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Adult-onset neurodegenerative disorders are disabling and often fatal diseases of the nervous systemwhose
underlying mechanisms of cell death remain unknown. Defects in mitochondrial respiration had previously
been proposed to contribute to the occurrence of many, if not all, of the most common neurodegenerative
disorders. However, the discovery of genes mutated in hereditary forms of these enigmatic diseases has
additionally suggested defects in mitochondrial dynamics. Such disturbances can lead to changes in mito-
chondrial trafficking, in interorganellar communication, and in mitochondrial quality control. These new
mechanisms by which mitochondria may also be linked to neurodegeneration will likely have far-reaching
implications for our understanding of the pathophysiology and treatment of adult-onset neurodegenerative
disorders.
Adult-onset neurodegenerative diseases are a large group of

heterogeneous disorders characterized by the relatively selec-

tive death of neuronal subtypes. In most cases, they arise for

unknown reasons, and are relentlessly progressive. Age is the

most consistent and robust risk factor for neurodegenerative

diseases, and thus, the number of patients is expected to

increase dramatically in the years to come, especially in industri-

alized countries. For instance, the number of cases of Alz-

heimer’s disease (AD) and other dementias, including Lewy

body disease and frontotemporal dementia, was estimated by

the World Health Organization in 2005 at almost 25 million indi-

viduals worldwide, with �5 million new cases annually, and is

projected tomore than double by 2025. Existing approvedmedi-

cines provide only symptomatic relief, and their chronic use is

often associated with deleterious side effects; none appear to

modify the natural course of the diseases. Clearly, the develop-

ment of effective therapies is hindered by our limited knowledge

of the molecular mechanisms underlying these conditions.

Despite the phenotypic diversity of neurodegenerative disor-

ders, insights gained in the last decade into their pathophysi-

ology, especially through genetics, have begun to reveal some

underlying themes. These include disturbances in cellular quality

control mechanisms (e.g., endoplasmic reticulum [ER] stress,

defects in proteasomal and autophagic function, and accumula-

tion and/or aggregation of misfolded proteins), oxidative stress,

neuroinflammation, and impaired subcellular trafficking. Another

pathogenic theme that has come to prominence, and which is

the focus of this review, is the role of impaired mitochondrial

function, not only as it pertains to defects inmitochondrial energy

production, but also to mitochondrial dynamics (i.e., organellar

shape, size, distribution, movement, and anchorage), communi-

cation with other organelles, and turnover.

Of necessity, we have limited our discussion to a subset of

neurodegenerative disorders (Table 1), focusing on those
that best illustrate our central points. We recognize that this

selection introduces a bias, yet the diseases we have chosen

encompass the vast majority of patients afflicted with neurode-

generative disease, and thus should provide a faithful picture

of the state of affairs regarding the role of mitochondria in neuro-

degeneration.

Can Genetics Shed Light onto the Mitochondrial Link
in Neurodegenerative Disorders?
Many of the prominent adult-onset neurodegenerative disor-

ders, such as AD, Parkinson’s disease (PD), and amyotrophic

lateral sclerosis (ALS), are primarily sporadic, i.e., they occur in

the absence of any genetic linkage. However, in rare instances

they can be inherited. The phenotypes of both the sporadic

and familial forms of these diseases are essentially indistinguish-

able, implying that they might share common underlying mech-

anisms. We believe that this similarity justifies the analysis of

rare genetic forms of a common sporadic disorder, as it could

well illuminate the pathogenesis of both. Moreover, the familial

counterparts of all of the common sporadic neurodegenerative

disorders are due to mutations not just in a single gene, but in

multiple distinct and often ostensibly dissimilar genes. This

apparent genetic heterogeneity associated with specific

syndromes should not come as a surprise, since thus far the

taxonomy of neurodegenerative disorders rests on clinical,

biochemical, and neuropathological criteria, lumping under the

same label diseases that merely look alike. Nonetheless, this

striking situation raises the possibility that however disparate

these genes may appear to be, the functions of the respective

gene products might intersect in common pathways. Further-

more, the observations that mutations in a specific gene can

give rise to more than one distinct clinical phenotype (Chen

et al., 2004; Elden et al., 2010; Moreira et al., 2004; Pulst et al.,

1996) suggest that while the disease classification scheme is
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Table 1. Selected Neurodegenerative Disorders Discussed

Name

Frequency

per 100,000 Presentation

Typical Age of

Onset (Yr.)

Main Clinical

Manifestations

Main Neuropathological

Features

Alzheimer’s

disease

(AD)

1600 >90% sporadic,

<10% familial

>60 (often

younger

for familial

cases)

cognitive impairment primarily

featuring memory problems

(e.g. trouble in remembering

recent events, the names of

people and things); as the

disease progresses, language

(e.g. inability to recall vocabulary),

perceptual skills, attention,

constructive abilities, orientation,

problem solving, and functional

ability difficulties also arise, as well

as behavioral and neuropsychiatric

changes, including wandering,

irritability, and labile affects

gross cerebral cortex atrophy

(particularly in the temporal, parietal,

and parts of the frontal lobes,

and in the cingulate gyrus) due to

a loss of neurons and synapses;

these changes are associated with

amyloid plaques and neurofibrillary

tangles

Amyotrophic

lateral sclerosis

(ALS)

1 to 3 >90% sporadic,

<10% familial

�55 (often

younger

for familial

cases)

muscle wasting and weakness,

and increased muscle tone

loss of cortical and spinal

motor neurons, degeneration of

corticospinal track, multiple forms

of pertinacious inclusions, gliosis

Charcot-Marie-

Tooth disease

(CMT)

�40 familial;

autosomal dominant,

recessive, X-linked

5 to 25

(sometimes

>30)

progressive disorder of the

peripheral nerves giving rise

to weakness, muscle wasting,

and sensory loss, predominantly

in the feet and legs, but also in

the hands and arms in advanced

stages; often the first

manifestation is difficulty

in walking

degenerative changes are seen

in the peripheral nerves, where

a reduction of large myelinated

motor and sensory fibers is

observed; spared fibers show

damaged axons and myelin

sheaths, with the distal part of

the nerve often more affected than

the proximal part; in some forms

of CMT, the affected nerve

may be enlarged and show

‘‘onion-bulb’’ formation of

Schwann and fibroblast cells

Huntington’s

disease (HD)

3 to 7 familial;

autosomal dominant;

CAG trinucleotide

expansions in the

huntingtin gene

40 to 50

(of note, the

greater the

number of CAG

repeats, the

earlier

the onset)

often begins with personality

changes (e.g. irritability) and

mood disturbances (e.g.

depression) followed by abnormal

movements of a choreic nature,

primarily of the face and fingers;

as the disease progresses, chorea

spreads, athetoid and dystonic

monuments appear, and

intellectual functions decline,

giving rise to a dementia

gross atrophy of caudate nucleus

and putamen accompanied with

mild frontal and temporal atrophy;

the most salient neurodegenerative

changes involve a loss of medium-

size spiny neurons in the

striatopallidal and striatonigral

pathways associated with striatal

gliosis

Hereditary

spastic

paraparesis

(HSP)

4 to 6 familial;

autosomal dominant,

recessive, X-linked

<35 or 40

to 60

difficulty in walking and poor

balance are often the first signs;

progressive increased muscle

tone, brisk reflexes, muscle

weakness, bladder disturbances,

and paresthesia are part of the

core manifestations; depending

on the genetic form, ataxia,

dementia, abormal movements,

visual dysfunction, epilepsy,

or even extraneurological signs

may be observed

axonal degeneration primarily

in the corticospinal tracts and the

fasciculus gracilis, and to a lesser

extent in the spinocerebellar tract;

loss of anterior spinal horn is

observed in some cases; dorsal

root ganglia, posterior roots, and

peripheral nerves are normal

Optic atrophy

(OA)

2 to 10 familial;

autosomal dominant,

recessive, X-linked,

mitochondrially inherited

18 to 25 progressive bilateral visual loss;

central vision affected prior

to peripheral vision

degeneration of the retinal

ganglion cell bodies and

axonal pathways up to the

lateral geniculate nuclei
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Table 1. Continued

Name

Frequency

per 100,000 Presentation

Typical Age of

Onset (Yr.)

Main Clinical

Manifestations

Main Neuropathological

Features

Parkinson’s

disease (PD)

160 >90% sporadic,

<10% familial

�60 (often

younger

for familial

cases)

tremor, slowness of movements,

stiffness, poor balance; as the

disease progresses, nonmotor

manifestations arise, including

dementia, constipation, sleep

disturbances, and orthostatic

hypotension

loss of pigmented neurons in ventral

midbrain (e.g. substantia nigra pars

compacta) and other pigmented

nuclei (e.g. locus ceruleus, dorsal

motor nucleus of the vagus);

intraneuronal Lewy body

inclusions; gliosis

Spinocerebellar

ataxias (SCA)

1 to 4 familial;

autosomal dominant,

recessive, X-linked;

�30 different gene

mutations, but a CAG

trinucleotide expansion

(in different genes) is

found in several forms

<10 to >60 progressive incoordination of

gait, often associated with

poor coordination of hands,

speech, and eye movements;

dementia, movement disorders

such as parkinsonism, myoclonus,

seizures, retinal degeneration,

optic atrophy, and peripheral

neuropathy are observed in

some forms of SCA

degeneration of the spinal cord

and the cerebellum, as well as

many nuclei of the basal

ganglia and the brainstem
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useful clinically, it may be equally helpful to view different neuro-

degenerative disorders as reflecting different, and perhaps

more nuanced, expressions of shared, fundamental underlying

problems.

In the last several years, 188 separate genetic loci have been

associatedwith inherited forms of the eight adult-onset neurode-

generative syndromes that we have selected (AD, ALS, Charcot-

Marie-Tooth disease [CMT], hereditary spastic paraparesis

[HSP], Huntington’s disease [HD], optic atrophy [OA], PD, and

spinocerebellar ataxias [SCA] [Table 1]), and 106 genes have

been identified (Table 2; see also Online Mendelian Inheritance

in Man, http://www.ncbi.nlm.nih.gov/omim). In connection to

the topic of this review, it is worth noting that of the 106 identified

genes, at least 36 have some type of association to mitochon-

drial function, either directly (i.e., via proteins in knownmitochon-

drial biochemical pathways and structure; 24 genes) or indirectly

(i.e., via proteins that are not necessarily targeted to mitochon-

dria, but that affect them secondarily, such as those associated

with the communication between mitochondria and the ER; 12

genes) (Table 3). The fraction of mitochondrial-resident gene

products associated with neurodegenerative disorders (24/

106, or �23%) is well above the proportion expected by mere

chance alone (�8%, i.e., �1600 genes encoding mitochondrial

proteins/�20,000 total protein-coding genes), suggesting

a predilection for defects in these organelles to be associated

with late-onset neurodegenerative disorders. Based on the

above discussion, let us start our journey through mitochondria

and see where the path of human genetics leads us.

