.037</td>
</tr>
<tr>
<td>With not mixed mold-sensitized</td>
<td>95 (51) 69 (37) 22 (12)</td>
<td>1.0</td>
</tr>
<tr>
<td>All asthmatic patients</td>
<td>60 (48) 53 (41) 16 (12)</td>
<td>0.408</td>
</tr>
<tr>
<td>Asthmatics with ≥1 positive RAST</td>
<td>54 (48) 45 (40) 14 (12)</td>
<td>0.525</td>
</tr>
<tr>
<td>With all control children</td>
<td>37 (56) 21 (32) 8 (12)</td>
<td>1.0</td>
</tr>
<tr>
<td>Increased serum total IgE†</td>
<td>63 (50) 47 (37) 16 (13)</td>
<td>0.957</td>
</tr>
<tr>
<td>With normal serum total IgE</td>
<td>34 (49) 27 (39) 8 (12)</td>
<td>1.0</td>
</tr>
<tr>
<td>Atopic subjects (with ≥1 positive RAST)</td>
<td>72 (49) 55 (38) 19 (13)</td>
<td>0.874</td>
</tr>
<tr>
<td>With non-atopic subjects</td>
<td>25 (51) 19 (39) 5 (10)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

A, mutant -401 allele; CI, confidence interval; G, wild-type -401 allele, OR, odds ratio.

* *Analysed between two groups by Pearson χ² or Fisher exact test.

†Results for *D. pteronyssinus*, dog and cockroach sensitization were insignificant and thus not included.

‡Compared with age-matched upper limits of reference ranges (5-6 years: 120 kIU/l; 6-7 years: 160 kIU/l; ≥ 8 years: 180 kIU/l) for local Chinese children.
mutant, and C-28G was not associated with any asthma or atopy phenotype (results not shown).

Discussion

This study shows for the first time that RANTES polymorphism is linked to allergen sensitization and asthma severity as assessed by FEV₁. RANTES G-401A is associated with sensitization to cat and mold allergens. Asthmatic children with -401A/A also have lower FEV₁. RANTES C-28G is not associated with any outcome variable in our Chinese children. Fryer and colleagues showed similarly a significant association between RANTES G-401A and skin test positivity to aeroallergens and asthma diagnosis in Caucasians. In contrast, Yao and colleagues found that RANTES -28G but not -401A was significantly associated with near-fatal asthma in Chinese children. RANTES -28G was also associated with peripheral eosinophilia and bronchial hyperresponsiveness. These discrepant effects might be explained by tight linkage disequilibrium between G-401A and C-28G. The importance of RANTES on asthma and atopy was further supported by the finding that its blood level was increased in patients with severe asthmatic exacerbation.

RANTES -401A was found in 9–16% of Caucasians, but its frequency was much higher in Chinese (25%) and Japanese (33%). RANTES -28G, another gain-of-function mutation, was present in 4% of Caucasians, 12% of Chinese and 12–17% of Japanese. In the present study, -401A was present in 28% of controls whereas -28G was detected in 9% of them, and these figures were similar to those of Chinese and Japanese but much higher than in healthy Caucasians. Further studies are needed to delineate the allele frequencies for RANTES -401 and -28 in different ethnic groups.

The main weakness of this study relates to the sample size. There has not been any report on allele frequencies of RANTES G-401A and C-28G in Chinese at the time of this study, and this made sample size estimation difficult. Retrospective analysis showed that our sample size was able to detect an odds ratio of 2.6 for G-401A with asthma with 80% power and 95% confidence. This study may thus be underpowered in detecting any association between G-401A and rare outcomes. Despite this, this study detects an association between this polymorphism and FEV₁ and aeroallergen sensitization.

References