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Abstract

We give an example of a prime ring with zero center such that its central closure is a simple ring with an
identity element. It solves a problem posed by Beidar.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Köthe’s conjecture (whether the sum of two left nil ideals is nil) is one of the most famous
problems in Ring Theory. Though the statement looks rather elementary this problem remains
open since 1930 when the paper [4] has been published. There are many equivalent formulations
of Köthe’s problem (see recent survey papers [7,8,11] for details), we will mention just one of
them. In 1972 Krempa [5] proved that Köthe’s conjecture is equivalent to the problem whether
polynomial rings in one indeterminate over nil rings are Jacobson radical.

Recall that a ring R is called Jacobson radical if for every a ∈ R there exists b ∈ R such
that a − b + ba = 0. A ring R is called Brown–McCoy radical if it cannot be homomorphically
mapped onto a ring with an identity element. Clearly, every Jacobson radical ring is Brown–McCoy
radical. A natural question [6, Question 13a] whether the polynomial rings in one indeterminate
over nil rings are Brown–McCoy radical was open for several years until it was answered positively
in 1998 by Puczyłowski and Smoktunowicz [9]. Another natural question [6, Question 13b]
whether the same can be obtained for polynomial rings in sets of commuting or non-commuting
indeterminates remains open so far, just some partial cases have been considered. In particular,
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Ferrero and Wisbauer showed that the questions for infinitely many commuting and non-commut-
ing indeterminates are equivalent [3]. Smoktunowicz proved that if a matrix ring over a ring R is
nil, then the polynomial ring in two commuting indeterminates over R is Brown–McCoy radical
[12]. In the recent paper [2] it was shown that the polynomial ring R[x, y] in two commuting
indeterminates is Brown–McCoy radical provided that R is nil and pR = 0 for some prime p.

The problem of the existence of a prime ring with zero center whose central closure is a simple
ring with an identity element posed by Beidar has circulated among ring theorists for a while and it
was mentioned in several papers on radical theory (see for example [3, p. 223], [8, Question 2.13a]
or [10, p. 140]). If such a prime ring would not exist, then every polynomial ring in commuting
variables over a nil ring would be Brown–McCoy radical.

The goal of this paper is to prove the following result:

Theorem 1. There exists a prime ring with zero center such that its central closure is a simple
ring with an identity element.

The construction is a rather interesting matrix algebra which can be of some use for some other
examples.

The proof of the theorem will be split into a series of lemmas in the next section.

2. The proof

Let R be a prime ring with extended centroid C and symmetric ring of quotients Q (see [1]
for details). Recall that the subring RC of Q is said to be the central closure of R.

Let Q be the field of rational numbers. Throughout this paper Q[x, x0, x1, . . .] is the ring of
polynomials over Q in indeterminates x, x0, x1, . . ., and Q{x, x0, x1, . . .} is the field of fractions
of the polynomial ring Q[x, x0, x1, . . .].

Let M be the ring of ℵ0 × ℵ0 row-finite matrices over Q{x, x0, x1, . . .}. By eij we denote an
ordinary matrix unit, i.e. a matrix which has 1 in the (i, j)th position and zeros elsewhere.

Let Eijk , k � 0, 1 � i � 2k , 1 � j � 2k , be a 2k × 2k matrix of the form eij . Denote by yijk ,
k � 0, 1 � i � 2k , 1 � j � 2k , an element of the form:

yijk =

⎛
⎜⎜⎜⎜⎜⎜⎝

xEijk 0 0 0 . . .

0 xkEijk 0 0 . . .

0 0 xEijk 0 . . .

0 0 0 xkEijk

...
...

...
... 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For example,

y110 =

⎛
⎜⎜⎜⎜⎜⎜⎝

x 0 0 0 . . .

0 x0 0 0 . . .

0 0 x 0 . . .

0 0 0 x0
...

...
...

... 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

and y121 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 x 0 0 . . .

0 0 0 0 . . .

0 0 0 x1 . . .

0 0 0 0
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let R be a Q-subalgebra of M generated by all yijk , k � 0, 1 � i � 2k , 1 � j � 2k . Note that
every element of R is of the form
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⎛
⎜⎜⎝

Ak 0 . . .

0 Ak

...
... 0

. . .

⎞
⎟⎟⎠

where Ak is a 2k × 2k matrix with sufficiently large k.
We will use standard arguments to prove first 2 lemmas.

Lemma 1. R is a prime ring.

Proof. Suppose that there exist nonzero elements a, b ∈ R such that aRb = 0. We may assume
that there exist k, Ak and Bk such that

a =

⎛
⎜⎜⎝

Ak 0 . . .

0 Ak

...
... 0

. . .

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝

Bk 0 . . .

0 Bk

...
... 0

. . .

⎞
⎟⎟⎠ .

Since a and b are nonzero there are nonzero entries αij of Ak and βpq of Bk . Clearly, αij xβpq

is a nonzero element of Q[x, x0, x1, . . .]. Taking c = yjpk we get that acb /= 0, a contradiction.
Therefore R is a prime ring. �

Lemma 2. If c ∈ M is a row-finite matrix which commutes with all matrices from R, then c is of
the form pI, where p ∈ Q{x, x0, x1, . . .} and I is the identity matrix.

Proof. Suppose that c has a nonzero entry γij with i /= j . Let k be such number that i, j < 2k .
Let a = y1ik and b = yj1k . We obtain abc = 0 and acb /= 0 since the (1, 1)th entry of acb is
xγij x /= 0, a contradiction. Hence c is a diagonal matrix.