Since We All Think First about Bioenergetics,
Let’s Talk about It
Mitochondria are organelles present in all cells of the body

(erythrocytes excluded), ranging from a few hundred to many

thousands, depending on cell type. Maternally inherited, they

are the locus for many of the body’s ‘‘housekeeping’’ functions,

including the biosynthesis of amino acids and steroids and the

beta-oxidation of fatty acids; they also play a central role in
apoptosis. However, the function that sets this organelle apart,

and which is responsible for the cliché that mitochondria are

the ‘‘powerhouses of the cell,’’ is the production of adenosine

triphosphate (ATP), via the combined efforts of the tricarboxylic

acid cycle and the respiratory chain/oxidative phosphorylation

system (OxPhos). The respiratory chain is a set of biochemically

linked multisubunit complexes (complexes I, II, III, and IV)

and two electron carriers (ubiquinone/coenzyme Q and cyto-

chrome c). It uses the energy stored in food to generate a proton

gradient across the mitochondrial inner membrane, while at the

same time transferring electrons to oxygen, producing water.

The energy of the proton gradient drives ATP synthesis

via ATP synthase (complex V); the ATP is then distributed

throughout the cell.

The central importance of mitochondria for cellular energy

production is underscored by the discovery in the last 20 years

of numerous syndromes resulting from OxPhos defects (Di-

Mauro and Schon, 2003). The mitochondrial respiratory chain

is the product of a joint effort between the mitochondrial and

nuclear genomes. Mitochondria harbor their own DNA (mtDNA)

which is a 16.6 kb double-stranded circular DNA that encodes

13 of the �92 polypeptides of the OxPhos system (DiMauro

and Schon, 2003), while the nuclear DNA (nDNA) specifies �79

OxPhos structural polypeptides and more than 100 other pro-

teins required for the proper incorporation of cofactors (e.g.,

iron-sulfur proteins, hemes, and copper) and for the assembly

of the five respiratory chain complexes into an integrated system

(Fernández-Vizarra et al., 2009).

Patients with OxPhos dysfunction who carry mutations in

either mtDNA or nDNA present with a host of clinical features,

many of which are neurological, such as seizures, myoclonus,

ataxia, progressive muscle weakness, stroke-like episodes,

and cognitive impairment (DiMauro and Schon, 2003). However,

these manifestations do not typically overlap with either the

clinical or the neuropathological hallmarks of any of our selected

adult-onset neurodegenerative disorders (Table 1). Furthermore,

to a remarkable degree, mutations in both mtDNA and nDNA
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Table 2. Genes Associated with Inherited Forms of AD, ALS,

CMT, HSP, HD, OA, PD, and SCA

Type Inh. Gene Chromosome

Alzheimer disease (AD)

AD1 AD APP 21q21.3

AD2 ? APOE 19q13.32

AD3 AD PSEN1 14q24.2

AD4 AD PSEN2 1q42.13

AD5 ? ? 12p11–q13

AD6 ? ? 10q24

AD7 ? ? 10p13

AD8 ? ? 20p

AD9 ? ? 19p13.2

AD10 ? ? 7q36

AD11 ? ? 9p21.3

AD12 ? ? 8p12–q22

AD13 ? ? 1q21

AD14 ? ? 1q25

AD15 ? ? 3q22–q24

AD16 XL ? Xq21.3

Amyotrophic lateral sclerosis (ALS)

ALS1 AD SOD1 21q22.11

ALS2 (J) AR ALS2 2q33.1

ALS3 AD ? 18q21

ALS4 (J) AD SETX 9q34.13

ALS5 AR ? 15q15–q21

ALS6 AR FUS 16p11.2

ALS7 AD ? 20p13

ALS8 AD VAPB 20q13.32

ALS9 AD ANG 14q11.2

ALS10 AD TARDBP 1p36.22

ALS11 AD FIG4 6q21

ALS12 AD/AR OPTN 10p13

ALS13 AD ATXN2 12q24.12

? AR SPG11 15q21.1

? AD VCP 9p13.3

Charcot-Marie-Tooth disease (CMT)

CMT1A AD PMP22 17p12

CMT1B AD MPZ 1q23.3

CMT1C AD LITAF 16p13.13

CMT1D AD EGR2 10q21.3

CMT1F AD NEFL 8p21.2

CMT2A1 AD KIF1B 1p36.22

CMT2A2 AD MFN2 1p36.22

CMT2B AD RAB7A 3q21.3

CMT2B1 AR LMNA 1q22

CMT2B2 AR MED25 19q13.33

CMT2C AD TRPV4 12q24.11

CMT2D AD GARS 7p14.3

CMT2E AD NEFL 8p21.2

Table 2. Continued

Type Inh. Gene Chromosome

CMT2F AD/AR HSPB1 7q11.23

CMT2G AD ? 12q12–q13.3

CMT2H AR ? 8q21.3

CMT2I AD MPZ 1q23.3

CMT2J AD MPZ 1q23.3

CMT2K AD GDAP1 8q21.11

CMT2L AD HSPB8 12q24.23

CMT2M AD DNM2 19p13.2

CMT2N AD AARS 16q22.1

CMT4A AR GDAP1 8q21.11

CMT4B1 AR MTMR2 11q21

CMT4B2 AR SBF2 11p15.4

CMT4C AR SH3TC2 5q32

CMT4D AR NDRG1 8q24.22

CMT4E AD/AR EGR2 10q21.3

CMT4F AR PRX 19q13.2

CMT4G AR ? 10q23.2

CMT4H AR FGD4 12p11.21

CMT4J AR FIG4 6q21

CMTDIA AD ? 10q24.1–q25.1

CMTDIB AD DNM2 19p13.2

CMTDIC AD YARS 1p35.1

CMTX1 XL GJB1 Xq13.1

Huntington disease (HD)

HD AD HTT 4p16.3

Hereditary spastic paraplegia (HSP)

SPG1 XL L1CAM Xq28

SPG2 XL PLP1 Xq22

SPG3A AD ATL1 14q22.1

SPG4 AD SPAST 2p22.3

SPG5A AR CYP7B1 8q12.3

SPG6 AD NIPA1 15q11.2

SPG7 AR SPG7 16q24.3

SPG8 AD KIAA0196 8q24.13

SPG9 AD ? 10q23.3–q24.1

SPG10 AD KIF5A 12q13.3

SPG11 AR SPG11 15q21.1

SPG12 AD ? 19q13.11–q13.13

SPG13 AD HSPD1 2q33.1

SPG14 AR ? 3q27–q28

SPG15 AR ZFYVE26 14q24.1

SPG16 XL ? Xq11.2

SPG17 AD BSCL2 11q12.3

SPG18 AR ? 8p12–p11.21

SPG19 AD ? 9q33–q34

SPG20 AR SPG20 13q13.3

SPG21 AR SPG21 15q22.31

SPG22 XL SLC16A2 Xq13.2
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Table 2. Continued

Type Inh. Gene Chromosome

SPG23 AR ? 1q24–q32

SPG24 AR ? 13q14.3

SPG25 AR ? 6q23.3–q24.1

SPG26 AR ? 12p11.1–q15

SPG27 AR ? 10q22.1–q24.1

SPG28 AR ? 14q21.3–q22.3

SPG29 AD ? 1p31.1–p21.1

SPG30 AR ? 2q37.3

SPG31 AD REEP1 2p11.2

SPG32 AR ? 14q12–q21

SPG33 AD ZFYVE27 10q24.2

SPG34 XL ? Xq24–q25

SPG35 AR ? 16q21–q23.1

SPG36 AD ? 12q23–q24

SPG37 AD ? 8p21.1–q13.3

SPG38 AD ? 4p16–p15

SPG39 AR PNPLA6 19p13.2

SPG40 AD ATL1 14q22.1

SPG41 AD ? 11p14.1–p11.2

SPG42 AD SLC33A1 3q25.31

SPG44 AR GJC2 1q42.13

SPG45 AR ? 10q24.3–q25.1

? AR AIMP1 4q24

Optic atrophy (OA)

OPA1 AD OPA1 3q29

OPA2 XL ? Xp11.4–p11.21

OPA3 AD OPA3 19q13.32

OPA4 AD ? 18q12.2–q12.3

OPA5 AD ? 22q12.1–q13.1

OPA6 AR ? 8q21.13–q22.1

OPA7 AR TMEM126A 11q14.1

LHON M ND genes mtDNA

Parkinson disease (PD)

PARK1/4 AD SNCA 4q22.1

PARK2 AR PARK2/Parkin 6q26

PARK3 AD ? 2p13

PARK5 AD UCHL1 4p13

PARK6 AR PINK1 1p36.12

PARK7 AR PARK7/DJ-1 1p36.23

PARK8 AD LRRK2 12q12

PARK9 AR ATP13A2 1p36.13

PARK10 ? ? 1p32

PARK11 AD GIGYF2 2q37.1

PARK12 ? ? Xq21–q25

PARK13 ? HTRA2 2p13.1

PARK14 ? PLA2G6 22q13.1

PARK15 AR FBXO7 22q12.3

PARK16 ? ? 1q32

Table 2. Continued

Type Inh. Gene Chromosome

? AR SPG11 15q21.1

? AR NDUFV2 18p11.22

Spinocerebellar ataxia (SCA)

SCA1 AD ATXN1 6p22.3

SCA2 AD ATXN2 12q24.12

SCA3 AD ATXN3 14q32.12

SCA4 AD PLEKHG4 16q22.1

SCA5 AD SPTBN2 11q13.2

SCA6 AD CACNA1A 19p13.2

SCA7 AD ATXN7 3p14.1

SCA8 AD ATXN8 13q21.33

SCA8 AD ATXN8OS 13q21.33

SCA9 AD ? ?

SCA10 AD ATXN10 22q13.31

SCA11 AD TTBK2 15q15.2

SCA12 AD PPP2R2B 5q32

SCA13 AD KCNC3 19q13.33

SCA14 AD PRKCG 19q13.42

SCA15 AD ITPR1 3p26.1

SCA16 AD CNTN4 3p26.2

SCA17 AD TBP 6q27

SCA18 AD ? 7q22–q23

SCA19 AD ? 1p21–q21

SCA20 AD ? 11p13–q11

SCA21 AD ? 7p21.3–p15.1

SCA22 AD ? 1p21–q23

SCA23 AD ? 20p13–p12.3

SCA24 AR ? 1p36

SCA25 AD ? 2p21–p13

SCA26 AD ? 19p13.3

SCA27 AD FGF14 13q33.1

SCA28 AR AFG3L2 18p11.21

SCA29 AD ? 3p26

SCA30 AD ? 4q34.3–q35.1

SCA31 AD BEAN-TK2 16q21

SCAN1 AR TDP1 14q32.1

SCAR1 AR SETX 9q34.13

SCAR2 AR ? 9q34–qter

SCAR3 AR ? 6p23–p21

SCAR4 AR ? 1p36

SCAR5 AR ? 15q25.3

SCAR6 AR ? 20q11–q13

SCAR7 AR ? 11p15

SCAR8 AR SYNE1 6q25.2

SCAR9 AR ADCK3 1q42.13

SCAX1 XL ? Xp11.21–q21.3

DRPLA AD ATN1 12p13.31

FRDA1 AR FXN 9q21.11

(Continue on next page)
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Table 2. Continued

Type Inh. Gene Chromosome

FRDA2 AR ? 9p23–p11

IOSCA AR C10orf2/Twinkle 10q24.31

MIRAS AR POLG 15q26.1

? AR ANO10 3p22.1

? AD SCN8A 12q13.3

Disease classification as listed in OMIM. Inh., Inheritance; AD, autosomal

dominant; AR, autosomal recessive; M, mitochondrial; XL, X-linked.
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that affect the integrity or functioning of the OxPhos complexes

typically do not strike in adulthood, but rather in infancy (e.g.,

Leigh syndrome, which is a fatal, necrotizing encephalopathy).

Yet, some patients with OxPhos dysfunction do succumb later,

in their twenties or thirties (e.g., via Kearns-Sayre syndrome,

which is a sporadically occurring, fatal, multisystem disorder

featuring paralysis of the extraocular muscles, retinal degenera-

tion, and heart block), but it is atypical for mitochondrial patients

to survive much longer, and it is exceptional for any individual to

experience an onset of an OxPhos disease beyond the age of 40.

However, the age at onset and the severity of the disorder corre-

late well with the degree of ATP deficit caused by the mutation.

Thus, ‘‘mild’’ mutations could theoretically give rise to a slowly

progressive, late-onset neurodegenerative disease, such as

AD or PD. Such mild mutations typically arise in one of two

ways: either because the mutation per se does not cause

a severe OxPhos impairment (e.g., mutations in complex I

subunits cause Leber’s hereditary optic neuropathy, or LHON

[Sadun et al., 2011], a maternally inherited form of blindness),

or because the proportion of mutated mtDNAs coexisting with

normal mtDNAs (i.e., heteroplasmy) within affected neurons is

relatively low, such that the deficit in ATP production is only

partial, as is typically the case in oligosymptomatic mothers of

affected children (DiMauro and Schon, 2003). Still, even if

mtDNA mutations have the potential to provoke neuronal death,

the fact remains that there are now more than 200 documented

mutations in the 37 mtDNA-encoded genes, and an equal

number in almost 100 nDNA-encoded OxPhos-related genes

(Smits et al., 2010), yet only a handful are associated with

adult-onset neurodegenerative disease. Among these, only

two well-documented mtDNA mutations are associated with

adult-onset neurodegeneration—one with Parkinsonism

(De Coo et al., 1999) and one with SCA (Silvestri et al., 2000)—

but, as far as we can tell, none with AD, ALS, CMT, HD, or

HSP. A number of mtDNA polymorphisms have also been asso-

ciated with some of these disorders, but their pathogenicity

remains to be established, and except for a few isolated reports

(Swerdlow et al., 1998), there is little evidence of maternal inher-

itance of neurodegenerative disease. Furthermore, mutations in

proteins required for mtDNA replication, such as those in mtDNA

polymerase g and in the helicase Twinkle, cause rare forms of

cerebellar degeneration (Hakonen et al., 2008). Also rare are

mutations in frataxin—which is required for the synthesis of

mitochondrial iron-sulfur proteins that are components of respi-

ratory complexes—causing Friedreich’s ataxia (Schmucker and

Puccio, 2010), and mutations in ADCK3/CABC1 that affect the
1038 Neuron 70, June 23, 2011 ª2011 Elsevier Inc.
synthesis of coenzyme Q of the respiratory chain, causing a

recessive form of SCA (Gerards et al., 2010).

The above discussion emphasizes that neurodegenerative

disorders, especially those of late onset, cannot be classified

neatly as canonical ‘‘primary mitochondrial cytopathies.’’ And

yet, it is possible that much is to be gained by viewing neuro-

degeneration through the prism of primary mitochondrial cyto-

pathies, because if we do not, we may fail to recognize a

bioenergetic component in the disease process. Take PD as

an example. A meta-analysis of genome-wide gene expression

microarray studies revealed the strongest association between

PD and genes encoding for OxPhos subunits and for enzymes

involved in glucose metabolism, all of which are regulated by

PGC-1a (Zheng et al., 2010), a transcriptional coactivator of

mitochondrial biogenesis (Puigserver et al., 1998). Relevant to

this observation is the identification of Parkin-interacting

substrate (PARIS), a partner of the PD-related protein Parkin

(see below) that represses PGC-1a expression (Shin et al.,

2011). These authors propose that inactivation of Parkin, either

by mutation or by environmental stress, leads to the accumula-

tion of PARIS and the ensuing inhibition of PGC-1a transcription,

which in turn may reduce mitochondrial biogenesis and cause

OxPhos deficiency. Thus, if PD is any guide, bioenergetic

defects could indeed play a role in common neurodegenerative

disorders, not somuch as the initiating factor of the neurodegen-

erative cascade but more as a pathogenically meaningful conse-

quence of some other perturbation (e.g., loss of Parkin activity).

So What Other Mitochondrial Problems Can Cause
Neurodegeneration?
The textbook image of mitochondria as bean-shaped organelles

that populate the cytoplasm in apparently random fashion belies

a far more dramatic reality (Braschi and McBride, 2010). Mito-

chondria are constantly on the go. They fuse and divide, branch

and fragment, swell and extend, exist in clusters and as indi-

vidual entities. Importantly, they travel throughout the cell, from

the cell body outwards (anterograde movement) and ‘‘home-

ward-bound’’ in the opposite direction (retrograde movement).

When not moving, they periodically anchor themselves on—

and then disengage from—other organelles, such as the ER,

endocytic vesicles, and the plasma membrane. In short, mito-

chondria are dynamic organelles that move from the cell body

to regions of the cell to deliver ATP and other metabolites where

they are most required, and then return. This is seen most strik-

ingly in highly elongated cells such as neurons: mitochondria are

enriched at presynaptic terminals at the ends of axons and at

postsynaptic terminals at the ends of dendrites, where bioener-

getic demand is particularly high. In addition, while this constant

motion helps the cell redirect and recycle mitochondria in an

efficient manner, ‘‘worn-out’’ mitochondria are ultimately

disposed of (and their component parts recycled) via autophagy

(‘‘mitophagy’’) or via extrusion of ‘‘mitochondria-derived vesi-

cles’’ (Braschi et al., 2010). The inability of mitochondria to

execute these functions would be expected to disrupt cellular

physiology and viability, and the degree of impairment likely

corresponds to that cell’s requirements for having well-func-

tioning mitochondria positioned in the right place at the right

time. For these reasons, there is growing enthusiasm for the
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notion that defects in mitochondrial dynamics might play a

pivotal role in the pathogenesis of neurodegenerative disorders.

We will focus here on three ways that altered ‘‘mitodynamics’’

could contribute to adult-onset neurodegeneration (Chen and

Chan, 2009): aberrant mitochondrial trafficking, altered interor-

ganellar communication, and impaired mitochondrial quality

control (Figure 1).

Neurodegenerative Disorders and Mitochondrial

Trafficking

Organelles such as lysosomes, peroxisomes, and mitochondria

are not positioned statically within cells. Rather, they are trans-

ported on cytoskeletal elements, that is, microtubules and actin

cables, often in association with intermediate filaments (Jung

et al., 2004). Short-range movement on actin cables requires

myosin motors, whereas long-range movement on microtubules

requires two other types of motors: dynein/dynactin for retro-

grade transport and kinesins for anterograde transport (Hollen-

beck, 1996). Dynein-mediated retrograde movement appears

to be promiscuous, with no specific adaptor for mitochondria.

Kinesins, on the other hand, comprise a large superfamily,

among which is a subset that has been reported to associate

specifically with mitochondria (Zinsmaier et al., 2009).

Given the critical role of mitochondria in maintaining cell

viability, it stands to reason that defects in mitochondrial traf-

ficking could underlie neurodegenerative processes. Is there

evidence to support this view? We have approached this ques-

tion in two ways. First, we asked if there were evidence for per-

turbed mitochondrial trafficking in any of our selected set of

neurodegenerative diseases. Conversely, we examined situa-

tions where mitochondrial trafficking is known to be perturbed,

and asked whether the ensuing phenotypes were reminiscent

of any of our selected diseases.

Direct evidence that mitochondrial trafficking is altered in

human neurodegenerative disease patients is actually quite

limited. This paucity of data is not surprising, given both the

logistical hurdles in obtaining human samples and the difficulty

in analyzing mitochondrial transport in autoptic material. Never-

theless, of the disorders on our list, such evidence has been

reported in autoptic samples from patients with sporadic AD:

defects in axonal trafficking of molecular motor proteins and

organelles, including mitochondria, were inferred from the

observation of axonal swellings containing vesicles, vacuoles,

multilamellar bodies, and especially mitochondria, in the nucleus

basalis of Meynert; the formation of these vesicles was appar-

ently mediated by the expression of kinesin-1, a microtubule

motor (Stokin et al., 2005).