Suppose that c is not of the form pI . It means that c contains entries γii /= γjj for some i /= j .
Let k be such number that i, j < 2k . We obtain cyijk /= yijkc, a contradiction. The lemma is
proved. �

Lemma 3. R has a zero center.

Proof. It follows from Lemma 2 that the central elements of R are of the form pI , where p ∈
Q[x, x0, x1, . . .].

Let L = {yijk} be the finite set of elements such that pI lies in the Q-algebra generated by L

and let K = max{k|yijk ∈ L}.
We proceed by induction on K . If K = 0, then L = {y110} and obviously Q-algebra generated

by L does not contain a nonzero central element.
Consider now the general case K > 0. Write the desired central element in the form z =

zK−1 + zK , where zK−1 is the sum of finite products which do not involve elements of the form
yijK . Observe that zK−1 can be presented in the form

zK−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

AK 0 0 0 . . .

0 AK 0 0 . . .

0 0 AK 0 . . .

0 0 0 AK

...
...

...
... 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,



838 M. Chebotar / Linear Algebra and its Applications 429 (2008) 835–840

where AK = AK(x, x0, x1, . . . , xK−1) is a 2K × 2K matrix. Note that zK is of the form

zK =

⎛
⎜⎜⎜⎜⎜⎜⎝

BK 0 0 0 . . .

0 CK 0 0 . . .

0 0 BK 0 . . .

0 0 0 CK

...
...

...
... 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where BK = BK(x, x0, x1, . . . , xK−1) and CK = CK(x, x0, x1, . . . , xK−1, xK) are 2K × 2K

matrices. If CK depends on the indeterminate xK , then z = zK−1 + zK cannot be of the form pI .
Taking xK = 0 we get by definition of zK that CK = 0. Now taking xK = x we obtain

0 = CK = CK(x, x0, x1, . . . , xK−1, x) = BK(x, x0, x1, . . . , xK−1),

that is zK = 0. Therefore, zK−1I lies in the center, which is impossible by the induction hypoth-
esis. �

Lemma 4. The extended centroid of R contains the set Q{x, x0, x1, . . .}I.

Proof. We will use some basic properties of the extended centroid that can be found in [1, Section
2.3]. In particular, we will use the well-known facts that it is the center of the symmetric ring of
quotients and a field.

Let C be the extended centroid of R. To prove that c ∈ Q{x, x0, x1, . . .}I is an element of C

it is enough to find two nonzero elements r1, r2 ∈ R such that r2 = cr1.
Note that y110y111 = xy111 and so xI ∈ C. Next, y110y221 = x0y221 implies x0I ∈ C.
Finally, y11k(y110y11k − y2

11k) = xk(y110y11k − y2
11k), so xkI ∈ C for all k > 0. Since C is a

field we get that C contains the set Q{x, x0, x1, . . .}I . �

Lemma 5. Let Z = Q{x, x0, x1, . . .}I. The ring RZ is a simple ring with an identity.

Proof. Note that every nonzero element a of RZ can be written in the form

a =

⎛
⎜⎜⎝

Ak 0 . . .

0 Ak

...
... 0

. . .

⎞
⎟⎟⎠ (2.1)

where Ak is a 2k × 2k matrix with sufficiently large k. Setting

Ak+1 =
(

Ak 0
0 Ak

)

if necessary we may assume that k > 1.
Our goal is to show that the ideal J of the ring RZ generated by any nonzero element a ∈ RZ

contains the identity I .
Step 1. J contains an element ε11l of the form

ε11l =

⎛
⎜⎜⎝

E11l 0 . . .

0 E11l

...
... 0

. . .

⎞
⎟⎟⎠
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with sufficiently large l > 1.
Let a be a nonzero element of J of the form (2.1). We may assume that Ak contains a nonzero

entry αeij with α ∈ Q{x, x0, x1, . . .}. Note that α−1y1ikayj1k ∈ J is of the form

b =

⎛
⎜⎜⎜⎜⎜⎜⎝

x2E11k 0 0 0 . . .

0 x2
kE11k 0 0 . . .

0 0 x2E11k 0 . . .

0 0 0 x2
kE11k

...
...

...
... 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Computing [(x2 − xkx)x2]−1(y2
11k − xky11k)b ∈ J we get the desired matrix ε11,k+1.

Step 2. For every l > 1 and i with 1 � i � 2l , the ring RZ contains elements ε1il and εi1l .
We will prove only that ε1il ∈ RZ, the second statement can be proved analogously.
First, let i be in the interval 1 � i � 2l−1. Note that

ε1il = (x2 − xl−1x)−1[y11,l−1y1i,l−1 − xl−1y1i,l−1] ∈ RZ.

Now let i be in the interval 2l−1 + 1 � i � 2l . We obtain

ε1il = (x2
l−1 − xl−1x)−1[y11,l−1y1i,l−1 − xy1i,l−1] ∈ RZ

which completes the step.
Step 3. J contains the identity I .
By Step 1 ε11l ∈ J and by Step 2 ε1il , εi1l ∈ RZ. For every i with 1 � i � 2l we get εiil =

εi1lε11lε1il ∈ J . To complete the proof just observe that I = ∑2l

i=1 εiil . �

Let C′ be the extended centroid of RZ. Clearly C is a subset of C′, so by Lemma 4 we have
the inclusion Z ⊆ C ⊆ C′ and consequently RZ ⊆ RC ⊆ RC′. Since RZ is a simple ring with
an identity we get RZ = RC′ and so RZ = RC. Therefore RC is a simple ring with an identity
as desired.
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