On the other hand, ample data for trafficking defects exist in

experimental models—mainly genetically engineered mice—of

a number of adult-onset neurodegenerative disorders. Both

anterograde (De Vos et al., 2007) and retrograde (Shi et al.,

2010) mitochondrial transport were reduced in motor neurons

from ALS mice expressing mutant superoxide dismutase-1

(SOD1). Even more remarkable, misfolded wild-type SOD1 im-

munopurified from a subset of patients with sporadic ALS and

perfused into isolated squid axoplasm inhibited fast axonal

transport (Bosco et al., 2010). This latter observation is particu-

larly noteworthy, as it reveals a remarkable potential connection

between the sporadic and familial forms of the disease.
Altered mitochondrial trafficking and integrity have also been

observed upon overexpression of at least two other proteins

whose mutations cause familial forms of ALS. First, increased

expression of the wild-type guanine-nucleotide exchange factor

alsin in monkey COS7 cells was associated with disorganization

of the microtubule network and with organellar abnormalities,

including perinuclear clustering of mitochondria (Millecamps

et al., 2005). Second, transgenic mice expressing human TAR

DNA binding protein 43 (TDP-43) showed mitochondrial maldis-

tribution, with an excess ofmitochondria in the cell body ofmotor

neurons and a paucity of mitochondria in distal motor axon

terminals (Shan et al., 2010).

Thus far, our discussion of experimental models has revolved

mainly around pathologies of the motor neurons, in which mito-

chondria must travel exceedingly long distances. But what about

trafficking in disorders in which neuronswithmuch shorter axons

are the primary target of the disease? In fact, AD, a disorder

primarily of ‘‘short’’ neurons in the cortex and hippocampus,

displays features of aberrant axonal trafficking of cargo (Stokin

et al., 2005), and especially of altered mitochondrial trafficking

(Wang et al., 2009a) and dynamics (Wang et al., 2008, 2009b).

Moreover, published data suggest that HD, an adult-onset

fatal chorea involving relatively short striatopallidal neurons,

may also be a disorder of mitochondrial trafficking. HD is caused

by mutations—specifically expansions of a polyglutamine

stretch—in huntingtin (HTT), a protein of unknown function. In

transfected primary rat cortical neurons, mutant, but not wild-

type, HTT blocked mitochondrial movement (Chang et al.,

2006). Expression of mutant HTT in transgenic mice impaired

trafficking of vesicles and mitochondria, and mutant HTT prefer-

entially redistributed kinesin- and dynein-related proteins in

extracts from human HD brain (Trushina et al., 2004). These

effects on mitochondria and on trafficking were likely due specif-

ically to the polyglutamine expansion located within the

N-terminal region of HTT, as truncated fragments containing

the N-terminal region associated preferentially with mitochon-

dria in HTT knockin mice, and these mutant HTT fragments

affected mitochondrial trafficking in both the anterograde and

retrograde directions (Orr et al., 2008).

Other aspects of HTT function also point to mitochondrial

trafficking (Sack, 2010). The HTT binding partner huntingtin-

associated protein (HAP1) associates with membranous organ-

elles, including mitochondria (Gutekunst et al., 1998), and

interacts with both kinesin and dynein/dynactin to regulate the

transport of cargo on microtubules (Bossy-Wetzel et al., 2008).

Interestingly, Milton, one of two mitochondrial microtubule

adaptor proteins (the other is Miro; see below), is a HAP1

homolog, and it too binds HTT and dynactin (Stowers et al.,

2002). Taken together, these data support the possibility that

altered mitochondrial trafficking contributes to neurodegenera-

tion in HD.

More speculative, but still worth mentioning, is the potential

link between proteins known to cause familial PD and defects

in microtubule-mediated trafficking. The mitochondrial kinase

PTEN-induced putative kinase-1 (PINK1) may play a role in mito-

chondrial transport, as it was shown to form a multiprotein

complex with Milton and Miro (Weihofen et al., 2009), but the

effects of PD-linked mutations on this relationship are currently
Neuron 70, June 23, 2011 ª2011 Elsevier Inc. 1039



Table 3. Genes Associated with Mitochondrial Function

Gene Subtype Protein Function/Comment aMito?

Proteins associated with neurotransmission (12)

ANO10 None anoctamin 10; Ca2+-activated Cl- channel chloride transport N

CACNA1A SCA6 Ca2+ channel, a-1A subunit calcium transport N

EGR2 CMT1D/4E early growth response 2 protein regulates myelin transcription N

GJB1 CMTX1 Gap junction protein b1 (connexin-32) role in myelination N

GJC2 SPG44 Gap junction protein g2 (GJA12) (connexin-47) role in myelination N

ITPR1 SCA15 IP3 receptor 1 calcium transport (enriched in MAM) N

KCNC3 SCA13 K+ channel potassium transport N

MPZ CMT1B/2I/2J myelin protein P0 myelin protein N

NDRG1 CMT4D N-myc downstream regulated 1 myelin maintenance protein, putative N

PMP22 CMT1A peripheral myelin protein 22 myelin protein N

PRX CMT4F periaxin myelin protein N

SCN8A None Na+ channel, type VIII, a subunit sodium transport N

Proteins associated with the cytoskeleton (25)

ATL1 SPG3A /40 atlastin 1 GTPase (also called SPG3) ER-modeling dynamin; interacts with spastin and

REEP1

N

ATN1 DRPLA atrophin-1 may interact with spartin via AIP4 N

DNM2 CMT2M/DIB dynamin-2 microtubule-associated force-producing protein N

FGD4 CMT4H frabin; FYVE/RhoGEF/PH domain containing 4 binds, regulates actin N

HSPB1 CMT2F heat shock protein 27 (HSP27) actin organization; binds microtubules N

HSPB8 CMT2L heat shock protein 22 (HSP22) chaperone; associated with autophagy N

KIF1B CMT2A1 kinesin 1B (CMT mutation in nonmito

KIF1Bb isoform)

KIF1Ba isoform transports mitochondria,

myelin mRNAs

Y

KIF5A SPG10 kinesin 5A microtubule motor protein; binds Milton Y

L1CAM SPG1 L1 cell adhesion molecule axonal glycoprotein N

MTMR2 CMT4B1 myotubularin-related protein 2 phosphoinositol-related phosphatase; interacts

with SBF2

N

NEFL CMT1F/2E neurofilament, light chain (NFL) intracellular transport to axons and dendrites Y

NIPA1 SPG6 nonimprinted in Prader-Willi/Angelman syndromes Mg2+ transporter; interacts w ATL1 N

OPTN ALS12 optineurin function unclear; binds ubiquitin; also causes glaucoma Y

PLEKHG4 SCA4 puratrophin-1 (Purkinje cell atrophy associated) actin dynamics; has a spectrin repeat domain N

REEP1 SPG31 receptor expression-enhancing protein 1 binds spastin and atlastin; associates with microtubules Y

SBF2 CMT4B2 myotubularin-related protein 13 (MTMR13) pseudophosphatase; interacts with MTMR2 N

SH3TC2 CMT4C SH3 domain and tetratricopeptide repeats 2 endosomal recycling with Rab11 N

SPAST SPG4 spastin severs microtubules; axonal branching Y

SPG20 SPG20 spartin binds microtubules; protein folding and turnover? Y

SPG21 SPG21 maspardin (ACP33 acidic cluster protein) axonal branching N

SPTBN2 SCA5 spectrin, b-III cytoskeletal protein N

SYNE1 SCAR8 synaptic nuclear envelope protein (nesprin-1) links organelles to the actin cytoskeleton;

has spectrin repeats

N

TTBK2 SCA11 Tau tubulin kinase 2 phosphorylates tau and tubulin N

VAPB ALS8 VAMP-associated protein B associates with microtubules; membrane transport N

ZFYVE27 SPG33 Zinc finger FYVE domain containing 27

(protrudin)

interacts w spastin; may not be pathogenic

(Martignoni et al., 2008)

N

Mitochondria-localized proteins (24)

ADCK3 SCAR9 ubiquinone synthesis regulatory kinase (CABC1) CoQ synthesis Y

AFG3L2 SCA28 paraplegin-like AAA protease mitochondrial protein degradation Y

ATXN3 SCA3 ataxin-3 deubiquitinase DNA repair; binds mitochondrial E3 ubiquitin

ligase MARCH5

Y

C10orf2 IOSCA Twinkle DNA/RNA helicase (PEO1) mtDNA replication Y
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Table 3. Continued

Gene Subtype Protein Function/Comment aMito?

FXN FRDA1 frataxin mitochondrial iron metabolism Y

GDAP1 CMT2K/4A ganglioside-induced differentiation-associated

protein 1

interacts with mitofusins Y

HSPD1 SPG13 heat shock protein 60 (HSP60) mitochondrial chaperone Y

HTRA2 PARK13 HtrA serine peptidase 2 (OMI) apoptosis Y

HTT HD huntingtin mutant HTT is mitochondrial; interacts

with microtubules

Y

MFN2 CMT2A2 mitofusin 2 mitochondrial fusion; MAM integrity Y

mtDNA LHON complex I subunits (mtDNA-encoded) respiratory chain function Y

NDUFV2 PD complex I subunit (nDNA-encoded) respiratory chain function Y

OPA1 OPA1 dynamin-related GTPase mitochondrial fusion Y

OPA3 OPA3 dynamin-related GTPase mitochondrial fusion? Y

PARK7 PARK7 DJ-1 atypical peroxidase; mitochondrial protein

quality control?

Y

PARKIN PARK2 Parkin mitophagy Y

PINK1 PARK6 PTEN-induced putative kinase 1 mitophagy Y

POLG MIRAS mitochondrial DNA polymerase g mtDNA replication Y

SNCA PARK1/4 a-synuclein function unclear Y

SOD1 ALS1 superoxide dismutase, Cu,Zn-containing redox regulation Y

SPG7 SPG7 paraplegin AAA protease mitochondrial protein quality control Y

TDP1 SCAN1 tyrosyl-DNA phosphodiesterase 1 topoisomerase I; DNA repair Y

TMEM126A OPA7 transmembrane protein 126A function unknown Y

VCP ALS valosin-containing protein/p97 retrotranslocation of proteins for proteasome

(cyto / mito)

Y

Potential relationship with mitochondria and/or mitochondria-associated ER membranes (MAM) (17)

ALS2 ALS2 alsin guanine-nucleotide exchange factor for RAB5 N

APP AD1 amyloid precursor protein presenilin substrate (present in MAM) N

ATXN1 SCA1 ataxin-1 RNA metabolism N

ATXN10 SCA10 ataxin-10 binds GNB2 (mitochondrial), which binds MFN1

(mitochondrial)

N

BEAN-TK2 SCA31 BEAN-thymidine kinase 2 overlap region TK2 is mitochondrial; BEAN is not N

EGR2 CMT1D early growth response 2 protein transcription factor N

GARS CMT2D glycyl-tRNA synthetase protein synthesis (mitochondrial/cytosolic isoforms) Y

GIGYF2 PARK11 GRB10 interacting GYF protein 2 enhances activation of ERK1/2, which is mitochondrial Y

KIAA0196 SPG8 strumpellin; AAA protease binds VCP; degrades MOM proteins Y

LMNA CMT2B1 lamin A/C nuclear membrane N

LRRK2 PARK8 leucine-rich repeat Ser/Thr-protein kinase 2 function not clear N

PLA2G6 PARK14 phospholipase A2, group VI (iPLA2b) ER-mitochondrial crosstalk via ceramide

(probably in MAM)

Y

PPP2R2B SCA12 PP2A regulatory subunit 2Bb signaling (probably in MAM) Y

PSEN1 AD3 presenilin-1 aspartyl protease; in MAM N

PSEN2 AD4 presenilin-2 aspartyl protease; in MAM N

TARDBP ALS10 TAR DNA binding protein 43 (TDP43) DNA/RNA-binding protein,

regulates transcription/splicing

N

TBP SCA17 TATA box-binding protein transcription factor N

No obvious relationship to mitochondria (26)

AARS CMT2N alanyl-tRNA synthetase protein synthesis (cytoplasmic) N

ANG ALS9 angiogenin; RNAse A (RNASE4) tRNA-specific RNAse; binds actin on endothelial cells N

ATP13A2 PARK9 ATPase, P-type cation transporter N

(Continue on next page)
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Table 3. Continued

Gene Subtype Protein Function/Comment aMito?

ATXN2 ALS13/SCA2 ataxin-2 function unknown N

ATXN7 SCA7 ataxin-7 transcriptional regulation N

ATXN8 SCA8 ataxin-8 affects RNA-binding protein MBNL1 N

ATXN8OS SCA8 ataxin-8 opposite strand function unknown N

BSCL2 SPG17 seipin lipid droplet morphology; in ER N

CYP7B1 SPG5A 25-hydroxycholesterol 7-a-hydroxylase cholesterol catabolism in ER, 1st step N

FBXO7 PARK15 F-box only protein 7 ubiquitination N

FGF14 SCA27 fibroblast growth factor 14 signaling N

FIG4 ALS11/CMT4J polyphosphoinositide phosphatase (SAC3) synthesis of phosphatidylinositol-3,5-bisphosphate N

FUS ALS6 fused in sarcoma/translocated in liposarcoma

(FUS/TLS)

hnRNP protein N

LITAF CMT1C lipopolysaccharide-induced TNF-a factor stimulates monocytes/macrophages N

MED25 CMT2B2 mediator complex subunit 25 transcriptional coactivator N

PNPLA6 SPG39 neuropathy target esterase deacetylates intracellular phosphatidylcholine (in ER) N

PRKCG SCA14 protein kinase c, g type signaling; activated by Ca2+ and DAG N

RAB7A CMT2B Ras-related GTPase RAB7A endosomal; vesicle transport; phagosome maturation N

SETX ALS4, SCAR1 senataxin putative DNA/RNA helicase N

SLC16A2 SPG22 monocarboxylate transporter 8 (MCT8) thyroid hormone transporter N

SLC33A1 SPG42 acetyl-CoA transporter (AT-1; ACATN1) ER-Golgi sialylation N

SPG11 SPG11, PD spatacsin function unknown N

TRPV4 CMT2C transient receptor potential cation channel osmoregulation N

UCHL1 PARK5 ubiquitin C-terminal hydrolase protein degradation N

YARS CMTDIC tyrosyl-tRNA synthetase protein synthesis (cytoplasmic) N

ZFYVE26 SPG15 Zinc finger FYVE domain containing 26 spastizin (FYVE-CENT); centrosomal protein N
a Indicates whether the listed protein is known to be targeted directly to, or interacts indirectly with, mitochondria (Y, yes; N, no).
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unknown. Upon overexpression of wild-type a-synuclein in

differentiated SH-SY5Y neuroblastoma cells (which mimics the

multiplications of the normal gene found in some PD patients),

aggregates of the protein disrupted the microtubule network

and microtubule-dependent trafficking of cargoes (Lee et al.,

2006). On the other hand, both the PD-linked protein leucine-

rich repeat kinase-2 (LRRK2) and Parkin were found to alter

the balance between polymerized and depolymerized tubulin

(Gillardon, 2009; Yang et al., 2005), with downstream effects

on trafficking of cargo that still remain to be demonstrated.

Tomakematter evenmore complicated, just because a neuro-

degenerative disease gene is associated with the trafficking

machinery for intracellular cargo does not necessarily mean

that trafficking is the main problem. For example, in transfection

experiments, the HSP-related protein spartin was localized to

microtubules and mitochondria via determinants located in the

N- and C-terminal regions of the protein, respectively (Lu et al.,

2006). However, proteomic analysis implied that spartin plays

a different role, in protein folding and turnover, both in mitochon-

dria and ER (Milewska et al., 2009), andmay also be in involved in

lipid droplet formation (Hooper et al., 2010). A similar dilemma

surrounds another HSP-related protein, receptor expression-

enhancing protein 1 (REEP1). One group localized REEP1 to

mitochondria (Züchner et al., 2006), while another group found

that REEP1 interacted with atlastin-1, another HSP-related

protein, within tubular ER membranes, thereby coordinating
1042 Neuron 70, June 23, 2011 ª2011 Elsevier Inc.
ER shaping with microtubule dynamics (Bian et al., 2011; Park

et al., 2010). However, despite the potential connection of both

spartin and REEP1 to microtubules and mitochondria, there is

no evidence that either one plays any role in mitodynamics,

even though mutations in both cause neurodegeneration.

These examples illustrate the challenge in relating pathology

to specific problems in mitochondrial dynamics. Perhaps

a more fruitful approach might be to start from situations where

mitochondrial trafficking is known to be perturbed, and then see

whether they produce phenotypes mimicking aspects of neuro-

degenerative disease. From the outset, it should be noted that

there are hardly any mutations in the structural components of

actin, dynein, or kinesin known to cause neurodegenerative

disease. In our survey, we found only three: mutations in kinesin

heavy chain isoform 1Bb cause CMT (Zhao et al., 2001), and in

isoform 5A, cause HSP (Ebbing et al., 2008), while mutations in

the p150Glued subunit of the dynein-associated protein dynactin

increase the risk of developing ALS (Münch et al., 2004). This

state of affairs probably reflects the essentiality of these motor

molecules to life. Nonetheless, a number of disorders are caused

by mutations in proteins that are associated with actin, dynein,

and kinesin in a secondary manner, among which five appear

to affect mitochondrial behavior.

Actin cables, like microtubules, have a polarity, with myosin

motors typically moving toward the ‘‘barbed’’ (+) end of actin fila-

ments and away from the ‘‘pointed’’ (�) end (Wells et al., 1999).



Figure 1. Mitochondrial Interactions in Neurodegenerative Diseases
Proteins associated with mutations causing neurodegenerative disorders are in colored ovals (colored according to the key), and are associated with four broad
mitochondrial functions (black rectangles). White ovals indicate selected relevant mitochondrial proteins not currently associated with neurodegenerative
disease. In general, only pathogenic proteins discussed in the text are shown; note that some proteins not discussed here are also associated with mitochondria,
either directly or indirectly (Table 3); HTRA2/OMI andHSPD1, associatedwith PD andHSP, respectively, are included in the figure for completeness, but were not
discussed in the text. Proteins that ‘‘touch’’ each other indicate a physical or genetic interaction. For simplicity, the figure does not show all interactions, or shows
some interactions that occur only in some tissues or at specific times, or both; conversely, some interactions are speculative, based on extrapolations from
the literature. See text for details. IMS, intermembrane space; MAM, mitochondria-associated ER membranes; MIM, mitochondrial inner membrane; MOM,
mitochondrial outer membrane; m, mutant; D-mtDNAs, large-scale partial deletions of mtDNA.
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One exception to this rule is myosin VI, whichmoves in the oppo-

site direction (Wells et al., 1999). It appears to play a role in asym-

metric partitioning of organelles and cytoskeletal components

during cell division, at least in worms, as deletion of myosin VI

in C. elegans resulted in a failure to deliver mitochondria to
budding spermatids (Kelleher et al., 2000). This ‘‘unconven-

tional’’ myosin has an indirect connection to at least two neuro-

degenerative diseases, ALS and HD, via one of its binding

partners, the cargo adaptor protein optineurin (Sahlender et al.,

2005).Mutations in optineurin, which have already been reported
Neuron 70, June 23, 2011 ª2011 Elsevier Inc. 1043
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to cause primary open-angle glaucoma (Fuse, 2010), cause ALS

(Maruyama et al., 2010). Optineurin also binds HTT, and plays

a role in cellular signaling, membrane trafficking, and cellular

morphogenesis (Anborgh et al., 2005; Hattula and Peränen,

2000), providing further support that altered mitochondrial traf-

ficking plays a role in HD.

With respect to microtubule function, mutations in spastin,

a microtubule-severing protease causing HSP, resulted in

abnormal perinuclear clustering of mitochondria and peroxi-

somes in transfected HEK293 cells (McDermott et al., 2003)

and in axonal transport defects and mitochondrial clustering

on microtubules in spastin-mutated mice (Kasher et al., 2009).

Regarding intermediate filaments, mutations in neurofilament

light chain (NFL) cause CMT (Brownlees et al., 2002; Pérez-

Ollé et al., 2005). Expression of mutant NFL in explanted

embryonic mouse motor neurons disrupted the neurofilament

network, but notably, rounding of mitochondria and reduction

in axonal diameter occurred prior to this event, implying that

mitochondrial dysfunction contributes to the pathogenesis of

the disease (Tradewell et al., 2009). Moreover, expression of

heat shock protein B1 in neurons expressing some CMT mutant

forms of NFL abrogated themitochondrial and trafficking pheno-

types. This result is not only consistent with the role of this

chaperone in neurofilament assembly, but also helps explain

whymutations in this heat shock protein also cause CMT (Trade-

well et al., 2009).

The strategy of examining defects in mitochondria-related

proteins has yielded a more compelling connection with adult-

onset neurodegenerative disorders, but this relationship is not

particularly obvious when viewing in toto all eight of the neurode-

generative disorders that we have selected. In fact, as can be

seen from the above discussion, mitochondrial connections

are prevalent in only two specific disorders, HSP and CMT,

both of which are axonopathies often associated with myelin

pathology (Table 1).

Neurodegenerative Disorders and Mitochondrial-ER

Communication

Mitochondria do not exist, or operate, in isolation, but associate

with many other subcellular organelles. Aside from connections

to cytoskeletal elements, mitochondria interact with, for ex-

ample, peroxisomes, lysosomes, Golgi, and ER. Among these,

the most intriguing is the connection between mitochondria

and ER. These two organelles are linked, both biochemically

and physically (Csordás et al., 2006), via mitochondria-associ-

ated ER membranes (ER-MAM, or MAM) (Rusiñol et al., 1994).

Located mainly in the perinuclear region of cells (Area-Gomez

et al., 2009; Schon and Area-Gomez, 2010), MAM has been re-

ported to be enriched in more than 75 proteins, including those

involved in calcium homeostasis (e.g., inositol-1,4,5-triphos-

phate [IP3] receptors [IP3Rs] and ryanodine receptors), in lipid

metabolism (e.g., phosphatidylethenolamine N-methyltransfer-

ase), in intermediate metabolism (e.g., glucose-6-phosphatase),

in cholesterol metabolism (e.g., acyl-coenzyme A:cholesterol

acyltransferase 1 [ACAT1]), in the transfer of lipids between the

ER and mitochondria (e.g., fatty acid transfer proteins 1 and 4),

and in ER stress (e.g., glucose-regulated proteins 75 and 78)

(Hayashi et al., 2009b). Contacts between the two organelles

are maintained by MAM-associated proteins, such as phospho-
1044 Neuron 70, June 23, 2011 ª2011 Elsevier Inc.
furin acidic cluster sorting protein-2 (Simmen et al., 2005) and

mitofusin-2 (MFN2), which is also required for mitochondrial

fusion (de Brito and Scorrano, 2008). Interestingly, fission-1

(FIS1), a protein required for mitochondrial fission, has recently

also been localized to the MAM (Iwasawa et al., 2011).

The relationship between MAM and calcium trafficking (Csor-

dás et al., 2010) is worthy of some elaboration. As alluded to

above, two cargo adaptor proteins discovered initially in

Drosophila—Miro and Milton—are implicated in the specific

linkage of mitochondria to kinesin-1 in neurons. Miro is anchored

to the mitochondrial outer membrane (Guo et al., 2005), and

binds to themitochondrial-specific adaptor proteinMilton, which

is linked to the kinesin-1 heavy chain (Brickley et al., 2005; Glater

et al., 2006; Koutsopoulos et al., 2010). Miro is a calcium-binding

protein (Fransson et al., 2003), and thus has the potential for

being a regulator of mitochondrial motility in neurons, in essence

operating as a sensor of local [Ca2+] and ATP. It has been

proposed that in the Ca2+-unbound state, Miro binds Milton

and mitochondria are attached to microtubules, whereas in the

Ca2+-bound state, Miro cannot bind Milton and mitochondria

are uncoupled from microtubules (Rice and Gelfand, 2006).

This model is consistent with the ‘‘saltatory movement’’ model

proposed by Hajnóczky (Liu and Hajnóczky, 2009; Yi et al.,

2004), in which mitochondria move only when local [Ca2+] is

low, and stop when the local [Ca2+] is high. Notably, only Ca2+

mobilized via IP3Rs (or, in muscle, via the related ryanodine

receptors) could generate this result. We note, however, that

very few of the experiments supporting this model have been

conducted in mammalian neurons.

The tethering of mitochondria to ER via MAM is a dynamic

process, as organelles must disengage from the ER in order to

engage, and then travel on, microtubules. Any defect that alters

this equilibrium could conceivably result in a mismatch between

the number of mitochondria required in specific regions of a

neuron and the demand for mitochondrial cargo in those regions

(Schon and Area-Gomez, 2010). Given the dynamic nature of

MAM, and the role of IP3Rs in maintaining the proper equilibrium

between ER and mitochondrial [Ca2+], one can easily imagine

that neurodegenerative disorders in which calcium homeostasis

is disrupted could arise fromaltered ER-mitochondrial communi-

cation, or conversely, that alterations in calcium homeostasis

from some other cause could affect this communication indi-

rectly. Among our selected adult-onset neurodegenerative

diseases, two candidates are HD, in which both HTT and HAP1

interact with IP3R1 (Tang et al., 2003), and a form of SCA associ-

ated with loss of IP3R1 function (van de Leemput et al., 2007).

However, themost compelling case for a role for MAM in path-

ogenesis is familial AD due to mutations in presenilin-1 and -2,

which are components of the g-secretase complex that cleaves

the amyloid precursor protein (APP) to produce amyloid-b,

a constituent of the extracellular neuritic ‘‘plaques’’ that accumu-

late in the brains of AD patients (Schon and Area-Gomez, 2010).

Apart from the accumulation of hyperphosphorylated forms

of the microtubule-associated protein tau in intraneuronal

‘‘tangles’’ (the other prominent aspect of AD pathology), both

the familial and sporadic forms of the disease are characterized

by a number of other features that have received less attention.

These include altered lipid, cholesterol, and glucose metabolism
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(Schon and Area-Gomez, 2010), aberrant calcium homeostasis

(Supnet and Bezprozvanny, 2010), ER stress and the unfolded

protein response (Hoozemans et al., 2005), aberrant mitochon-

drial dynamics (e.g., fragmented and perinuclear mitochondria,

associated with, for example, altered levels [Wang et al.,

2009a] or posttranslational modifications [Cho et al., 2009] of

the mitochondrial fission protein dynamin-related protein-1

[DRP1]), and defects in energy metabolism (Ferreira et al.,

2010), but it remains to be determined to what degree these

phenomena are causally linked. It is in this context that a recent

report that presenilin-1 and –2 (and g-secretase activity itself) are

highly enriched in the MAM (Area-Gomez et al., 2009) is so inter-

esting, because the functions noted above that are perturbed in

AD are in fact the very functions associated with MAM. More-

over, even the generation of the plaques might be explained by

altered MAM function, as MAM-localized ACAT1, which is

required to convert intracellular cholesterol to cholesteryl esters

that are deposited in lipid droplets, is apparently a modulator of

APP processing and amyloid-b production (Puglielli et al., 2001),

for currently unknown reasons. Thus, pathogenic mutations in

the presenilins could alter ER-mitochondrial communication

(Zampese et al., 2011), leading to the features of the disease

(Schon and Area-Gomez, 2010).

One other neurodegenerative disease that may be associated

with MAM dysfunction is CMT, which can be caused by muta-

tions both in MFN2 (Chen and Chan, 2009) and in ganglioside-

induced differentiation-associated protein 1 (GDAP1) (Pedrola

et al., 2005), which interacts with MFN2 (Niemann et al., 2005).

MFN2, like mitofusin-1 (MFN1), is required for mitochondrial

fusion (Chen andChan, 2009). However, a portion ofMFN2 is en-

riched in the MAM, where it is required for the tethering of ER to

mitochondria (de Brito and Scorrano, 2008). We note that CMT

mutant MFN2 expressed in cultured dorsal root ganglion

neurons induced abnormal clustering of fragmented mitochon-

dria, as well as impaired axonal transport of mitochondria (Baloh

et al., 2007). Perhaps these abnormalities resulted from an

underlying defect in ER-mitochondrial communication.

The study of MAM is a nascent field that has just begun to be

recognized as a contributor to neurodegeneration, and likely will

expand beyond the diseases cited above. For example, there

may be a ‘‘MAM connection’’ in at least two other diseases in

which the relevant proteins—both involved in phospholipid

metabolism—appear to be enriched in the MAM. These are

SCA due to mutations in PPP2R2B, a regulatory subunit of

protein phosphatase 2A (Giorgi et al., 2010) that promotes mito-

chondrial fission (Dagda et al., 2008a), presumably via MAM-

localized FIS1 (Iwasawa et al., 2011), and PD due to mutations

in subunit b of the calcium-independent phospholipase A2

(iPLA2b; gene PLA2G6), which plays a key role in ER-mitochon-

drial crosstalk during ER stress-induced apoptosis (Lei et al.,

2008). It would thus be fascinating to see if future studies on

PPP2R2B and iPLA2b provide insight into a potential link

between MAM and neurodegeneration in SCA and PD, and

perhaps even beyond.

Neurodegenerative Disorders and Mitochondrial

Quality Control

Besides alterations in trafficking and in ER-mitochondrial

communication, mitochondria can also fail to reach their destina-
tions due to dysregulation of quality control systems. The cell has

surveillance mechanisms to eliminate mutated, unfolded, and

otherwise unwanted proteins, via autophagic and ubiquitin-pro-

teasome systems located in the cytosol. In a similar manner,

unwanted mitochondria can be disposed of, and their contents

recycled, by mitophagy. Although there is currently no evidence

that mitochondria contain proteasomes, they do have mecha-

nisms to eliminate misfolded or unneeded polypeptides, via,

for example, the AAA (ATPase associated with diverse cellular

activities) protease paraplegin/SPG7 and the paraplegin-related

protease AFG3L2, and their regulators, the prohibitins PHB and

PHB2 (Osman et al., 2009). In addition, mitochondrial proteins,

especially those in the outer membrane, can be retrotranslo-

cated into the cytosol by, for example, mitochondrially targeted

valosin-containing protein (VCP/p97, also a AAA protease) (Xu

et al., 2011), for subsequent clearance by the proteasome. This

process constitutes, as it were, a mitochondrial version of

ER-associated degradation (Heo et al., 2010). Interestingly,

mutations in VCP were recently found to cause familial ALS

(Johnson et al., 2010).

Thus, mutations in mitochondrial quality control genes could

prevent the efficient elimination of damaged mitochondria and

the degradation of superfluous and potentially deleterious poly-

peptides, hence leading to neuronal dysfunction and perhaps

ultimately to cell death. In order for quality control to operate at

the level of the mitochondrion, cells must be able to distinguish

between ‘‘good’’ and ‘‘bad’’ organelles, and in fact, such dis-

crimination does occur. Mitochondria apparently are deemed

to be good if they have a high membrane potential (Dc), and

perhaps low levels of reactive oxygen species (ROS) as well,

both presumably indicative of a well-functioning respiratory

chain. Conversely, they are deemed bad if they have a low Dc

and elevated ROS, indicative of defective OxPhos; these are

the organelles that are eliminated via selective mitophagy

(Twig and Shirihai, 2011). Mitophagy of damaged organelles,

however, is a last resort, as cells initially try to prevent the accu-

mulation of bad mitochondria via maintenance of a dynamic

equilibrium between mitochondrial fission and fusion, which

‘‘homogenizes’’ organellar contents. This mixing of a few bad

mitochondria within a larger pool of good ones allows for

complementation of genes and gene products to take place after

mitochondria have exchanged contents (Gilkerson et al., 2008),

thereby blunting, or even eliminating, the deleterious effects of

misfolded proteins and randomly mutated mtDNAs (Twig and

Shirihai, 2011).

Thus, from a quality control standpoint, one might predict that

mutations in genes encoding proteins required for mitochondrial

dynamics, and especially organellar fission and fusion, would

result in compromised organellar ‘‘mixing,’’ leading to an excess

accumulation of bad mitochondria, perhaps causing disease,

and this is indeed the case. Gene products in this category

include four associated with fusion (although interestingly,

none with fission): MFN2 and GDAP1, both causing CMT, and

OA proteins OPA1 and OPA3, both causing OA. Even though

OPA1 and OPA3 (Huizing et al., 2010; Ryu et al., 2010) and

GDAP1 (Niemann et al., 2005) interact with mitofusins to regulate

the mitochondrial network, it is again worth noting that the

four genes are associated with two totally different clinical
Neuron 70, June 23, 2011 ª2011 Elsevier Inc. 1045
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presentations. Mitochondrial dynamics are also altered in HD

(Bossy-Wetzel et al., 2008; Kim et al., 2010; Oliveira, 2010), as

the expression of mitochondrial fission-related proteins, such

as FIS1 and DRP1 (Costa et al., 2010), which happens to interact

with HTT (Song et al., 2011), are increased in striatum and frontal

cortex of patients, whereas that of fusion-related proteins, such

as MFN1, MFN2, and OPA1, are decreased (Shirendeb et al.,

2011), likely explaining the fragmented mitochondria and altered

mitochondrial dynamics seen in the disease (Pandey et al., 2010;

Shirendeb et al., 2011).

Among diseases in this category, PD stands out, as it is

becoming apparent that some genetic forms of the disease

may be in essence disorders of mitochondrial quality control.

Paradoxically, the history of PD, at least froma genetic/biochem-

ical perspective, pointed away from such a conclusion, as the

earliest observations regarding pathogenesis implied a defi-

ciency of complex I of the respiratory chain as the key culprit.

That conclusion was based on the findings that (1) 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP), a complex I inhibitor

similar to rotenone, caused PD-like symptoms, (2) complex I

activity was reported to be reduced in PD postmortem tissues,

(3) mutations in complex I subunits, such as nDNA-encoded

NDUFV2, were associated with PD (Nishioka et al., 2010), and

(4) accumulations of large-scale deletions of mtDNA were found

specifically in the substantia nigra of sporadic PD patients

(Bender et al., 2006; Kraytsberg et al., 2006), the signature target

region of the brain in this disease (Dauer and Przedborski, 2003).

However, a notable challenge to this concept was the failure to

find clear evidence of mutations in mtDNA that cause PD (Simon

et al., 2010). Moreover, the identification in the last decade of at

least a dozen genetic loci associated with familial PD (Table 2)

has changed our perspective dramatically, as many of these

gene products are associated with mitochondria but have no

obvious or direct connection to OxPhos, and many of those

proteins appear to be involved in quality control.

Two of those PD-related proteins may be involved in quality

control in an indirect manner. Phospholipase A2, group VI

(PLA2G6) (Seleznev et al., 2006) is a mitochondrial lipase that

deacetylates cardiolipin and is involved in ER stress and

ER-mitochondrial crosstalk via ceramide (Lei et al., 2008).

GRB10-interacting GYF protein-2 (GIGYF2) enhances the acti-

vation of mitochondrially localized (Deng et al., 2000; Galli

et al., 2009) extracellular signal-regulated kinases ERK1 and

ERK2 (Deng et al., 2000; Higashi et al., 2010), both of which

are involved in mitophagy (Dagda et al., 2008b) and apoptosis

(Deng et al., 2000; Higashi et al., 2010).

Amuch stronger case for a role in mitochondrial quality control

can bemade for Parkin, a cytosolic E3 ubiquitin ligase. However,

in this role, Parkin does not act alone, as mounting evidence

implicates the necessary interaction with another PD-related

and mitochondrially localized protein, PINK1. PINK1 is a kinase

of unknown specificity that displays a possible dual location in

the organelle, i.e., it has been found in both the outer (Zhou

et al., 2008) and inner (Jin et al., 2010; Silvestri et al., 2005)

membranes. Mitochondrial PINK1 is present in two forms, long

and short, with the long form (PINK1-L, �64 kDa) cleaved to

the short form (PINK1-S,�52 kDa) within the mitochondrial inner

membrane by presenilin-associated rhomboid-like protein
1046 Neuron 70, June 23, 2011 ª2011 Elsevier Inc.
(PARL), an intramembrane protease (Deas et al., 2011; Jin

et al., 2010).

As an aside, like PINK1, OPA1 also has long and short forms,

with OPA1-L cleaved, not by PARL, but by AFG3L2, to produce

OPA1-S (Duvezin-Caubet et al., 2007). The long forms of both

OPA1 and PINK1 are targeted to the inner membrane, where

cleavage occurs, essentially releasing the short forms of both

proteins to perform their functions. Whereas the function of

OPA1-S is clearly fusion of the mitochondrial outer membrane,

the precise role of PINK1-S remains to be determined. One

possibility is that PINK1 (Weihofen et al., 2009), which, like

MFN2 (Misko et al., 2010), interacts with the mitochondria-kine-

sin adaptors Miro and Milton, and with mitofilin (Weihofen et al.,

2009), another mitochondrial morphology-related protein (John

et al., 2005), assists in the offloading of mitochondria from

microtubules in order to allow them to fragment and become

autophagized (Gomes et al., 2011; Hailey et al., 2010).

However, the lion’s share of attention to PINK1 is devoted to

its relationship with Parkin in cooperating in a signaling pathway

(Clark et al., 2006) to maintain mitochondrial integrity, presum-

ably by eliminating bad mitochondria via mitophagy (Vives-

Bauza and Przedborski, 2011). As such, we deem the elucidation

of the biology of Parkin and PINK1 to be far more important in

illustrating the mitochondrial connection to neurodegenerative

disease than the few number of patients harboring mutations

in these proteins might warrant.

In the current view, upon loss of Dc in damaged mitochondria,

PINK1 residing in the outer membrane triggers, in some

unknown fashion, the recruitment of cytosolic Parkin to the mito-

chondria (Jin et al., 2010; Narendra et al., 2010b; Vives-Bauza

et al., 2010). Mitochondrial proteins located in the outer

membrane, such as the voltage-dependent anion channel 1

(VDAC1; also called porin) are then ubiquitinated in a Parkin-

dependent manner (Geisler et al., 2010). The ubiquitination of

outer membrane proteins recruits the autophagy molecule

microtubule-associated protein-1 light chain-3 (LC3) to build

the autophagosome around the damaged mitochondrion (Vi-

ves-Bauza and Przedborski, 2011), apparently mediated by the

adaptor proteins HDAC6 (Okatsu et al., 2010) and p62 (Geisler

et al., 2010; Narendra et al., 2010a; Okatsu et al., 2010). Upon

membrane depolarization, according to some studies, Parkin

also induces ubiquitination of mitofusins (Gegg et al., 2010; Zi-

viani et al., 2010), which are then degraded by the proteasome

via VCP (Tanaka et al., 2010), although others found that it is

DRP1 and not MNF1/2 or FIS1 that is degraded by the protea-

some in a Parkin-dependent manner (Wang et al., 2011). This

discrepancy needs to be resolved, as the exact fusion/fission

factors that are regulated by Parkin would indicate whether Par-

kin, either alone or in conjunction with PINK1, promotes frag-

mentation or elongation of mitochondria. Perhaps a-synuclein

may begin to provide some hints into this outstanding issue, as

overexpression of PD mutant and wild-type a-synuclein (which,

as noted above, mimics the gene multiplications found in some

PD patients) were reported to promote fragmentation of mito-

chondria (Kamp et al., 2010; Nakamura et al., 2011). Conversely,

downregulation of wild-type a-synuclein inC. elegans resulted in

elongatedmitochondria (Kamp et al., 2010). Although changes in

the fusion/fission balance have not yet been demonstrated in PD
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samples, on the surface, one would predict that mutations in

a-synuclein would enhance, rather than hamper, mitochondrial

turnover, because fragmentation, and not elongation, of mito-

chondria into ‘‘bite-sized’’ pieces facilitates mitophagy (Twig

et al., 2008). Alternatively, rather than altering mitophagy,

perhaps a-synuclein influences quality control through its effect

on the fusion/fission balance by affecting the ability of good

mitochondria to complement bad ones.

The PD-related protein DJ-1 may also have a relationship to

quality control, as it has a number of proposed disparate

connections to mitochondria. In addition to possibly binding to

the NDUFA4 and ND1 subunits of complex I (Hayashi et al.,

2009a), DJ-1 has been reported to interact with both PINK1

and Parkin (Moore et al., 2005) and to modulate mitochondrial

fission/fusion in a ROS-dependent manner (Irrcher et al., 2010).

This latter effect is consistent with its proposed function as an

atypical peroxiredoxin-like peroxidase that scavenges mito-

chondrial H2O2 (Andres-Mateos et al., 2007). Moreover, DJ-1

seems to regulate the expression of the mitochondrial uncou-

pling (UCP) proteins, as its ablation in mice is associated with

reduced expression of UCP4 and UCP5 in brain (Guzman

et al., 2010). While these two UPCs are among the least well-

characterized members of this family, it is tantalizing to suggest

that changes in their expression in brain could alter mitochon-

drial Dc, which, if confirmed, would be an important clue as to

how DJ-1 participates in mitochondrial quality control. Indeed,

if as suggested from the PINK1/Parkin story, a loss of Dc is

a prerequisite for the disposal of bad mitochondria, the loss-

of-function mutations in DJ-1 that cause PD may impair mito-

chondrial quality control by distorting the relationships among

mitochondrial damage, Dc, and mitophagy. In this scenario,

DJ-1 would operate upstream of PINK1/Parkin within the mi-

tophagy pathway, an idea consistent with the demonstration

that silencing DJ-1 in human cell lines does not affect PINK1-

dependent recruitment of Parkin and ensuing mitophagy in

response to Dc collapse by protonophores (Vives-Bauza et al.,

2010). Clearly, further work is needed to determine how the func-

tion of PD-related proteins intersects with mitodynamics to

contribute to the pathogenesis of the disease.

The mitophagy model for pathogenesis in PD is appealing, as

it explains many of the features of the disease that have been

ascribed to mitochondrial dysfunction noted above. However,

there are aspects to this developing story that suggest caution

in accepting such a scenario uncritically. First, deletion of

PINK1, Parkin, or DJ-1 in mice, either alone or in combination,

had little perceptible effect on neuronal function (Kitada et al.,

2009), calling the role of mitophagy in the pathogenesis of the

disease into question. Equally important is the relative artificiality

of some of the experimental manipulations upon which the role

of these proteins has been based. Because both PINK1 and

Parkin are present at low levels, most conclusions are derived

from overexpression experiments. Furthermore, the lack of

good antibodies has required the use of epitope tags to detect

these proteins. Finally, the complete disruption of mitochondrial

Dc using ionophores such as carbonyl cyanide m-chlorophenyl

hydrazone (CCCP) does not mimic the much lower degree of

disruption of Dc that likely occurs in patients; even cells that

lack mtDNA and OxPhos function entirely can maintain about
50% of the wild-type Dc. Thus, while the concept of mitochon-

drial quality control as a pathogenic principle in PD remains

appealing, some aspects of the current model may require

modification.

We would be remiss if we failed to mention that quality control

has more than a janitorial function, as it is also required to

maintain normal cellular and organellar processes. For example,

themajormitochondrial matrix AAAprotease, besides degrading

misfolded proteins (T. Langer, personal communication), regu-

lates mitochondrial ribosome biogenesis by processing the

mitochondrial ribosomal protein MRPL32 for proper incorpora-

tion into, and functioning of, mitochondrial ribosomes. Consis-

tent with this function, the loss of either SPG7 or AFG3L2 (Nolden

et al., 2005), the two subunits that compose the matrix AAA

protease, compromises mitochondrial translation, resulting in

bioenergetic impairment (Atorino et al., 2003; Nolden et al.,

2005). Together with the fact that mutations in SPG7 cause

HSP (Casari et al., 1998) and mutations in AFG3L2 cause SCA

(Di Bella et al., 2010), the aforementioned findings suggest that

defects in mitochondrial ribosomal biogenesis via defects in

quality control can provoke neurodegeneration.

Concluding Remarks
For years, defects in OxPhos and oxidative stress have been two

of the most popular hypotheses put forward to explain patho-

genesis of almost all neurodegenerative disorders. It is clear

that ‘‘classical’’ mitochondrial diseases, many of which are

myopathies and encephalopathies in children and young adults,

are unquestionably provoked by bioenergetic defects. However,

when we look at the data critically, the role of impaired bioener-

getics as the primary cause of late-onset neurodegenerative

diseases is far less compelling, even in the case of disorders

when there are known mutations in OxPhos genes, such as in

LHON. If so, how can we reconcile a role for mitochondria in

these disorders, given the large literature implicating energy

metabolism? Perhaps the recent shift in emphasis regarding

the role of mitochondria in neurodegenerative disorders reflects

a better appreciation of the relationship between cause and

effect in these diseases, namely, that impaired OxPhos is not

the cause of neurodegeneration, but is one result of other under-

lying mitochondrial problems. Furthermore, we recognize that

while changes in mitochondrial function do not necessarily

have to affect bioenergetic output, the fact remains that if, for

example, mitodynamics are perturbed, the absolute production

and local delivery of ATP will be reduced, and that at some point

in the disease process bioenergetic failure will occur, probably

delivering the coup de grâce.

We have entered a new era of mitochondrial biology, one in

which the focus is no longer solely on bioenergetics per se but

on mitochondria as an integrated subcellular system (Figure 1).

Under this rubric, a central theme that has emerged is one of

altered mitochondrial dynamics. While important advances

have been made in this area in a relatively short period of time,

some key outstanding questions still remain to be addressed.

For example, if diseases such as AD, ALS, and PD are due to

errors in mitochondrial quality control overseen by a suite of

ubiquitous housekeeping proteins, why do these diseases

display a predilection for specific subpopulations of neurons?
Neuron 70, June 23, 2011 ª2011 Elsevier Inc. 1047
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To almost belabor the obvious, the simple answer is that some

specific neurons may be more vulnerable to the pathological

process than others; clearly, such a differential neuronal suscep-

tibility will only reveal itself if the defect in question is mild, as

would be expected for an adult-onset neurodegenerative

disorder.

Based on this premise, let us use PD to illustrate a putative

pathogenic scenario, by comparing two subpopulations of dopa-

minergic neurons from the ventral midbrain that are affected

differentially in the disease, namely those in the substantia nigra

(severely affected) and those in the ventral tegmental area (mildly

effected) (Dauer and Przedborski, 2003). One compelling differ-

ence between these two groups of neurons is that recruitment

of L-type calcium channels during normal autonomous pace-

making is associated with a high ROS signal in dopaminergic

neurons of the substantia nigra, but not those of the ventral

tegmental area (Guzman et al., 2010). Thus, one could speculate

that the former region accumulates a much higher burden of

ROS-related mtDNA mutations than the latter, a view that is, in

fact, supported by the observation that dopaminergic neurons

in the substantia nigra of both aged normal subjects (Kraytsberg

et al., 2006) and PD patients (Bender et al., 2006) contain more

mtDNA deletions than do those from controls. Thus, if the ‘‘mito-

chondrial quality control’’ hypothesis for the pathogenesis of

neurodegenerative disorders is correct, one would predict that

unless properly eliminated bymitophagy, the number of function-

ally deficient mitochondria would slowly increase over time to

amuch greater extent in those neurons generatingmoremutated

mtDNAs (i.e., substantia nigra), eventually causing functional

perturbations and neuronal death. Extending this idea further, if

mitophagy is important in other adult-onset neurodegenerative

disorders, many of which are sporadic, one might also expect

that other risk factors, both genetic and environmental, would

affect mitophagy and thereby induce the pathology. These risk

factors, if they exist, remain to be uncovered.

We have divided our discussion of mitodynamics into three

areas—trafficking, organelle interconnectivity, and quality

control—mainly for convenience, but we consider all three to

be intertwined aspects of a larger whole. In keeping with this

view, we note that the analysis of pathogenic mechanisms in

essentially all of our selected disorders encompassed more

than one of these areas, underscoring the integrative nature of

mitodynamics, in which a problem in one area can readily have

consequences in another one, including bioenergetics.

Finally, while we have focused in this review almost exclusively

on mitochondria, we do not want to leave the impression that

mitochondrial defects are the sine qua non of neurodegenerative

disease. Far from it: of the 106 genes that were mentioned at

the outset, we have discussed fewer than half; the remainder

have no obvious connection to mitochondria, and yet they cause

neurodegeneration. Moreover, we wish to reiterate that we have

focused on familial forms of common neurodegenerative disease

as one way to provide a window onto pathogenesis of their

sporadic counterparts. This assumption, of course, remains to

be validated.

Can any of the above discussion inform ideas about thera-

peutic strategies for neurodegenerative disorders? Based on

the insights into mitochondrial behavior in these disorders, one
1048 Neuron 70, June 23, 2011 ª2011 Elsevier Inc.
can begin to envision pharmacological approaches to treatment.

For example, regarding mutations in mtDNA, one strategy could

be to eliminatemutatedmtDNAswhile leavingwild-typemtDNAs

intact, in order to reduce the load of mutated mtDNAs below

a critical threshold. One such way to shift heteroplasmy is to

force cells harboring high levels of partially deleted mtDNAs to

eliminate bad mitochondria that contain predominantly mutated

mtDNAs while, at the same time, sparing good ones that contain

predominantly normal mtDNAs by growing them in ketogenic

media that selects for well-functioning mitochondria (Santra

et al., 2004). A shifting approach might work particularly well in

diseases like PD, in which substantia nigra is known to contain

relatively high levels of mtDNA deletions (Bender et al., 2006).

The role of the PD-related proteins PINK1 and Parkin in mitoph-

agy points to another way to eliminate bad mitochondria selec-

tively, namely, by upregulating the autophagic pathway. An

obvious proautophagic candidate drug would be rapamycin,

which has already been shown to protect against neuronal death

in mouse models of PD (Malagelada et al., 2010). For mutations

in other genes associated withmitochondrial function, and espe-

cially those that impair function only partially, a third promising

approach might be to increase energy production in patients

by upregulating PGC-1a expression using compounds such as

bezafibrate, a PPAR panagonist (Santra et al., 2004), or 5-amino-

imidazole-4-carboxamide ribonucleoside (AICAR), which acts as

an AMP agonist by mimicking AMP (Viscomi et al., 2011). Finally,

it may be possible to alter mitodynamics directly by, for example,

shifting the relationship between fission and fusion pharmaco-

logically, using the quinazolinone mitochondrial division inhibitor

1 (mdivi1), which enhances mitochondrial fusion in yeast by

inhibiting the mitochondrial dynamin Dnm1 that is required for

organelle fission (Cassidy-Stone et al., 2008).

We may view the role of mitochondria in the pathogenesis of

neurodegenerative disorders, and the ways in which we have

begun to think about therpaeutics, as multifaceted, and going

well beyond the ‘‘mere’’ synthesis and distribution of ATP

throughout cells. Mitochondria encompass numerous functions,

including many important ones that have not even been dis-

cussed here (e.g., amino acid metabolism, steroid metabolism,

apoptosis, xenobiotic detoxification, and immunological

defense), all of which could play a role in neurodegenerative

disorders. To the cliché that mitochondria are the powerhouses

of the cell, let us add one more: what has been uncovered in the

last 10 years regarding the role of mitochondria in neurodegen-

erative disorders is merely the tip of the iceberg. Far more

exciting findings lay ahead.
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